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Self-Calibration of a 1D Projective
Camera and Its Application to the
Self-Calibration of a 2D Projective Camera

Olivier Faugeras, Long Quan, and Peter Strum

Abstract—We introduce the concept of self-calibration of a 1D projective camera
from point correspondences, and describe a method for uniquely determining the
two internal parameters of a 1D camera, based on the trifocal tensor of three 1D
images. The method requires the estimation of the trifocal tensor which can be
achieved linearly with no approximation unlike the trifocal tensor of 2D images and
solving for the roots of a cubic polynomial in one variable. Interestingly enough, we
prove that a 2D camera undergoing planar motion reduces to a 1D camera. From
this observation, we deduce a new method for self-calibrating a 2D camera using
planar motions. Both the self-calibration method for a 1D camera and its
applications for 2D camera calibration are demonstrated on real image
sequences.

Index Terms—Vision geometry, camera model, self-calibration, planar motion, 1D
camera.
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1 INTRODUCTION

A CCD camera is commonly modeled as a 2D projective device
that projects a point in P* (the projective space of dimension 3) to a
point in P? By analogy, we can consider what we call a
1D projective camera which projects a point in P* to a point in
P'. This 1D projective camera may seem very abstract, but many
imaging systems using laser beams, infrared, or ultrasound acting
only on a source plane can be modeled this way. What is less
obvious, but more interesting for our purpose, is that in some
situations, the usual 2D camera model is also closely related to this
1D camera model. First, one example might be the case of the 2D
affine camera model operating on line segments: The direction
vectors of lines in 3D space and in the image correspond to each
other via this 1D projective camera model [20]. Other cases will be
discussed later.

In this paper, we first introduce the concept of self-calibration of
a 1D projective camera by analogy to that of a 2D projective camera
which is a very active topic [17], [12], [7], [13], [1], [27], [19] since
the pioneering work of [18]. It turns out that the theory of self-
calibration of 1D camera is considerably simpler than the
corresponding one in 2D. It is essentially determined in a unique
way by a linear algorithm using the trifocal tensor of 1D cameras.
After establishing this result, we further investigate the relation-
ship between the usual 2D camera and the 1D camera. It turns out
that a 2D camera undergoing planar motion can be reduced to a
1D camera on the trifocal plane of the 2D cameras. This remarkable
relationship allows us to calibrate a real 2D projective camera
using the theory of self-calibration of a 1D camera. The advantage
of doing so is evident. Instead of solving complicated Kruppa
equations for 2D camera self-calibration, an exact linear algorithm
can be used for 1D camera self-calibration. The only constraint is
that the motion of the 2D camera should be restricted to planar
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motions. The other applications, including 2D affine camera
calibration, are also briefly discussed. Part of this work was also
presented in [10].

The paper is organized as follows: In Section 2, we review the
1D projective camera model and its trifocal tensor. Then, an
efficient estimation of the trifocal tensor is discussed in Section 3.
The theory of self-calibration of a 1D camera is introduced and
developed in Section 4. After pointing out some direct applications
of the theory in Section 5, we develop in Section 6 a new method of
2D camera self-calibration by converting a 2D camera undergoing
planar motions into a 1D camera. Experimental results on both
simulated and real image sequences are presented in Section 7.
Finally, some concluding remarks and future directions are given
in Section 8.

Throughout the paper, vectors are denoted in lower case
boldface, matrices and tensors in upper case boldface. Some basic
tensor notation is used: covariant indices as subscripts, contra-
variant indices as superscripts and the implicit summation
convention.

2 1D PROJECTIVE CAMERA AND ITS TRIFOCAL
TENSOR

We will first review the one-dimensional camera which was
abstracted from the study of the geometry of lines under affine
cameras [20]. Also, we can introduce it directly by analogy to a
2D projective camera.

A 1D projective camera projects a point x = (z!,22,2%)" in P?
(projective plane) to a point u = (u',u?)" in P! (projective line).
This projection may be described by a 2 x 3 matrix M as
Au = My, 3x. Now, we examine the geometric constraints available
for points seen in multiple views similar to the 2D camera case [22],
[23], [13], [26], [9]. There is a constraint only in the case of three
views, as there is no constraint for two views (two projective lines
always intersect in a point in a projective plane).

Let three views of the point x be given as follows:

Au = Mx,
Mo = Mx, (1)
A//u// — MHX.

