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Figure-G round Discrimination: A 
Combinatorial Optim ization Approach 

Laurent HCrault and Radu Horaud 

Abstract-h this paper, we attack the figure-ground discrim- 
ination problem from a combinatorial optimization perspective. 
In general, the solutions proposed in the past solved this prob- 
lem only partially: Either the mathematical model encoding the 
figure-ground problem was too simple, the optimization methods 
that were used were not efficient enough, or they could not 
guarantee that the global minimum of the cost function describing 
the figure-ground model would be found. The method that we 
devised and is describe-d in this paper is tailored around three 
main contributions. 

First, we suggest a mathematical model encoding the figure- 
ground discrimination problem that makes explicit a definition of 
shape (or figure) based on cocircularity, smoothness, proximity, 
and contrast. This model consists of building a cost function on 
the basis of image element interactions. Moreover, this cost func- 
tion fits the constraints of an interacting spin system that, in turn, 
is a well suited physical model that solves hard combinatorial 
optimization problems 

Second, we suggest two combinatorial optimization methods 
for solving the figure-ground problem, namely i) mean field 
annealing, which combines mean field approximation theory 
and annealing, and ii) microcanonical annnealing. Mean field 
annealing may well be viewed as a deterministic approximation 
of stochastic methods such as simulated annealing. We describe, 
in detail, the theoretical bases of these methods, derive computa- 
tional models, and provide practical algorithms. 

Third, we provide a comparison of the efficiency of mean field 
annealing, simulated annealing, and microcanonical annealing 
algorithms. Within the framework of such a comparison, the 
figure-ground problem may well be viewed as a benchmark. 

Index Terms-Feature grouping, figure-ground discrimination, 
low-level vision, mean field annealing, microcanonical anneal- 
ing, recursive neural networks, simulated annealing, stochastic 
optimization theory, thresholding. 

I. INTRODUCTION 

T HE PROBLEM OF separating figure from ground is 
a central one in computer vision. One aspect of this 

problem is the problem of separating shape from noise. l%vo- 
dimensional shapes are the input data of high-level visual 
processes such as recognition. In order to maintain the com- 
plexity of recognition as low as possible, it is important to 
determine at an early level what is shape and what is noise. 
Therefore, one needs a definition of shape, a definition of 
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TABLE I 
A QUALITATIVE COMPARISON OF THE EFFICIENCY OF SIMULATED ANNEALING, 

MEAN FIELD ANNEALING, AND MICR~CANONICAL ANNEALING. 

Annealing Computation of Computation Required 

energy variation of probability accuracy of 
comoutations 

SA geometric yes 
MFA geometric no 
MCA geometric yes 

yes 
no 
no 

high 
high 
low 

noise, and a process that takes as input image elements and 
separates them into shape and noise. 

In this paper, we suggest an approach whose goal is twofold: 
i) It groups image elements that are likely to belong to the 
same (locally circular) shape while ii) noisy image elements 
are eliminated. More precisely, the method that we devised 
builds a cost function over the entire image. This cost function 
sums up image element interactions, and it has two terms, i.e., 
the first enforces the grouping of image elements into shapes, 
and the second enforces noise elimination. Therefore, the 
shape/noise discrimination problem becomes a combinatorial 
optimization problem, namely, the problem of finding the 
global minimum for the cost function just described. In theory, 
the problem can be solved by any combinatorial optimization 
algorithm that is guaranteed to converge toward the global 
minimum of the cost function. 

In practice, we implemented three combinatorial optimiza- 
tion methods: simulated annealing (SA) [16], mean field 
annealing (MFA) [19], [21], and microcanonical annealing 
(MCA) [7], [l]. The experimental results obtained with both 
real and simulated data tend to prove that these optimization 
methods are well suited for solving the figure-ground discrim- 
ination problem. The results also provide a comparison of the 
performances of the methods mentioned above. In all of the 
examples, the cost function converged to similar values. On  
a Sun Sparcstation, MFA is of the order of five times faster 
than MCA and of the order of 40 times faster than SA (see 
Tables I and II). 

The figure-ground or shape/noise separation problem is best 
illustrated by an example. Fig. 1 shows a synthetic image. In 
this image, some elements belong to such shapes as circles, a 
straight line, and a sinusoid, whereas some other elements are 
noise. Two independent sequences of random numbers were 
used to generate this noise: one sequence for the position in 
the image and another sequence for the orientation. This image 
has a total of 1250 elements. Fig. 2 shows the result obtained 
with mean field annealing. This image contains 309 elements 
that were labeled “shape” by this algorithm. Notice that the 
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Fig. 1. 

Fig. 2. 

Synthetic 
sinusoid 

Circles, a straight line, 
generated elements. 

and a 

The 

circles, straight line, and sinusoid were correctly identified as 
shapes, whereas most of the noise was thrown out. 

A. Background and Contribution 

The interest for shape/noise separation stems from Gestalt 
psychologists’ figure-ground demonstrations [17]: Certain im- 
age elements are organized to produce an emergent figure. 
Ever since the figure-ground discrimination problem has been 
seen as a side effect of feature grouping. The prerequisite of 
any method is the extraction from the raw data of the image 
elements that are either to be grouped or to be thrown out. Edge 
detection is, in general, first performed. Grouping edges is 
done on the basis of their connectivity or by using a clustering 
technique. Noise is eliminated by thresholding. 

The connectivity analysis produces edge chains that are 
further fitted with piecewise analytic curves (lines, tonics, 
splines, etc.). The clustering technique maps image edges into 
a parameter space, and such a parameter space is associated 
with each curve type: This is the well-known Hough transform. 
The problem of finding curves in the image is equivalent to 
a clustering problem in parameter space. With this technique, 
curves can be detected even if their constituting edges are not 
connected in the image. There are two major problems with 
the techniques just described: 

1) One has to specify analytically the type of curve or 
curves that are to be sought in the image, and this is 
done at a low level of the visual process. At an early 
stage of an image interpretation system, one may just 

2) 

want to know whether a set of edges form a shape or 
not, without any specific knowledge about the analytic 
curve that may fit this shape. For example, recognition 
of object prototypes needs such a vague description. 
The notion of noise is not clearly specified with respect 
to the notion of shape. Hence, noise elimination takes the 
form of adhoc methods. For example, edges associated 
with low contrast are usually thrown out. There are 
many examples that tend to prove that this is a bad 
heuristic. Indeed, a low-contrasted shape may be present 
in an image in the same time as high-contrasted noise, 
or a shape may be composed of low-contrasted edges 
and high-contrasted ones. Simply eliminating the low- 
contrasted edges will have, as an effect, the truncation 
and/or elimination of shapes. 

Parent and Zucker [20] define the notion of shape locally 
on the basis of curvature computed on a discrete grid and 
map the curve inference problem into a global optimization 
problem. The optimization itself is carried out by relaxation 
labeling. Finally, curve points are labeled “1,” and noise 
points are labeled “0.” We did not compare relaxation labeling 
with stochastic optimization, and therefore, we cannot assert 
which method is the best. However,  relaxation labeling is a 
local optimization process that needs good initialization. The 
analysis of discrete curvature provided by Parent and Zucker 
is very interesting, but the structure of the associated cost 
function is not well suited for such methods as mean-field 
annealing. 

