
NaoLab Overview

RobotHandler

The RobotHandler project provides a list of interfaces that can be used to connect

your work to the Nao robot from a remote computer. Developped in C++, the interfaces,

running as drivers on a remote computer, dialog with the Nao robot modules through the

network. By using the DataProxy library, the user is able to reach robot's data

directly in his application and send back commands to the robot. Developped in C++,

the DataProxy library can be easily interface with any programming langage, like

Matlab/C++.

TOC

Tree Folder Overview

Compilation Manual

User Manual

NaoAVRecorder tool

Head Pose Demo

Matlab Sound Localization Demo

Developper Manual

ToDo List

Tree Folder Overview

CMake_Modules

Contains a cmake file used by the compilation process to locate the DataProxy library.

CommonFiles

Contains header file that defines common structures used by the DataProxy library and

the NaoRemoteDriver applications.

DataProxy

Contains C++ files that are used to compile the DataProxy library.

HeadPoseDemo

Contains C++ files that are used to compile a small example of live video processing

application in C++.

MatlabInterface

Contains C++ files that are used to compile matlab mexa files using mex.

MatlabSoundLocalizationDemo

Contains matlab files that are used to run a simple example of speaker localization.

NaoAVRecorder

Contains C++ files that are used to compile an application that can be used to record

Audio and Video.

NaoRemoteDriver

Contains C++ files that are used to compile the different drivers which remotely

dialog with the Nao robot.

Compilation Manual
Warning : Modifying the TreeFolder can cause compilation errors.

Brief

1. Compile the NaoRemoteDriver

2. Compile the DataProxy library

3. Compile examples

NaoRemoteDriver

Requirement : naoqi-sdk-2.1.2.17-linux64 installed on the computer

The NaoRemoteDriver folder contains a global CMakeLists.txt that compiles all the

drivers.

Compilation steps :

Open a terminal in RobotHandler/NaoRemoteDriver/ folder

Then type in terminal : mkdir Build cd Build cmake .. -

DNAOQI_SDK_DIRECTORY=/PATH_TO/naoqi-sdk-2.1.2.17-linux64/ make

Drivers executables are in the RobotHandler/NaoRemoteDriver/Build/bin/ folder.

DataProxy

Requirement : Boost library installed on the computer (generally in /usr/lib/ and

/usr/include)

The DataProxy folder contains a CMakeLists.txt that compiles and installs the

DataProxy library.

Compilation steps :

Open a terminal in RobotHandler/DataProxy/ folder

Then type in the terminal : mkdir Build cd Build cmake ..

#installation path is set by default to : /usr/local/ cmake .. -

DDATA_PROXIES_INSTALL_DIRECTORY=/PATH_TO_INSTALL/ # to fix the installation path

make install #

you may need to be root for the installation to be done without error

Note :

if you precise : -DDATA_PROXIES_INSTALL_DIRECTORY=/PATH_TO_INSTALL/

libdataproxies.so is to be installed in /PATH_TO_INSTALL/lib/

dataproxies.h is to be installed in /PATH_TO_INSTALL/include/

if you do not precise any path

libdataproxies.so is to be installed in /usr/local/lib

dataproxies.h in /usr/local/include

to uninstall these files, delete : libdataproxies.so and dataproxies.h

HeadPoseDemo

Requirement : OpenCV library installed on the computer

The HeadPoseDemo folder contains CMakeLists.txt that compiles this C++ example.

Compilation steps :

Open a terminal in RobotHandler/HeadPoseDemo/ folder

Then type in the terminal : mkdir Build cd Build cmake .. #

if DataProxy library has been installed in the default location /usr/local/

cmake .. -DDATAPROXIES_SDK_DIRECTORY=/PATH_TO_DATAPROXY_SDK/ #

if DataProxy library has been installed in other location make

The executable naoHeadPoseDemoRelWithDebInfo is in the

RobotHandler/HeadPoseDemo/Build/ folder.

MatlabInterface

Requirement : Compilation and installation of the DataProxy library.

The MatlabInterface folder contains a global mexme.m file that compiles all the

interfaces.

Compilation steps :

Open a terminal in RobotHandler/MatlabInterface/ folder

Then type in the terminal

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path_to_folder_of_libdataproxies.so

matlab ... and run the mexme.m file ...

Interfaces mexa files are in the RobotHandler/MatlabInterface/ folder. Each time you

will launch matlab to use this interface you will need to set LD_LIBRARY_PATH

environment variable :

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path_to_folder_of_libdataproxies.so

NaoAVRecorder

Requirement : OpenCV & QT & sndfile library installed on the computer

The NaoAVRecorder folder contains CMakeLists.txt that compiles this C++ application.