These can be rewritten in matrix form as

M u 0 O0
M 0 u 0 |(x-A-N,-A)=o.
M’ 0 0 u

The vector (x, —\, =X, —X’)T cannot be zero, so

M u 0 0
M 0 u 0]|=0. ()
M/I 0 0 u//

The expansion of this determinant produces a trifocal constraint
for the three views

Ejkui,u/ju//k — O7 (3)

where T}, is a 2 x 2 x 2 homogeneous tensor whose components
Tij are 3 x 3 minors (involving all three views) of the following
6 x 3 joint projection matrix:

M
M _ (17271/72/71//72//)?
M//

The components of the tensor can be made explicit as
Tiji = [ij k'), fori,f, k' = 1,2, where the bracket [ifk"] denotes
the 3 x 3 minor of ith, jth, and kth row vector of the above joint
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projection matrix and bar ”~” in i, j, and k denotes the mapping
(1,2)—(2,—1). It can be easily seen that any constraint obtained
by adding further views reduces to a trilinearity. This proves
the uniqueness of the trilinear constraint. Moreover, the
2 x 2 x 2 homogeneous tensor has 7 =2 x 2 x 2 — 1 d.of, soitisa
minimal parametrization of three views in the uncalibrated setting
since three views have exactly 3x (2x3—-1)—(3x3—-1)=7
d.o.f., up to a projective transformation in P?.

This result for the one-dimensional projective camera is very
interesting. The trifocal tensor encapsulates exactly the information
needed for projective reconstruction in 2. Namely, it is the unique
matching constraint, it minimally parametrizes the three views and
it can be estimated linearly. Contrast this to the 2D image case in
which the multilinear constraints are algebraically redundant and
the linear estimation is only an approximation based on over-
parametrization.

3 ESTIMATION OF THE TRIFOCAL TENSOR OF A 1D
CAMERA

Each point correspondence in three views u < u’ < u” yields one
homogeneous linear equation for the eight tensor components T;j;,
for i,j,k=1,2:

, ul u/l u//2

T T Ve TV T TR e i )t =0,

1,72, m

12,10
uluu 1,12, 12

1,
(u'u " utuu?,

U U u

where t = (Tln,T112,T121,T122,T211,T212,T221,T222)T. With at least
seven point correspondences, we can solve for the tensor
components linearly.

A careful normalization of the measurement matrix is
nevertheless necessary just like that stressed in [11] for the
linear estimation of the fundamental matrix. The points in each
image are first translated so that their centroid is the origin of
the image coordinates, then scaled so that the average distance
of the points from the origin is 1. This is achieved by an affine
transformation of the image coordinates in each image:
u=Au,u =Bt and 0’ = Cu”. With these normalized image
coordinates, the normalized tensor components 7j, are linearly
estimated by SVD from Tju'a’a"* =0. The original tensor
components T;;;; are recovered by undoing the normalization
transformations: Ty = 7ijkAéB*,ZCf.

4 SELF-CALIBRATION OF A 1D CAMERA FROM THREE
VIEWS

The concept of camera self-calibration using only point correspon-
dences became popular in the computer vision community
following Maybank and Faugeras [18], by solving the so-called
Kruppa equations. The basic assumption is that the internal
parameters of the camera remain invariant. In the case of the 2D
projective camera, the internal calibration (the determination of the
five internal parameters) is equivalent to the determination of the
image w of the absolute conic in P°.

4.1 The Internal Parameters of a 1D Camera and the
Circular Points

For a 1D camera represented by a 2 x 3 projection matrix M3,
this projection matrix can always be decomposed into

M;y3 = Koo (Raxa taxi),

Koa=(§ )

where
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represents the two internal parameters: o, the focal length in pixels
and wuy, the position of the principal point; the external parameters
are represented by a 2 x 2 rotation matrix Rayo,

cosf sinf
Roxs = ( cosf )
and the translation vector toy1.

—sinf

The object space for a 1D camera is a projective plane, and any
rigid motion on the plane leaves the two circular points I and J
invariant (a pair of complex conjugate points on the line at infinity
of the plane). Similarly to the 2D camera case where the knowledge
of the internal parameters is equivalent to that of the image of the
absolute conic, the knowledge of the internal parameters of a
1D camera is equivalent to that of the image points i and j of the
circular points in P?.