A similar approach was followed by Sha’ashua and Ullman 
[26]. Curve inference takes the form of searching for the best 
sequence of edge elements in order to form the longest and 
the smoothest curves that pass through each image point. The 
search itself is carried out by dynamic programming, which 
is not a global optimization technique. Therefore, a global 
minimum cannot be guaranteed unless a good initialization is 
provided. 

Curve/noise separation is also the concern of Gutfinger and 
SkIansky [12]. The coding of the problem is inspired from 
[20]. Curve/noise separation is then viewed as a classification 
problem. The classification of dots into curve dots and noise 
dots is carried out by “mixed adaptation,” which is a method 
combining supervised and unsupervised training. The training 
stage computes statistics on noise images and on curve images. 
Unfortunately, this u priori separation is possible only with 
simulated data, and the method becomes impracticable when 
applied to real images. 

The advantage of stochastic optimization over more clas- 
sical approaches for solving the figure-ground discrimination 
problem was stressed by Sejnowski and Hinton [25]. They 
introduce a f igure-ground model based on two possible labels 
for the image elements: region and edge. Starting with a 
random labeling, a gradient-descent procedure gets trapped in 
one of the many local minima of the energy landscape, whereas 
simulated annealing converges to a solution where the region 
elements are “inside” the edge elements. The experimental 
results shown by the authors deal only with synthetic data. 

The method proposed by Camevali et al. [6] uses simulated 
annealing and a simple pixel interaction model in order to 
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classify the pixels of a  binary image into object and  noise. 
The  pixel interaction model  they propose uses pixel proximity 
on  the premise that objects are dense  sets of pixels whereas 
noise is formed from a  sparsely distributed set of pixels. 

The  method proposed by  Peterson [22] for tracking parti- 
cles in high-energy physics may be  appl ied to the grouping 
problem. Peterson suggests a  combinatorial optimization for- 
mulation based on  mean  field theory. However,  the model  
p roposed by  Peterson for track finding is not well suited 
when noise is present in the data. Moreover,  Peterson’s model  
maps  n  points onto n2  variables, and  hence,  there are n4  
connect ions. Such a  model  is well suited when the number  
of variables is relatively small. Our  model  maps  n  points onto 
n  variables, and  therefore, only n2  connect ions are necessary.  
More interestingly, a  VLSI implementation of the mean  field 
theory is suggested in Peterson’s paper.  

Kass et al. [15] p roposed the snake model:  It is an  energy-  
minimizing spline guided by  external forces and  images forces 
that pull the snake toward image edges.  Nevertheless, snakes 
do  not try to solve the entire problem of f inding salient image 
contours. They rely on  other mechanisms to place them near  
the desired contours. 

The  work descr ibed in this paper  has  the following contri- 
butions: 

l W e  suggest  a  mathematical encoding of the f igure-ground 
discrimination problem that consists of separat ing shape 
from noise using combinatorial optimization methods.  
The  particular cost (or energy)  function that we devised 
fits the constraints of an  interacting spin system-a phys-  
ical model  well suited for solving hard combinatorial 
optimization problems. 

l W e  suggest  two combinatorial optimization methods for 
solving the f igure-ground problem, namely, i) mean  field 
anneal ing combining mean  field approximation theory 
and  anneal ing and  ii) microcanonical annneal ing. Mean  
field anneal ing may well be  v iewed as  a  deterministic 
approximation of stochastic methods such as  simulated 
anneal ing. 

l W e  provide a  compar ison of the efficiency of three 
optimization methods:  two stochastic methods (simu- 
lated anneal ing and  microcanonical anneal ing) and  a  
deterministic one  (mean field annealing). The  figure- 
g round problem may well be  v iewed as  a  benchmark  for 
this comparison. In light of this comparison, it appears  
that microcanonical anneal ing, as  initially p roposed by  
Barnard [l], is inefficient. Therefore, we propose a  sub- 
stantial improvement of the anneal ing schedule associated 
with this algorithm. 

In the past, the theoretical bases  of mean  field anneal ing 
were studied by  Orland [19] and  Peterson [21]. Mean  field 
anneal ing has  been  used by  HCrault and  Niez to solve NP- 
complete graph problems [14], by  Geiger and  Girosi to solve 
the reconstruct ion problem [9], by  Geiger and  Yuille to solve 
the image segmentat ion problem [lo], and  by  Zerubia and  
Chel lappa to solve the edge  detection problem [29]. 

The  theoretical bases  of microcanonical anneal ing were 
proposed by  Creutz in 1983  [‘i’], and  it has  been  appl ied to 
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vision for the first time by  Barnard for solving the stereo 
matching problem [l]. 

Blake [2] provides a  compar ison of deterministic and  sto- 
chastic optimization methods,  namely, graduated nonconvexi ty 
(GNC) [3] and  simulated anneal ing. The  benchmark  for the 
compar ison is the reconstruct ion of 1-D signals. Blake’s 
conclusion is that the deterministic approach performs better. 
W e  extend Blake’s compar ison to mean  field anneal ing and  
microcanonical anneal ing. 

B. Organizat ion 
The remainder of the paper  is organized as  follows. Section 

II briefly descr ibes the mathematical structure of a  class of 
cost functions that are well suited for stochastic optimiza- 
tion methods.  This structure places strong constraints on  
the mathematical coding of the f igure-ground discrimination 
problem. Next, we formulate our  problem in terms of such 
a  cost function. This function involves interactions between 
the image elements that are considered. These interactions are 
made  clear in Section III. Section IV describes, in detail, the 
physical basis of stochastic optimization and  introduces three 
optimization methods.  These methods are compared in terms 
of their efficiencies, that is, their per formances on  a  sequential  
machine and  their possible degrees of paralellization. Section 
V shows the experimental results obtained with both synthetic 
and  real images. Section VI contains a  general  discussion 
on  f igure-ground discrimination and  gives some direction for 
future work. 

II. A COMBINATORIAL OPTIMIZATION FORMULATION 

W e  consider a  particular class of combinatorial optimization 
problems for which the cost function has  a  mathematical 
structure that is analogous to the global energy of a  complex 
physical system, that is, an  interacting spin system. First, we 
briefly descr ibe the state of such a  physical system and  give 
the mathematical expression of its energy.  W e  also show the 
analogy with the energy of a  recursive neural  network. Second,  
we suggest  that the f igure-ground discrimination problem 
can be  cast into a  global optimization problem of the type 
ment ioned above.  

The  state of an  interacting spin system is def ined by  the 
following: 

1) A spin state vector of N elements a’ = [01, . . . , UN] 
whose components  are descr ibed by  discrete labels that 
cor respond to up  or down spins--oi E { - 1, +l}: Each 
vector a’ is associated to a  potential solution of the 
problem. Its components  gi may well be  v iewed as  the 
outputs of binary neurons.  

2) A symmetric matrix J describing the interactions be-  
tween the spins: An element Jij of this matrix represents 
the interaction between the spins (Ti and  oj. For all i, 
Jii =  0. These interactions may well be  v iewed as  the 
synaptic weights between neurons in a  network. 

