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Total number of course hours: 24 (2h×12)

Agenda: The course will start in January and will finish in April. There will be approximatively
2-3 lectures per month.

Who should attend: PhD candidates and Master students who are interested in applying machine
learning methodologies to their research. The course is open to any researcher interested in manifold
learning tools for data analysis.
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Course Objective

The objective of this course is to familiarize PhD candidates and Master students in computer science,
electrical engineering, and applied mathematics with data analysis methodologies that fall within the
topic of statistical machine learning, (Hastie et al., 2009) and which have their roots in algebraic graph
theory and heat-diffusion in Riemannian geometry. Within the light of these powerful mathematical
tools, the data will be analysed from the perspective of their intrinsic geometry.

There are many fields that can profit from these methods, such as:

• Visual computing (images, image collections, and videos)

• Graphical and animation methods (voxels, meshes, 3D scans),

• Robotics (2D and 3D point clouds, multi-sensory data, inverse kinematics)

• Audio signal processing (auditory scene analysis, speech recognition, audio-visual interpreta-
tion),

• Medical analysis (MRI and fMRI data), and

• Data mining (text, multimedia documents, social networks).

Very often, the task is to cluster the data in order to discover meaningful groupings, segmentations,
or associations (unsupervised learning) or to classify the data based on prior training (supervised and
semi-supervised learning).

Prerequisites. The course will only require basic knowledge in linear algebra, matrix analysis,
probability theory, and statistics.

Brief Course Description

Modern data analysis and knowledge acquisition systems make use of various machine learning meth-
ods in order to understand the intrinsic structure of the data to be analyzed and to classify the data,
cluster the data, or to infer abstract representations of the data (Hastie et al., 2009). In the recent past,
statistical machine learning has played a central role with emphasis on supervised or unsupervised
methods. Very often, the data to be analyzed live in a high-dimensional space and one great challenge
is to be able to map the data into a lower dimensional space such that standard statistical methods
could be efficiently applied. Moreover, in may cases the data lie on a non-linear subspace (manifold)
but neither the actual structure nor the dimension of the latter is known in advance.

In this course we will study spectral dimensionality reduction methods, i.e., methods that operate
on either the covariance or the Gram matrices built over the input data (Bishop, 2006). We will briefly
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review principal component analysis (PCA) and multidimensional scaling (MDS) and we will then
turn our attention towards graph-based methods. We will formally introduce undirected weighted
graphs as a convenient representation of the data and we will concentrate on the study of these graphs
based on the algebraic (spectral) properties of their associated graph matrices, namely spectral graph
theory. We will study in detail the associated non-linear dimension reduction algorithms such as
Isomap, locally-linear embedding (LLE) and in particular Laplacian eigenmaps.

We will introduce a more general type of data embedding based on the discrete heat-kernel, which
is the fundamental solution of the heat-diffusion equation on graphs. Within this framework, graphs
are viewed as discretizations of Riemannian manifolds (Biyikoglu et al., 2007). We will study in
detail the properties of the heat kernels and of heat matrices. We will adopt a point of view that unifies
spectral graph theory (Chung, 1997; Godsil and Royle, 2001), non-linear dimensionality reduction,
and kernel methods for machine learning (Shawe-Taylor and Cristianini, 2004).

We will study in detail spectral clustering and spectral graph matching which will be illustrated
using examples from computer vision: shape segmentation, shape registration, and video classifica-
tion.

Course Organization and Material

The course will be split in 12 classes of 2 hours. A course website will be open with course material
available: relevant papers and book chapters, course slides, matlab code and test data for the basic
algorithms that will be discussed.

There will be no more than 2-3 classes per month in order to allow every participant to read the
proposed material. Participants will be encouraged to propose case-studies associated with their own
research work and to discuss possible solutions in terms of manifold learning.
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