The relationship between the image of the circular points and
the internal parameters of the 1D camera follows directly by
projecting one of the circular points I = (4,1, 0), where i = V=1,
by the camera Mo,3:

. i
Ai:{“’(“o_{m):(g “10>(sz2 )1
0

It clearly appears that the real part of the ratio of the projective
coordinates of the image of the circular point i is the position of the
principal point u, and the imaginary part is the focal length a.

4.2 Determination of the Images of the Circular Points

Our next task is to locate the circular points in the images. Let us
consider one of the circular points, say I. This circular point is
projected onto i, i’, and i” in the three views. As they should be
invariant because of our assumption that the internal parameters
of the camera are constant, we have:

A=\ =Ni"=u,

where u = (u],uz)T = p(a + b, l)T for \ N,V pecC.

The triplet of corresponding points i« i’ < i” satisfies the
trilinear constraint (3) as all corresponding points do, therefore,
Tyi'd7i"™ = 0, ie., Typu'w/ub = 0. This yields the following cubic
equation in the unknown z = u' /u®:

Tina® + (Tony + Tigo + Tion )2” + (T + Tooy + Thoa)x + Thgs = 0.
(4)

A cubic polynomial in one unknown with real coefficients has in
general either three real roots or one real root and a pair of
complex conjugate roots. The latter case of one real and a pair of
complex conjugates is obviously the case of interest here. In fact,
(4) characterizes all the points of the projective plane which have
the same coordinates in three views. This is reminiscent of the 3D
case where one is interested in the locus of all points in space that
project onto the same point in two views (see Section 6). The result
that we have just obtained is that, in the case where the internal
parameters of the camera are constant, there are in general three
such points: the two circular points which are complex conjugate,
and a real point with the following geometric interpretation.
First, consider the case of two views and let us ask the question,
what is the set of points such that their images in the two views are
the same? This set of points can be called the 2D horopter (k) of the
two 1D views. Since the two cameras have the same internal
parameters, we can ignore them and assume that we work with the
calibrated pixel coordinates. In that case, a camera can be identified
to an orthonormal system of coordinates centered at the optical
center, one axis is parallel to the retina, the other one is the optical
axis. The two views correspond to each other via a rotation
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Fig. 1. (a) The two-dimensional horopter which is set of points having the same coordinates in the two views (see text). (b) The geometric interpretation of the real point C

which has the same images in all three views (see text).

followed by a translation. This can always be described in general
as a pure rotation around a point A whose coordinates can easily
be computed from the cameras’ projection matrices. A simple
computation then shows that the horopter (h) is the circle going
through the two optical centers and A, as illustrated in Fig. 1a. In
fact, it is the circle minus the two optical centers. Note that since all
circles go through the circular points (hence their name), they also
belong to the horopter curve, as expected.

In the case of three views, the real point, when it exists, must be
at the intersection of the horopter (h;2) of the first two views and
the horopter (hg3) of the last two views. The first one is a circle
going through the optical centers C; and C5, the second one is a
circle going through the optical centers C; and C;. Those two
circles intersect in general at a second point C' which is the real
point we were discussing, and the third circle (h;3) corresponding
to the first and third views must also go through the real point C,
see Fig. 1b.

We have therefore established the interesting result that the
internal parameters of a 1D camera can be uniquely determined
through at least seven point correspondences in three views: The
seven points yield the trifocal tensor and (4) yields the internal
parameters.

5 APPLICATIONS

The theory of self-calibration of 1D cameras is considerably
simpler than the corresponding one in 2D [18] and can be directly
used whenever a 1D projective camera model occurs; for instance,
self-calibration of some active systems using laser beams, infrared
[3], or ultrasound whose imaging system is basically reduced to a
1D camera on the source plane; and partial/full self-calibration of
2D projective cameras using planar motions.

The first type of applications is straightforward. The interesting
observation is that the 1D calibration procedure can also be used
for self-calibrating a real 2D projective camera if the camera motion
is restricted to planar motions. This is discussed in detail in the
remainder of this paper.

6 CALIBRATING A 2D PROJECTIVE CAMERA USING
PLANAR MOTIONS
A planar motion consists of a translation in a plane and a rotation

about an axis perpendicular to that plane. Planar motion is often
performed by a vehicle moving on the ground, and has been used

for camera self-calibration by Beardsley and Zisserman [4] and by
Armstrong et al. [1].