3) Avector s’= [S1,... , SN] describing an  external field in 
which the spins are plunged: 6i is the value of this field 
v iewed by  the spin i (or the external input on  neuron i). 
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Therefore, the interacting spin system has a “natural” neural 
network encoding associated with it that describes the mi- 
croscopic behavior of the system. A macroscopic description 
is given by the energy function that evaluates each spin 
configuration. This energy is given by 

i=l j=l i=l 

In Section IV, we will describe a few methods for ap- 
proaching as near as possible the absolute minimum of the 
energy described by (1). Let us first formulate the figure- 
ground discrimination problem in terms of a cost function that 
has a similar structure, i.e., (1). 

We consider N  image elements. Each such element has a 
label associated with it (p;), which can take two values: 0 or 
1. The set of N  labels forms the state vector p’ = [PI, . . . , pN]. 
We seek a state vector such that the “shape” elements have a 
label equal to 1, and the “noise” elements have a label equal 
to 0. If cij designates an interaction between elements i and 
j (this interaction will be specified in the next Section), one 
may write by analogy with physics an interaction energy 

i=l jr1 

Obviously, this expression is minimized when all the labels 
are equal to 1. In order to avoid this trivial solution, we 
introduce the constraint that some of the elements in the image 
are not significant and, therefore, should be labeled “noise” 

The function to be minimized could be something like the 
sum of these energies 

E (~3 = -%JENCV (3 + a Cxx.mmn (p3. (4 

In this expression, a is a positive real parameter that has to 
be adjusted and is closely related to the signal-to-noise ratio. 
With the substitution pi = (a; + 1)/2, this formula can be 
written such that the analogy with the interacting spin system 
becomes obvious (compare with (1)) 

E(8) = C - f F, 5 i(cij - a)c~;~j 
a=1 j=l 

N ./ N \ 1 - 
c1 5 -Net + C cij ci (3) 
i=l j=l 

where C is the constant term 

. / N N \ 
-CCCij+CLN2 

i=l j=l 

Minimizing (3) is therefore strictly equivalent to minimizing 
(1) with the following interaction coefficients and external 

fields: 
Cij - (I: Jij = ~ 

2 
s, = C,“=I %  - Na 
2 2. 

III. COMPUTING IMAGE INTERACX-IONS 

An image array contains two types of information: changes 
in intensity and local geometry. Therefore, the choice of the 
image elements mentioned so far is crucial. Edge elements, or 
edgels, are the natural candidates for making explicit the two 
pieces of information just mentioned. 

An edge1 can be obtained by one of the many edge detectors 
now available. An edge1 i is characterized by its position in the 
image (zi, yi) and by its gradient computed once the image 
has been low-pass filtered. The z and y components of the 
gradient vector are 

where 1f is the low-pass filtered image. From the gradient 
vector, one can easily compute the gradient direction and 
magnitude. The direction 8; of the edge1 is perpendicular to 
the gradient direction. It is also the direction of the tangent to 
the curve that may pass through this edgel, e.g., Fig. 2. The 
magnitude of the gradient gi is proportional to the height of 
the intensity change at the edge1 location: 

Bi=ilrCtEUl(~)+~ . 
9i = (g5Cxi7 Yi) + gy2(G, Yi)) 1'2 

Let A and B be two edgels. It would be desirable if the 
interaction between these two edgels encapsulate the concept 
of shape, that is, if A and B belong to the same shape, then 
their interaction is high. Otherwise, their interaction is low. 
Notice that a weak interaction between two edgels has several 
interpretations: 

i) A belongs to one shape, and B belongs to another one. 
ii) A belongs to a shape, and B is noise. 
iii) Both A and B are noise. 

The interaction coefficient must therefore be a coshapeness 
measure. In our approach, coshapeness is defined by a combi- 
nation of cocircularity, smoothness, proximity, and contrast. 

The definition of cocircularity is derived from [20], and 
it constrains the shapes to be as circular as possible or, as a 
special case, as linear as possible. Smoothness enforces shapes 
with low curvature. Proximity restricts the interaction to occur 
in between nearby edgels. As a consequence, cocircularity 
and smoothness are constrained to be local shape properties. 
The combination of cocircularity, smoothness, and proximity 
will therefore allow a large variety of shapes that are circular 
and smooth only locally. Contrast enforces edgels with a high 
gradient module to have a higher interaction coefficient than 
edgels with a low gradient module. 
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varies between 0 (a sharp comer) and 1 (a straight line): 

Xi(7r - Xi) 
I9 

1 _ hCT - 4) 
lr2 (6) 

Obviously, for the example of the left side of Fig. 4, we obtain 
Fig. 3. Definition of cocircularity between two edgels i and j. 

A. Cocircularity 

Following [20] and from Fig. 3, it is clear that two edgels 
belong to the same circle if and only if 

Xi + Xj = T. (4) 

In this formula, X; is the angle made by one edge1 with the line 
joining the two edgels. Notice that a circle is uniquely defined 
if the relative orientations of the two edgels verify (4). This 
equation is also a local symmetry condition that is consistent 
with the definition of local symmetry of Brady and Asada [4]. 
Moreover, linearity appears as a special case of cocircularity, 
namely, when Xi = 0 and Aj = x  or when Xi = x  and Aj = 0. 

From this cocircularity constraint, we may derive a weaker 
constraint that will measure the similarity between a two-edge1 
configuration and a circular shape: 

Aij =I Xi + Xj - x  1 . 

Aij will vary between 0 (a perfect circle) and x (no shape). 
Finally, the cocircularity coefficient is constrained to vary 
between 1 for a circle and 0 for noise and is defined by the 
formula 

Cy== (a) exp(+). (5) 

The parameter k  is chosen such that the cocircularity coeffi- 
cient vanishes gently for noncircular interactions. 

B. Smoothness 

Consider an edge1 and two nearby edgels. From Fig. 4, it 
is clear that the cocircularity coefficient between edgels i and 
j is the same as the cocircularity coefficient between i and 
Ic. Indeed, there are two circles: one passing through i and 
j and the other passing trhough i and k. One would like to 
give some preference to one of these configurations. If smooth 
curves (rather than rapidly turning curves) are prefered, then 
the i-j interaction should be stronger than the i-k interaction. 

With the same definition for X as above, we define a smooth- 
ness coefficient between two image edgels. This coefficient 

The right side of Fig. 4 illustrates another advantage of using 
a coefficient that enforces smoothness. Indeed, in the absence 
of the smoothness constraint, edge1 interactions occur between 
parallel curves; an edge1 equally interacts with its longitudinal 
neighbors and with its lateral neighbors. The smoothness 
constraint reduces the lateral interactions occuring between 
such parallel curves. 

C. Proximity 

The surrounding world is not constituted only by circular 
shapes. Cocircularity must therefore be a local property, that 
is, the class of shapes to which we are interested detect, at a 
given scale of resolution, shapes that can be approximated by 
a sequence of smoothly connected circular arcs and straight 
lines. The proximity constraint is best described by a wef- 
ficient that vanishes smoothly as the two edgels are farther 
away from each other: 

(7) 

where dij is the distance between the two edgels, and cd is 
a fraction of the standard deviation of all these distances over 
the image. Hence, the edge1 interaction will adjust itself to the 
image distribution of the edge1 population. 