Compilation steps :

Open a terminal in RobotHandler/NaoAVRecorder/ folder

Then type in the terminal : mkdir Build cd Build cmake .. #

if DataProxy library has been installed in the default location /usr/local/

cmake .. -DDATAPROXIES_SDK_DIRECTORY=/PATH_TO_DATAPROXY_SDK/ #

if DataProxy library has been installed in other location make

The executable naoAVRecorderRelWithDebInfo is in the RobotHandler/NaoAVRecorder/Build/

folder.

User Manual

Requirement : Compilation done. cf Compilation Manual

Steps to follow :

Turn Nao on.

Nao's Led should flicker.

Nao is ready once he has said : “OGNAK GNOUK”.

Nao is alive, it means that motor control is on.

Press two times Nao's central button.

Nao goes in a rest mode and set the motor control off.

Launch the needed driver(s).

Drivers default path is RobotHandler/NaoRemoteDriver/Build/bin/

Usage : ./nao<DriverName>DriverRelWithDebInfo NaoIp NaoPort

Can be launch as follow : ./nao<DriverName>DriverRelWithDebInfo

in this case NaoIp = "169.254.80.178" and NaoPort = 9559.

Drivers are ready once you get this message :

STREAMING STARTED for data streaming drivers

NAO IS WAKE UP AND READY for motor command drivers

Your application can now dialog with the Nao's modules by using the DataProxy

library.

The HeadPoseDemo gives you an example of how to use the DataProxy library in a C++

code. The MatlabSoundLocalizationDemo gives you an example of how to use the DataProxy

library in a Matlab code.

NaoAVRecorder

*Requirement : * Compilation done. cf Compilation Manual

This tool allows you to record Nao's audio and video on a remote computer.

Launching Step :

Turn Nao on.

Nao's Led should flicker.

Nao is ready once he has said : "OGNAK GNOUK".

Nao is alive, it means that motor control is on.

Press two times Nao's central button.

Nao goes in a rest mode and set the motor control off.

Launch the video and the audio driver.

Drivers default path is RobotHandler/NaoRemoteDriver/Build/bin/

Usage : ./naoVideoDriverRelWithDebInfo NaoIp NaoPort

Can be launch as follow : ./naoVideoDriverRelWithDebInfo

in this case NaoIp = "169.254.80.178" and NaoPort = 9559

Driver is ready once you get this message : STREAMING STARTED .

Launch the NaoAVRecorder executable.

Drivers default path is RobotHandler/NaoAVRecorder/Build/

Usage : ./naoAVRecorderRelWithDebInfo

Head Pose Demo

Requirement : Compilation done cf Compilation Manual

This example streams the Nao's camera and compute for each frame a face detection

algorithm and a head pose estimation algorithm.

Launching Step :

Turn Nao on.

Nao's Led should flicker.

Nao is ready once he has said : “OGNAK GNOUK”.

Nao is alive, it means that motor control is on.

Press two times Nao's central button.

Nao goes in a rest mode and set the motor control off.

Launch the video driver.

Drivers default path is RobotHandler/NaoRemoteDriver/Build/bin/

Usage : ./naoVideoDriverRelWithDebInfo NaoIp NaoPort

Can be launched as follow : ./naoVideoDriverRelWithDebInfo

in this case NaoIp = "169.254.80.178" and NaoPort = 9559

Driver is ready once you get this message : STREAMING STARTED

Launch the HeadPoseDemo executable.

Drivers default path is RobotHandler/HeadPoseDemo/Build/

Usage : ./naoHeadPoseDemoRelWithDebInfo

See main.cpp - line 37 DataProxy::getImage(ts,tms,width,height,nbChannels,imgCV.data,

DataProxy::BGR);

Matlab Sound Localization Demo

Requirement : Compilation done. cf Compilation Manual

This example shows how to launch a simple algorithm to localize a speaker using sound

localization and face detection.

Launching Step :

Turn Nao on.

Nao's Led should flicker.

Nao is ready once he has said : "OGNAK GNOUK".

Nao is alive, it means that motor control is on.

Press two times Nao's central button.

Nao goes in a rest mode and set the motor control off.

Launch the video/audio/motion/facedetector driver.

Drivers default path is RobotHandler/NaoRemoteDriver/Build/bin/

Usage : ./naoVideoDriverRelWithDebInfo NaoIp NaoPort

Can be launch as follow : ./naoVideoDriverRelWithDebInfo :

in this case NaoIp = "169.254.80.178" and NaoPort = 9559

Driver is ready once you get this message : STREAMING STARTED .