Recall that the self-calibration of a 2D projective camera [8], [18]
consists of determining the five unchanging internal parameters of
a 2D camera, represented by a 3 x 3 upper triangular matrix

K=10 a«a v

This is mathematically equivalent to the determination of the
image of the absolute conic w, which is a plane conic described by
xT(K )T (K1)x = 0 for image points x. Given the image of the
absolute conic x'Cx = 0, the calibration matrix K can be found
from C using the Choleski decomposition.

6.1 Converting 2D images into 1D images

For a given planar motion, the trifocal plane—the plane through
the camera centers—of the camera is coincident with the motion
plane as the camera is moving on it. Therefore, the image location
of the motion plane is the same as the trifocal line which could be
determined from fundamental matrices. The determination of the
image location of the motion plane has been reported in [1], [4].
Obviously, if restricting the working space to the trifocal plane, we
have a perfect 1D projective camera model which projects the
points of the trifocal plane onto the trifocal line in the 2D image
plane, as the trifocal line is the image of the trifocal plane. In
practice, very few or no point at all really lies on the trifocal plane.

_Direction of the axis
of rotation

Fig. 2. Creating a 1D image from a 2D image from the vanishing point of the
rotation axis and the trifocal line (see text).
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@ vanishing point of the rotation axis
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trifocal line

. 1D image point

Fig. 3. Converting 2D image points into 1D image points in the image plane is
equivalent to a projective projection from the image plane to the trifocal line with
the vanishing point of the rotation axis as the projection center.

However, we may virtually project any 3D point onto the trifocal
plane, therefore, here comes the central idea of our method: the
2D images of a camera undergoing planar motion reduce to 1D images by
projecting the 2D image points onto the trifocal line. This can be
achieved in at least two ways.

First, if the vanishing point v of the rotation axis is well-
defined. This vanishing point of the rotation axis being the
direction perpendicular to the common plane of motion can be
determined from fundamental matrices by noticing that the image
of the horopter for planar motion degenerates to two lines [1], one
of which goes through the vanishing point of the rotation axis; we
may refer to [1] for more details.

Given a 3D point M with image m, we mentally project it to M
in the plane of motion, the projection being parallel to the direction
of rotation. The image m of this virtual point can be obtained in the
image as the intersection of the line through v and m with the
trifocal line ¢. Since the vanishing point v of the rotation axis and
the trifocal line ¢ are well defined, this construction, illustrated in
Fig. 2, is a well-defined geometric operation.

Note that this is also a perspective projection from P? (image
plane) to P! (trifocal line): m—m as illustrated in Fig. 3.

Alternatively, if the vanishing point is not available, we can
nonetheless create the virtual points in the trifocal plane. Given
two points M and M’ with images m and m/, the line (M, M)
intersects the plane of motion in M. The image m of this virtual
point can be obtained in the image as the intersection of the line
(m, m’) with the trifocal line ¢, see Fig. 4.

Another important consequence of this construction is that 2D
image line segments can also be converted into 1D image points! The
construction is even simpler, as the resulting 1D image point is just
the intersection of the line segment with the trifocal line.

6.1.1 1D Self-Calibration

At this point, we have obtained the interesting result that a
1D projective camera model is obtained by considering only the
reprojected points on the trifocal line for a planar motion. The
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Fig. 4. Creating a 1D image from any pair of points or any line segment (see text).

1D self-calibration method described in Section 4 will allow us to
locate the image of the circular points common to all planes
parallel to the motion plane.

6.1.2 Estimation of the Image of the Absolute Conic for the
2D Camera

Each planar motion generally gives us two points on the absolute
conic, together with the vanishing point of the rotation axes as the
pole of the trifocal line w.r.t. the absolute conic. The pole/polar
relation between the vanishing point of the rotation axes and the
trifocal line was introduced in [1]. As a whole, this provides four
constraints on the absolute conic. Since a conic has five d.o.f., at
least two different planar motions, yielding eight linear constraints
on the absolute conic, will be sufficient to determine the full set of
five internal parameters of a general 2D camera by fitting a general
conic of the form x” Cx = au® + bv® + cuv + du + ev + f = 0. If we
assume a four-parameter model for camera calibration with no
image skew (i.e., s=0), one planar motion yielding four
constraints is generally sufficient to determine the four internal
parameters of the 2D camera. However, this is not true for some
very common planar motions such as purely horizontal or vertical
motions with the image plane perpendicular to the motion plane. It
can be easily proven that there are only three instead of four
independent constraints on the absolute conic in these configura-
tions. We need at least two different planar motions for
determining the four internal parameters.