D. Contrast 
A classical approach to f igure-ground discrimination is to 

compare the gradient value at an edge1 against a threshold 
and to eliminate those edgels that fall under this threshold. 
An improvement to this simply minded nonlinear filtering 
is to consider two thresholds such that edge1 connectivity is 
better preserved [5]. Following the same idea, selection of 
shapes with high contrast can be enforced by multiplying the 
interaction coefficient with a term whose value depends on 
contrast: 

where gmar is the highest gradient value over the edge1 
population. 

Finally, the interaction coefficient between two edgels be- 
comes 

(9) 
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IV. STOCHASTIC OPTIMIZATION 

The states reachable by the system described in Section 
II (see (3)) correspond to the vertices of an N-dimensional 
hypercube. We are looking for the state that corresponds 
to the absolute minimum of the energy function. ‘Qpically, 
when N = 1000, the number of possible configurations is 
2N M 10301. The problem of finding the absolute minimum 
is complex because of the large number of local minima of 
the energy function, and hence, this problem cannot be tackled 
with local minimization methods (unless a good initialization 
is available). 

We already mentioned that the functional to be minimized 
has the same structure as the global energy of an interacting 
spin system. To find a near-ground state of such a physical 
system, we will use statistical methods. Two analyses are 
possible, depending on the interaction of the system with its 
environment: Either the system can exchange heat with its 
environment (case of the canonical analysis), or the system is 
isolated (case of the microcanonical analysis). 

A. Canonical Analysis 
This analysis makes the hypothesis that the physical system 

can exchange-heat with its environment. At the equilibrium, 
statistical thermodynamics shows that the free energy F is 
minimized. The free energy is given by F = E-TS, where E 
is the internal energy (which is the energy associated with the 
optimization problem) and S is the entropy (which measures 
the internal disorder). Hence, there is a competition between 
E and S. The equilibrium can be reached at any temperature 
T, and hence, F has a minimum at each temperature. At low 
temperatures, configurations with small entropy are predomi- 
nant. On  the contrary, at high temperatures, the system is in 
a configuration with a high entropy [24]. As a consequence, 
at high temperatures and at equilibrium, since F is minimal, 
E must be high. At low temperatures and at equilibrium, F 
is minimal, and TS is close to zero. Therefore, the internal 
energy E is minimized at low temperatures. However,  the 
minimum of E depends on how the temperature parameter 
decreases toward absolute zero. It was shown that annealing 
is a very good way to decrease the temperature. 

We are interested in physical systems for which the internal 
energy is given by (1). The remarks above are expressed in the 
most fundamental result of statistical physics: the Boltzmann 
(or Gibbs) distribution: 

P,@ (a) = E;) = exp (;y;;(kT)) w-0 
which gives the probability of finding a system in a state i with 
the energy Ei, assuming that the system is at equilibrium with 
a large heat bath at temperature kT (k is the Boltzmann’s 
constant). Z(T) is called the partition function and is a 
normalization factor 

(11) 

This sum runs over all possible spin configurations. The 
Boltzmann distriiution expresses the fact that configurations 

with low internal energy are predominant at low temperatures, 
i.e, their probability is close to 1. Using (lo), one can compute 
at a given temperature T the mean value over all possible 
configurations of some macroscopic physical parameter A: 

(A) = c  A, Pr(E(a’) = E,) 
II 

= C, An exp (-En/W 
-WI ’ (12) 

Unfortunately, the partition function Z(T) is usually impossi- 
ble to compute. Simulated annealing is a good way to avoid 
this computation in the general case. Nevertheless, when the 
system is described by (l), one can use (12), which, with 
an additional hypothesis, is a basic equation for mean field 
approximation and for mean field annealing. 

I) Simulated Annealing (SA): In 1953, Metropolis et al. 
[18] described a Monte Carlo algorithm that generates, at a 
given temperature, a sequence of states that converges to the 
Boltzmann distribution at the limit. Hence, the system reaches, 
at the limit, a thermodynamic equilibrium at temperature 
T. For a .given temperature T, this algorithm begins in 
an arbitrary state and successively generates candidate state 
transitions at random. Bach such elementary transition has 
associated with it a change AE in the global energy of 
the system. An elementary transition is accepted with the 
following probability: 

1 ifAE<O 
exp( -AE/T) otherwise. (13) 

Let us define an elementary transition to be performed to solve 
our problem. A good way to define such a transition consists 
of picking up at random an edge1 iu and then changing the 
output of the associated neuron, i.e., changing its label. Before 
the transition, the state of the system was 

After the transition, 
now in the state 

replaced by - .uio. The system is 

+ 
U-R = [q f.* die-1 -Uio cio+1 ... “N]. 

The number of possible transitions is N. 
Let us calculate the energy variation associated with an 

elementary transition. The useful part of the energy in the 
calculation of the energy variation is (from (3)) 

uio 5 (A - q,,j)uj + Uio + -* i 

j=l, j#io 

The energy variation associated with an elementary transition 
is given by 

AEciO -.+-gin = -2 ui,, 

5 (X-G .) 
j=l, jfio 

,,3 u3+ (NA-EQoj)]. Q4) 

Kirkpatrick [16] recognized a connection between the 
Metropolis technique and combinatorial optimization prob- 
lems. In fact, a good way to find low-energy states of a 
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complex physical system such as a spin system is to heat up 
the system to some high temperature and then to cool it down 
slowly. This annealing process forces the system’s evolution 
into states with low energy, whereas the system does not get 
trapped in local minima. The idea of simulated annealing is to 
express those concepts in terms of a numerical algorithm. 

The algorithm starts--at a high initial temperature. At this 
temperature, nearly 100% of the tested transitions are accepted. 
The Metropolis procedure is applied at constant temperature 
in order to reach a near thermal equilibrium state at this 
temperature. Then, the temperature is slightly decreased, and 
the Metropolis procedure is applied again. This process is 
repeated until the system is frozen, i.e., when the energy 
cannot significantly be reduced anymore. There are results by 
Geman and Geman [ 111 showing the existence of annealing 
schedules that guarantee that the system reach ground states 
(global energy minima) in finite time. Unfortunately, these 
schedules are not usable in practice. Nevertheless, we use a 
geometric schedule. 

The simulated annealing algorithm is given in Appendix A. 
2) Mean Field Annealing: In order to introduce the mean 

field annealing algorithm, we first introduce the somehow 
more classical mean field approximation method: It is a simple 
analytic approximation of the behavior of interacting spin 
systems in thermal equilibrium. We start by developing (1) 
around ui 

E(m,~Z,.*.,w) 
. N  N N 

= @ iUi - f C  C JkjOkaj - C  6kUk 

k=l,k#i j=l,j#i k=l,k#i 

where 3i is the total field affecting the spin (Ti 

The mean field (+i) affecting ui is computed from the sum of 
the fields created on the spin ui by all the other spins “frozen” 
in their mean states and from the external field Si viewed by 
the spin ui. The mean state of a spin (a;) is the mean value 
of the ui’s computed over all possible states that may occur 
at the thermal equilibrium. We obtain 

(@i)=-(gJij(uj)+h). (15) 