Set the environment variable :

export

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path_to_folder_of_libdataproxies.so

Launch matlab

Place the current folder in RobotHandler/MatlabSoundLocalizationDemo/

Execute speakerLocalization2MIC.m

Stop it with the ctrl+C command in the matlab terminal.

Developer Manual

NaoRemoteDriver

Path : RobotHandler/NaoRemoteDriver

Files :

CMakeLists.txt

naoutils.h

Directories :

NaoRemoteAudioDriver

NaoRemoteFaceDetectorDriver

NaoRemoteHeadMotionDriver

NaoRemoteMotionDriver

NaoRemoteVideoDriver

NaoRemoteAudioDriver

Path : RobotHandler/NaoRemoteDriver/NaoRemoteAudioDriver

Files :

CMakeList.txt

main.cpp

naoaudiodriver.cpp

naoaudiodriver.h

Comments

This application works with two threads :

The first one starts the dialog loop and waits for the q letter or ctl+C signal to cleanly stop the application.

The second thread is launched by the NaoAudioDriver object. To receive sound buffer, we have to overwrite the process

method from the AL::ALSoundExtractor class. Our NaoAudioDevice class do so.

We also have to launch the onboard AL::ALSoundExtractor module, it seems that this module is not launched by default.

The process function will pop every 85ms with the corresponding sound buffers.

In order to have a non blocking way to receive sound buffer, the NaoAudioDriver creates and launchs in a separate thread the

Some trouble with class fields visibility has been observed, that's why some fields have been moved to global variables.

NaoRemoteFaceDetectorDriver

Path : RobotHandler/NaoRemoteDriver/NaoRemoteFaceDetectorDriver

Files :

CMakeList.txt

main.cpp

naofacedetectordriver.cpp

naofacedetectordriver.h

Comments

This application works with one thread :

It starts the dialog loop and waits for ctl+C signal to cleanly stop the application.

The onboard Nao's face detector is running by default.

NaoRemoteHeadMotionDriver

Path : RobotHandler/NaoRemoteDriver/NaoRemoteHeadMotionDriver

Files :

CMakeList.txt

main.cpp

naoheadmotiondriver.cpp

naoheadmotiondriver.h

Comments

This application works with two threads :

The first one starts the dialog loop and waits for the q letter or ctl+C signal to cleanly stop the application.

The second thread is launched by the NaoHeadMotionDriver object (cf method wakeUp()). The second thread waits, through

a shared mutex, for a motion command. It seems that the fALMotionProxy-

>angleInterpolation(fJoinsNames, fAngleLists, fTimeLists, true) (seee naoheadmotiondriver.cpp -

 l138) is a blocking function.

NaoRemoteMotionDriver

Path : RobotHandler/NaoRemoteDriver/NaoRemoteMotionDriver

Files :

CMakeList.txt

main.cpp

naomotiondriver.cpp

naomotiondriver.h

Comments

This application works with two threads.

The first one starts the dialog loop and waits for the q letter or ctl+C signal to cleanly stop the application.

The second thread is launched by the NaoMotionDriver object (cf method wakeUp()).

The second thread waits, through a shared mutex, for a motion command. It seems that the fALMotionProxy-

>angleInterpolationBezier(fJoinsNames, fAngleLists, fTimeLists) (see naomotiondriver.cpp - l262) is a blocking function.

NaoRemoteVideoDriver

Path : RobotHandler/NaoRemoteDriver/NaoRemoteVideoDriver

Files :

CMakeList.txt

main.cpp

naovideodriver.cpp

naovideodriver.h

Comments

This application works with two threads :

The first one starts the dialog loop and waits for the q letter or ctl+C signal to cleanly stop the application.

The second thread is launched by the NaoVideoDriver object (cf method startCapture()).

The second thread pushes in the shared memory new frames (both top and bottom cameras) as soon as possible.

ToDO List
Check NaoRemoteDrivers -> some uses 2 threads : may be useless.

Define which data should be send through the shared memory and which should

not.

Add protoBuff -> in the commonfiles part (needed by DataProxy AND

NaoRemoteDriver).

New drivers ??

AudioVideo synchronized data, according to Isreal request : New driver or proxy

?

Video : VGA-RGB 15 fps fixed.

Audio : 4 microphones 48KHz.

Synchronized format :

Image delay : 66ms. This define our paquet window.

getSynchronizedWindow() : return the last image and the 66ms sound buffer that

precede this image.