Also, this suggests that even if the planar motion is not purely
horizontal or vertical, but close, the vanishing point of the rotation
axes only constrains loosely the absolute conic. Using only the
circular points located on the absolute conic is preferable and
numerically stable, but we may need at least three planar motions
to determine the five internal parameters of the 2D camera. Note
that the numerical instability of the vanishing point for a nearly
horizontal trifocal line was already reported by Armstrong in [2].

Fig. 5. Three images of the first planar motion.
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The quantities are expressed in the first image pixel coordinate system. The location of circular points by calibration vary as the trifocal line location varies.

Estimated Positions of the Images of the Circular Points by ggfl?égligration with Different Triplets of Images of the First Sequence
Image triplet | Fixed point | Circular points by self-calibration | Circular points by calibration
(16,19,22) 493.7 290.7 £ :2779.1 310.3 £42650.3
(16, 20, 22) 421.8 250.1 +42146.3 273.9 £42153.5
(17,19, 21) 533.1 291.3 +42932.4 241.3 £:2823.1
(16,18, 20) 617.8 238.5 £+ 12597.6 238.1 +142791.5
(18,20, 22) 368.3 230.6 4 72208.2 272.1 +142126.2

TABLE 2
Estimated Positions of the Image of Circular Points with Different Triplets of Images

Image triplet Circular points | Fixed point
(16,18,20) 245.5 £12490.5 590.0
(18,20,22) 221.4 +£92717.8 384.4
(16,20, 22) 236.2 +12617.3 452.9
(16,19, 22) 240.0 +12693.4 488.0
(17,19,21) 304.7 £142722.7 516.6

known position by calibration | 262.1 = 72590.6
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These quantities vary because the 1D trifocal tensor varies. The trifocal line and the vanishing point of the rotation axes are estimated using seven images of the
sequence instead of the minimum of three images.

TABLE 3

Estimated Position of the Image of Circular Points with One Triplet of the Second Image Sequence

Image triplet | Fixed point

Circular points by self-calibration

Circular points by calibration

(8,11,15) 927.2

269.7 4+ 11875.5

276.5 +11540.1

Obviously, if we work with a three-parameter model with known
aspect ratio and without skew, one planar motion is sufficient [1].

As we have mentioned at the beginning of this section, the
method described in this section is related to the work of
Armstrong et al. [1], but there are some important differences
which we now explain.

1.

First, our approach gives an elegant insight of the intricate
relationship between 2D and 1D cameras for a special kind
of motion, called planar motion.

Second, it allows us to only use the fundamental matrices
of the 2D images and the trifocal tensor of 1D images to
self-calibrate the camera instead of the trifocal tensor of
2D images. It is now well-known that fundamental
matrices can be very efficiently and robustly estimated
[29], [25]. The same is true of the estimation of the
1D trifocal tensor [20] which is a linear process. Armstrong
et al., on the other hand, use the trifocal tensor of 2D images
which, so far, has been hard to estimate due to complicated
algebraic constraints to our knowledge. Also, the trifocal
tensor of 2D images takes a special form in the planar
motion case [1] and the new constraints have to be
included in the estimation process.

It may be worth mentioning that in the case of interest
here, planar motion of the cameras, the Kruppa equations
become degenerate [28] and the recovery of the internal
parameters is impossible from the Kruppa equations. Since
it is known that the trifocal tensor of 2D images is
algebraically equivalent to the three fundamental matrices
plus the restriction of the trifocal tensor to the trifocal
plane [14], [15], [9], our method can be seen as an

inexpensive way of estimating the full trifocal tensor of
2D images: First, estimate the three fundamental matrices
(nonlinear but simple and well-understood), then estimate
the trifocal tensor in the trifocal plane (linear).

Although it looks superficially that both the 1D and
2D trifocal tensors can be estimated linearly with at least
seven image correspondences, this is misleading since the
estimation of the 1D trifocal tensor is exactly linear for
seven d.o.f., whereas the linear estimation of the 2D trifocal
tensor is only a rough approximation based on a set of
26 auxiliary parameters for its 18 d.o.f. and obtained by
neglecting eight complicated algebraic constraints.