We now introduce the following approximation [27]: The 
system composed of N  interacting spins is viewed as the union 
of N  systems, where \each is composed of a single spin. Such 
a single-spin system {gi} is subject to the mean field (Qi) 
created by all other single-spin systems. Let us study such a 
single-spin system. It has two possible states: { - 1) or { + 1). 
The probability for the system to be in one of these states is 
given by the Boltzmann distribution law (see (10)): 

exP (-(ai) UF/T) 

p(xi = u3 = P(& = 1) + P(X, = ml) 7 
0: E {-1,l) 

(16) 

where Xi is the random variable associated with the value of 
the spin state. Notice that in the case of a single-spin system, 
the partition function (the denominator of the expression 
above) has a very simple analytical expression. By combining 
(12), (15), and (16), the mean state of ui can now be easily 
derived: 

(ui) M (+I) exP (-(W/T> + C-1) exP @WT)  
exp ((@i)/T) + exp (-(O;)/T) 

= tanh C$zl Jij (uj) + Si 
T 

We now consider the whole set of single-spin systems. We 
therefore have iV equations of the form 

pi = tanh 
CIJf=l Jij Pj + & 

T 

where pi = (ai). It was shown by Peterson and Anderson 
[23] that the final value of 1/2(pi + 1) approximates the 
probability that the corresponding spin i has a value ai = 1 at 
thermal equilibrium as reached by the Metropolis procedure. 
The problem of tiding the mean state of the spin system 
at thermal equilibrium is now mapped into the problem of 
solving a system of N  coupled nonlinear equations, i.e., (18). 
In the general case, an analytic solution is rather difficult to 
obtain. Instead, the solution for the vector E = [pi, . + . , /LN] 
may well be the stationary solution of the following system 
of N  differential equations 

T * = tanh Cj”=l Jij Pj + 4 
dt T - Pi- (19) 

where T is a time constant introduced for homogeneity. In the 
discrete case, the temporal derivative term can be written as 

dpi 
dt t, > 

= cL:+l - P1 
At + o( At) (20) 

where pl is the value of pi at time t,. By substituting in 
(19) we obtain 

I- 
CL:+1 - pr = tanh Cy=l Jij ~7 + & 

At T 
- p). (21) 

Hence, by choosing T = At, we obtain an iterative solution 
for the system of differential equations described by (19): 

vi E {l,...,N}, $+I 

= tanh 
Cy=l Jij pi” + & 

T ,n21 (22) 

where ~1 is an estimation of (ui) at time t, or at the nth 
iteration. 

Starting with an initial solution $’ = [&, . . . , &], the 
convergence is reached at the nth iteration such that ,@ = 
b?,*** , p&j becomes stationary. The physicists would say 
that the thermal equilibrium has been nearly reached. 
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The following two convergence modes are possible: 
l Synchronous mode: At each step of the iterative process, 

all the ~1’s are updated simultanously using the pyL-“s 
previously calculated. 

l Asynchronous mode: At each step of the iterative process, 
a unique spin &’ is randomly selected and updated using 
the py-“s. 

In practice, the asynchronous mode produces better results 
because the convergence process is less subject to oscillations 
that are frequently encountered in the synchronous mode. In 
order to obtain a solution for the vector a’ from the vector 
6, one simply looks at the signs of the ~2’s. A positive sign 
implies that the probability that the corresponding spin has a 
value of +l is greater than 0.5 is 

if l/2(1 + ~1) > 0.5 then ui = +l 
else Ui = -1. 

A practical difficulty with mean field approximation is the 
choice of the temperature T at which the iterative process 
must occur. To avoid such a choice, one of the authors 
of this paper [14] and other authors [28] have proposed 
combining the mean field approximation process with an 
annealing process, giving rise to mean field annealing. Hence, 
rather than fixing the temperature, the temperature is decreased 
during the convergence process; thus, the pi’s tend to +l or 
-1 as the system converges. 
3) Estimating the MFA Parameters and Good Initial Con- 
ditions: The MFA equations contain two parameters to be 
determined: the initial temperature Tinit and the decreasing 
factor of the temperature between two steps, decT. Moreover, 
the initial values of the pp’s should be independent of the 
image. The aim is to avoid a trial-and-error process; the 
algorithm should be a black box from a user’s perspective. 

a) The Initial Temperature: The spin system onto 
which we have mapped the figure/ground discrimination prob- 
lem typically has two phases; at high enough temperatures, 
according to the Boltzmann distribution, all the states reach- 
able by the system are equally likely. As the temperature is 
lowered, a phase transition occurs at 2’ = T, and as T + 0, the 
pi values represent a specific decision made as to the solution 
to the problem. At convergence, these values verify 

(23) 

This is illustrated in Fig. 11. Until now, we have not known 
how to calculate the critical temperature of an interacting spin 
system when the external field is not null (i.e., when there 
is at least one & that is not null). Practically, we use random 
asynchronous dynamics (which are the dynamics that are most 
similar to the behavior of a spin system). We start with a 
high enough initial temperature that is determined by the pi 
distribution: Each pi has to be around 0 at the beginning and 
during several iterations; otherwise, the initial temperature is 
increased. 

b) Annealing Schedule: As already mentioned, two 
different annealing schedules are possible: 

l Van den Bout and Miller [28] tried to estimate theoret- 
ically the critical temperature, and then, they perform 
two sets of iterations: one iteration process at this critical 
temperature until a near equilibrium state is reached and 
another iteration process at a temperature value that is 
close to 0. However,  the critical temperature is quite 
difficult to estimate, and the behavior of the spin system 
predicted by their analytical approximation is not in 
accordance with the computational experiments. 

l Instead of estimating the critical temperature, we prefer 
the following schedule. Initially, the temperature has a 
high value, and as soon as every spin has been updated 
at least once, the temperature is decreased to a smaller 
value. Then, the temperature continues to decrease at 
each step of the convergence process. This does not 
guarantee that a near equilibrium state is reached at each 
temperature value, but when the temperature is small 
enough, the system is then frozen in a good stable state. 
Consequently, the convergence time is reduced since at 
low temperatures, the convergence to a stationary solution 
is accelerated. One of the authors of this paper has 
successfully used this strategy to solve np-complete graph 
combinatorial problems [13], [14]. 

d) The Initial values of the pi’s: When the vector s’ 
(i.e., the ex_temal field) is the null vector, one can start with 
a vector p” that is close to the obvious unstable solution 
[O, . . . ,O]. In practice, when the vector s’ is not null, one 
starts with an initial configuration obtained by adding noise 
to [O, . . * , 01. For instance, the ~Q’s are chosen randomly in 
the interval [ - 10e5, + 10m5]. This initial state is plausible for a 
spin system in a heat bath at high temperature. In fact, the spin 
values (+ 1 or - 1) are equally likely at high temperatures, and 
hence, (ui) = 0 for all spin i (see (10)). During the iterative 
process, the pi’s converge to values in between - 1 or +l. 

The mean field annealing algorithm is outlined in Appendix 
B. 

B. Microcanonical Analysis 

This analysis makes the hypothesis that the physical system 
is isolated from its environment. Then, the main property of 
such a system is that its total energy is constant whatever the 
dynamic evolution. In practice, the total energy J&tar lies in 
the range [Eu - SE, EO + SE]. From statistical physics, we 
know that in an equilibrium situation as described above, all 
the states are equally likely [24]. The probability of finding a 
system in state i with total energy Ei is given by 

WEtotal = Ei) = 

B ifEo-SE<Ei<Eo+SE 
\ 

(24) 
where B is a constant, which can be determined by the 
normalization condition that the sum of the probabilities over 
all accessible states is equal to 1. Hence, the entropy of 
the system, which measures uncertainty on the final state, is 
maximized at equilibrium. 
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The total energy is the sum of a potential energy EP that 
encodes the energy associated with the optimization problem 
(see (1)) and of a kinetic energy EC that has always a positive 
value: 

E total = Ep + Ec. 

Standard statistical mechanics arguments show that at equi- 
librium, the probability of finding a system in a state with a 
kinetic energy E is given by a Boltzmann distribution law 

PT(E c = E) = exp (-E/(kT)) 
z . 

where Z is a normalization factor. In this expression, the 
temperature expresses the internal turbulence of the system. 
From this distribution, one derives a fundamental result of the 
microcanonical analysis; it can be shown that the temperature 
is directly related to the mean value of the kinetic energy 
< EC > over time [7]: 

This can be simplified by supposing that EC can take any 
positive value. In fact, from (25) one computes < E, >: 

<E,>= 
Jr Eexp(-E/(kT))dE 

Jam exp (-El(WPE 
= IcT. (27) 

Hence, the mean value of the kinetic energy over time (EC) has 
the same role as the temperature parameter in the canonical 
analysis. 

I) Microcanonical Annealing: In 1983, Creutz [7] de- 
scribed a Monte Carlo algorithm that generates a sequence 
of states that converges at the limit to an equally likely 
distribution of the total energy. This is analogous to the 
Metropolis algorithm applied to the microcanonical analysis. 

The principle of the algorithm is as follows: An extra degree 
of freedom is added to the spin system that corresponds to the 
kinetic energy EC. The algorithm starts with an arbitrary state 
of the spin system (which is described by its potential energy 
EP given by (1)) and a high value for EC. The kinetic energy 
is, in fact, a parameter that plays the role of the thermal noise 
in the canonical case. State transitions are randomly generated, 
and they are identical to the ones generated in simulated 
annealing. Bach transition has associated with it a change in 
the potential energy AE,. The transition is accepted according 
to the following criterion: If AE, 5 0, then the transition 
is accepted, and one adds to the kinetic energy the quantity 
-AE, in order to maintain the total energy unchanged. If 
AE, > 0, then the transition is accepted only if there is 
enough kinetic energy available, that is, if EC > AE,. In 
this case, the kinetic energy is decreased by AE, in order, 
once again, to maintain the total energy unchanged. 

Creutz called the extra degree of freedom corresponding to 
the kinetic energy a demon. It is defined by a sack that contains 
energy. This demon randomly travels around the system, i.e., 
the lattice of spins. Fig. 5 shows an example of the assignment 
of the demon to the spins. On  reaching a spin, the demon 

Fig. 5. 
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attempts to flip the corresponding spin (from +l to -1 or 
vice versa). It succeeds only if it lowers the potential energy 
or if it has enough energy in its sack. 

This algorithm maximizes the entropy of the system at the 
limit, which corresponds to the thermodynamical equilibrium. 
Notice that although it is difficult to estimate when an equilib- 
rium is actually reached with the Metropolis algorithm, this is 
relatively simple in microcanonical analysis. When the kinetic 
energy is distributed at equilibrium according to (25) one may 
notice that, at equilibrium, the standard deviation p( EC) equals 
< E, >. Thus, at equilibrium we have 

< E, > ~ = 1. 
P(G) 

w9 

In the basic version of the Creutz algorithm, each decision to 
accept or reject a state transition depends on the current value 
of E, and, therefore, on the previous decision. Moreover, the 
temperature T (see (27)) is measured using the distribution 
of EC over time. We will see that this basic version is not 
convenient for an annealing to proceed. 

We currently use a parallel version of the algorithm by 
using a large number of demons. Collectively, they carry an 
appreciable amount of energy. Theoretically, it can be shown 
that when the number of demons becomes large compared with 
the number of spins, the Creutz algorithm reduces to that of 
Metropolis [7]. Each demon i has associated with it a part Ei 
of the total kinetic energy EC. In our model, we use the same 
number of demons as the number of spins in the system, and 
at any time, each demon is associated with a single spin. Fig. 
6 shows an example of the assignment of demons to the spins 
when N = 6. The amount of kinetic energy carried by the set 
of demons is defined by 

E,=cE$ (29) 
i=l 

At the beginning of the parallel algorithm, the demons are 
evenly distributed on the lattice of spins, where each has 
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Fig. 6. Example of the assignment of demons to spins in 
of the Creutz algorithm. 

the parallel version 

the same high kinetic energy. Then, in synchronous or in 
asynchronous mode, each demon will try to flip its associated 
spin. After every lattice update,’ we perform a complete 
random permutation of the demons (see Fig. 6 for an example). 

A great advantage of this parallel version of the Creutz 
algorithm is that because of the ergodicity hypothesis (non- 
ergodic behavior would represent a fascinating exception to 
the generic case), statistics can be sampled over space rather 
than time. Hence, the mean energy of a demon over time is 
equivalent to the mean energy over the set of demons at a 
fixed time. In the algorithm, after each lattice update, we can 
compute IcT and p(E,) and compare them in order to find 
out whether the equilibrium has been reached (the equilibrium 
that is described by (28)) or not. We have 

kT=<E,> 
1 N 

allthedemons= z i=l c 
Ei. (30) 

and 

PC-G) = ; 5 (E: - kT)2. (31) 
a=1 

Microcanonical annealing, as defined for the first time by 
Barnard [l], roughly replaces the Metropolis method with the 
Creutz method in the simulated annealing algorithm. Instead of 
explicitely reducing the temperature as in simulated annealing, 
Barnard reduces the kinetic energy and, hence, the total energy. 
Thus, the constant energy surface in the state space where the 
state of the system evolves shrinks to a set of states of low 
energy. 

The annealing schedule associated with the kinetic energy, 
as proposed by Barnard, is linear. He suggested that the 
energy of each demon be reduced by three units after the 
lattice of spins has been updated once. There is no theoretical 
reason to make such a linear choice. This linear schedule has 
been proved to be inefficient in the canonical analysis [ll]. 

‘That is, once each individual spin in the lattice has been updated once. 

Moreover, updating the lattice of spins only once at each 
temperature step unables the system to reach an equilibrium 
configuration at every temperature step. This explains why 
we obtained unsatisfactory experimentals results with the 
annealing schedule proposed by Barnard: The system con- 
verges to a local minimum of high energy. This phenomenon 
was not visible in Barnard’s implementation because of his 
use of a multiscale representation of images, which reduces 
dramatically the number of local minima of the cost function 
at each scale. 

We propose the use of an annealing schedule that is compa- 
rable with the one used in simulated annealing. By reducing 
geometrically the temperature from a high initial value (at this 
value, nearly 100% of the tested transitions are accepted) and 
by letting the system evolve to a near equilibrium configuration 
(by using the Creutz algorithm) at each temperature, the results 
are very good. At every temperature, we know whether the 
system has reached a near-equilibrium configuration by com- 
puting the ratio given in (28). Once the system has converged 
at temperature T, each demon energy Ei is multiplied by 
a coefficient A such that A < 1 and A M 1. Then, the 
temperature decrease is geometric: 

T *+l = & $ (A E;) 
2=1 

= AT”. (32) 

The microcanonical algorithm is given in Appendix C. 