2500

2000 -
1500
1000 4
500
o ]

L L L L L
-1000 -500 0 500 1000 1500

Fig. 6. The image of the motion planes of the two planar motions.
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Fig. 7. Two views of the resulting 3D reconstruction by self-calibration.

3.  Third, but this is a minor point, our method may not
require the estimation of the vanishing point of the rotation
axes.

7 EXPERIMENTAL RESULTS

The theoretical results for 1D camera self-calibration and its
applications to 2D camera calibration have been implemented and
experimented on synthetic and real images. Due to space
limitation, we do not present the results on synthetic data, the
algorithms generally perform very well. We only show some real
examples. Here, we consider a scenario of a real camera mounted
on a robot arm. Two sequences of images are acquired by the
camera moving in two different planes. The first sequence contains
seven (indexed from 16 to 22) images (cf. Fig. 5) and the second
contains eight (indexed from 8 to 15).

The calibration grid was used to have the ground truth for the
internal camera parameters which have been measured as
o, =1534.7, o, =1539.7, uy =281.3, and vy =279.0 using a
standard calibration method [6].

We take triplets of images from the first sequence and, for each
triplet, we estimate the trifocal line and the vanishing point of the
rotation axes using the three fundamental matrices of the triplet.
The 1D self-calibration is applied for estimating the images of the
circular points along the trifocal lines. To evaluate the accuracy of
the estimation, the images of the circular points of the trifocal plane
are recomputed in the image plane from the known internal
parameters by intersecting the image of the absolute conic with the
trifocal line. Table 1 shows the results for different triplets of
images of the first sequence.

Since we have more than three images for the same planar
motion of the camera, we could also estimate the trifocal line and
the vanishing point of the rotation axes by using all the available
fundamental matrices of the seven images of the sequence. The
results using redundant images are presented for different triplets
in Table 2. We note the slight improvement of the results compared
with those presented in Table 1.

The same experiment was carried out for the other sequence of
images where the camera underwent a different planar motion.
Similar results to the first image sequence are obtained. We only
give the result for one triplet of images in Table 3 for this sequence.

Now, two sequences of images, each corresponding to a
different planar motion, yield four distinct imaginary points on
the image plane which must be on the image w of the absolute
conic. Assuming that there is no camera skew, we could fit to those
four points an imaginary ellipse using standard techniques and
compute the resulting internal parameters. Note that we did not
use the pole/polar constraint of the vanishing point of the rotation
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axes on the absolute conic as it was discussed in Section 6. This
constraint is not numerically reliable.

To have an intuitive idea of the planar motions, the two trifocal
lines together with one image are shown in Fig. 6.

The ultimate goal of self-calibration is to get 3D metric
reconstruction. 3D reconstruction from two images of the sequence
is performed by using the estimated internal parameters as
illustrated in Fig. 7. To evaluate the reconstruction quality, we
did the same reconstruction using the known internal parameters.
Two such reconstructions differ merely by a 3D similarity
transformation which could be easily estimated. The resulting
relative error for normalized 3D coordinates by similarity between
the reconstruction from self-calibration and offline calibration is
3.4 percent.

8 CONCLUSIONS AND OTHER APPLICATIONS

First, we have established that the two internal parameters of a
1D camera can be uniquely determined through the trifocal tensor
of three 1D images. Since the trifocal tensor can be estimated
linearly from at least seven points in three 1D images, the method
of the 1D self-calibration is a real linear method (modulo the fact
that we have to find the roots of a third degree polynomial in one
variable), no over-parameterization was introduced.

Second, we have proven that if a 2D camera undergoes a planar
motion, the 2D camera reduces to a 1D camera in the plane of
motion. The reduction of a 2D image to a 1D image can be
efficiently performed by using only the fundamental matrices of
2D images. Based on this relation between 2D and 1D images, the
self-calibration method for 1D cameras can be applied for self-
calibrating a 2D camera. Our experimental results based on real
image sequences show the good stability of the solutions yielded
by the 1D self-calibration method and the accurate 3D metric
reconstruction that can be obtained from the internal parameters of
the 2D camera estimated by the 1D self-calibration method. The
camera motions that defeat the self-calibration method developed
in Section 4 are described in [24].
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