C. Relative Efjiciency of SA, MFA, and MCA 

The three algorithms just described and outlined in the 
Appendix are derived directly from statistical physics, and 
therefore, in order to converge, they must properly simulate 
the behavior of interacting spin systems. 

The annealing schedules are the same for the three algo- 
rithms, and they approximate the one proposed by Geman and 
Geman [ll] for simulated annealing. 

In the case of stochastic methods (simulated annealing and 
microcanonical annealing), a large number of iterations is 
necessary such that the statistics become meaningful, that 
is, at fixed temperature, or at fixed total energy, a large 
number of elementary transformations (spin flips) must be 
tested before the system is guaranteed to converge toward a 
Boltzmann distribution. We recall that N  is the number of 
spins (variables), and this number is equal to the number 
of possible transformations of a state. Then, the number 
of iterations at each temperature may be of the order of 
1OON at small temperatures. Nevertheless, in the case of 
microcanonical analysis, it is possible to estimate, at each 
iteraton of the annealing process, whether the equilibrium 
has been reached or not, i.e., (28). Therefore, it is expected 
that the number of iterations at each temperature associated 
with microcanonical annealing is smaller than the number of 
iterations associated with simulated annealing. 

Mean field annealing is a deterministic approximation of 
the average behavior of the system’s variables in simulated 
annealing. One iteration of the MFA algorithm consists of 
updating the value of a system variable according to an 
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updating rule described by (22). At fixed temperature N, 
iterations are necessary in order to update the whole state 
vector. In asynchronous mode, the state vector is sequentially 
updated, where each variable is considered in a random order. 
In a synchronous mode, all the variables are updated in 
parallel. Therefore, on a parallel machine, the latter mode is, 
in theory, N  times faster than the former mode. In practice, 
as we already mentioned, the convergence process associated 
with the latter mode is subject to oscillations. 

We now analyze the amount of computation required at 
each iteration. In the case of SA, an energy variation must 
be first calculated (14) at each iteration (for each spin flip). 
Second, the probability of accepting or rejecting this flip is 
estimated according to (13). If the energy variation is positive, 
exp (- y  ) is evaluated and compared with a random number 
T, 0 5 T 5 1. Third, whenever the transition is accepted, the 
global energy is updated. 

In the case of MCA, an energy variation must be computed 
as well at each iteration. However,  the decision of whether to 
accept or reject the transition is taken by simply comparing the 
value of the energy variation with the kinetic energy currently 
available-no probability need be computed. In the case of 
acceptance, both the kinetic and potential energies are updated. 
Nevertheless, a random number has to be generated once each 
demon has been updated in order to determine its new location 
on the lattice. 

In the case of MFA, no energy computation is needed at all. 
The only computaton involved at each iteration is described 
by (22). 

SA and MCA operate on discrete-valued variables (-1 or 
+l), whereas MFA operates on real-valued variables taken 
in the interval [- 1, +l]. Moreover, since MCA does not 
have to evaluate any mathematical function, highly accurate 
computations are not required. In conclusion, MFA in either 
asynchronous or synchronous modes compares favorably with 
MCA and SA. At first glance, in terms of computation time, 
MCA appears to be more efficient that SA. Nevertheless, 
Creutz [7] noticed that when the size N of the lattice is too 
small, the system is more likely to be subject to be trapped 
in local minima of high energy than in the case of canonical 
analysis. Finite size effects differ from those in the canonical 
approach. Table I summarizes this comparison. 

V. EXAMPLES 

We tested these algorithms over a wide variety of images. 
Figs. 7 and 8 show two such images. These images are 
preprocessed as follows. Edges are first extracted using the 
Canny/Deriche operator [S]. A small set of connected edges 
are grouped to form an edge1 as follows: The tangent direction 
associated with such an edge1 is computed by fitting a straight 
line in the least-square sense to the small set of connected 
edges. Then, this small set of edges is replaced by an edgel, 
i.e., the fitted line. The position of the edge1 is given by its 
midpoint, its direction is given by the direction of the line, 
and its contrast is given by the average contrast of the edges 
forming the edgel. Figs. 9 and 10 show the input data of our 
experiments. 

Fig. 9. Image 2: Set of edgels. 

Fig. 10. Image 3: Set of edgels. 

909 

Fig. 7. Image 2. 

We ran the three algorithms over the three sets of available 
data: Image #l (the synthetic image of Fig. l), image #2 
(Fig. 9), and image #3 (Fig. 10). Table II summarizes the 
experimental results. 
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TABLE II 
A SUMMARY OF THE RESULTS OBTAINED WITH THE THREE IMAGES (SEE TEXT). THE CPU TIMES ARE THOSE OBTAINED WITH A SUN 4/330. 

SA 

x (2) 
#l #2 
1.7 2.0 

#3 
2.5 

Energy minimum CPU time (s) No. of iterations 
#l #2 #3 #l #2 #3 #l #2 #3 

-2720.2 -94.9 -251.7 9311 4898 9523 7741077 6163313 7967099 
MFA 1.7 2.0 2.5 -2718.2 -94.9 -252.4 287 103 224 131250 77700 115500 
MCA 1.7 2.0 2.5 -2715.5 -94.8 -252.7 1103 962 1520 892682 915486 1220494 

10 20 NaFm cquta / 1attrca q&ta 

Fig. 11. Image 1: Evolution of the p; variables in the MFA. 

Obviously, the quality of the results are nearly independent 
of the method that is used: The energy minima obtained 
with the various methods are almost the same. Nevertheless, 
the convergence times obtained when the algorithms are 
sequentially implemented differ from one method to another. 
MFA is from 32 to 47 times faster than SA and from 3.8 to 
9 times faster than MCA. This is due to the small number 
of iterations that is needed in MFA as compared with the 
other methods. The number of iterations given in Table II is 
the number of tested transitions in the case of SA and MCA, 
and the number of /Li updates in the asynchronous MFA. This 
number is 59 to 79 times smaller in MFA than in SA and 6.8 
to 11.8 times smaller in MFA than in MCA. Fig. 11 shows a 
typical evolution of the pi variables in the MFA. The number 
of iterations is smaller in MCA than in SA because one easily 
determines when the equilibrium is reached in MCA. Figs. 
12 and 13 show the number of iterations as a function of the 
number of steps of the annealing recess in SA and MCA. Fig. 
14 shows the value of Log ( s  B as a function of the number 
of energy steps once the equilibrium has been reached at each 
step. At high energies, the thermodynamic equilibrium is not 
reached, but this does not affect the convergence because at 
those energies, all the tested transitions are actually accepted. 
At lower energies, the equilibrium is reached with a precision 
of less than 1%. 

Fig. 2 shows the result of applying mean field annealing to 
the synthetic data (image #l). Figs. 15 and 16 show the results 
of applying simulated annealing and microcanonical annealing 
to the synthetic data. Figs. 17 and 18 show the corresponding 
evolutions of the cost functions in the SA and MCA methods. 

Finally, Figs. 19 through 24 show the results of applying 
the three optimization algorithms to images #2 and #3. 

VI. DISCUSSION 

In this paper, we attacked the problem of f igure-ground 
discrimination with special emphasis on the problem of sepa- 

oj..,..,..,..,..,.., 
0 20 40 60 60 100 120 atap 

Fig. 12. Image 1: Number of tested transitions at each temperature step in 
SA. 

rating image data into curve and noise. We proposed a global 
approach using combinatorial optimization. We suggested a 
mathematical encoding of the problem that takes into account 
such image properties as cocircularity, proximity, and contrast 
and that fits the constraints of the statistical modeling of 
interacting spin systems. 

We tested our approach with three algorithms: We described 
in detail these algorithms, compared them, and implemented 
them. Not surprisingly, both the comparison and the experi- 
mental results allow one to conclude that simulated annealing 
is the less efficient method and that MFA is the most efficient 
one. Nevertheless, since the SA algorithm that we imple- 
mented was proved to converge to a state that approximates 
very closely the fundamental state (the overall minimum of the 
energy function), the results obtained with SA are useful for 
evaluating the results obtained with the other two algorithms. 

Our  results are farther validated by the use of similar 
annealing schedules in all the experiments, that is, a geometric 
temperature (or energy) decrease. A linear decrease would 
have obviously been more efficient but with no guarantee that 
the global minimum is properly approached. 

We conclude that the interacting spin model is well suited 
for encoding the figure-ground problem. Moreover, the anal- 
ogy of the energy of such a model with the energy of 
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Fig. 13. Image 1: Number of tested transitions at each temperature step in 
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Fig. 14. Image 1: Log(< EC > /p(E,) as a function of the number of 
steps of the annealing process. 

a recursive neural network allows one to assert that the 
optimization algorithms proposed here are implementable on 
a fine-grained parallel machine. In such an implementation, a 
processor is associated with an edge1 (a spin or a neuron), and 
each processor communicates with all the other processors. 

In the future, we plan to continue to try to improve our 
method in order to be able to eliminate all the noisy edgels, 

Fig. 15. Result of applying simulated annealing to the synthetic image. 

Fig. 16. Result of applying microcanonical annealing to the synthetic image. 

2ooo 

1OW 

Y 0 

-1000 

-2ooo 

.3ooo ..,..,..,..,..,.., 
20 40 60 80 100 120 atop 

Fig. 17. Image 1: Evolution of the cost function as a function of the 
temperature steps in SA. 

even those that are close to a shape and included in this shape 
by our current encoding. We also plan to try to solve other 
aspects of the image segmentation problem such as the feature 
grouping problem. We intend to extend the approach advocated 
in this paper to other vision problems such as matching and 
reconstruction. 
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Fig. 18. Image 1: Evolution of the cost function as a  function of the energy 
steps in MCA. 

Fig. 21. Result of applying MFA to image 2. 
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Fig. 19. Result of applying SA to image 2. 
Fig 

Fig. 22. Result of applying MFA to image 3. 

. 

Fig. 20. Result of applying SA to image 3. 
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23. Result of applying MCA to image 2. 

Fig. 24. Result of applying MCA to image 3. 
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APPENDIX A 
THE SIMULATED ANNEALING ALGORITHM 

Begin with the system in an  arbitrary state: 02. 
Fix the initial temperature TO. In practice, 2’0  = 100.  
Make a  small change in the state, i.e., a  state transition. 
Evaluate the resulting change in energy AE. 
Accept the transition to the new state with the probability 
def ined by  (13). 
Repeat  Steps 3  through 5  until the system reaches an  
equilibrium (each possible state transition is tested at 
most 100  times). There are two possible situations: 

a. If 10% of the tested transitions are actually ac- 
cepted, then the system is considered to have 
reached the equilibrium at this temperature. In this 
case, go  to Step 7. 

b. On  the other hand,  if less than 1 %  of the tested 
transitions are actually accepted,  then the system 
is “frozen.” In this case, go  to Step 8. 

Update the temperature according to an  anneal ing sched-  
ule that approximates a  geometr ic temperature decrease 
CL+1 = 0.93T,), and  go  to Step 3. 
stop. 

APPENDIX B 
THE MEAN FIELD ANNEALING ALGORITHM 

Fix the convergence mode  (synchronous or asyn-  
chronous).  Fix the initial temperature: T  =  Tinit =  
100.  Fix the temperature decreasing factor between two 
consecut ive iterations: decT = 0.9995. For all i, &’ 
is set to a  random value in the interval [ -10m5, 10-5]. 
Initialize an  iteration counter:  iter c  0. 
iter t iter +  1. Case of an  asynchronous convergence 
mode:  

a. Vi, pp’d  = pjter-1, 
b. Scan at random the spins w, and  iteratively update 

each spin pi; see n  in the scan (see (22)): 

. Calculate 

. Update pi: &‘ld + cl:““. 

C. vi, pjter =  pfd. 

In the case of a  synchronous convergence mode,  for all 
spins pi, 

If iter 5  5  

a. Decrease the temperature T + decT x T. 
b. Go  to Step 2. 

913 

4) Test if the algorithm has  converged into a  configuration 
different from the initial one.  If CL, Cfz:er--5 ] pLf (< 
0,99 x 6  x N, then the system has  not converged:  

a. Decrease the temperature T t decT x T. 
b. Go  to Step 2. 

5) The  system has  converged:  Assign the final values of 
the ui’s: Vi, if ,LL~~~” > 0, then oi =  1; else, ai =  -1. 

In practice, we take Tinit =  10  and  decT = 0.9995. At 
convergence,  the values of the pi’s are very close to either 
- 1  or +l. In our  experiments, we have noticed that this is 
not the case with mean  field approximation, in which case, 
the final values of the pi’s are less disriminative. 

APPENDIX C 
THE MICROCANONICAL ANNEALING ALGORITHM 

1) Begin with a  system in an  arbitrary state &. 
2) Fix the initial kinetic energy of the demons:  For all i, 

E; =  100.  
3) Sweep, at random, the lattice of spins, and  for each  

visited spin i: 

a. Perform a  spin flip. 
b. Evaluate the change in potential energy associated 

with this flip AE,. 
C. If AE, <  0, accept  the transition and  increase 

the energy of the demon located at this spin: 
E; t Et - AE,. 

d. If AE, 2  0, accept  the transition according to the 
following condit ions: 

. If AE, <  E$ accept  the transition, and  
decrease the demon energy Ei t Ei - AE,. 

. Otherwise, reject the transition. 

4) Perform a  complete random permutat ion of the demons.  
5) Repeat  Step 3  and  4  until the system reaches an  equilib- 

rium (the lattice of spins is visited, at most, 100  times). 
There are two possible situations: 

a. If the ratio B E [0.99, 1.011, then the equilib- 
rium is reached.  Go  to Step 6. 

b. If 10% of the tested transitions are actually ac- 
cepted, then the system is considered to have 
reached the equilibrium at this total energy value. 
In this case go  to Step 6. 

C. Alternatively, if less than 1 %  of the tested tran- 
sitions are actually accepted,  then the system is 
almost in its fundamental  state. In this case, go  to 
Step 7. 

6) Update the kinetic energy according to an  anneal ing 
schedule that follows a  geometr ic law: For all demon 
i, Ei c  0.93Ei. Go  to Step 3. 

7) stop. 
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