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Time of Flight Sensors

Basic principle: measure the absolute time that a light pulse
needs to travel from a light emitter to a targeted object and
back to a detector.

The speed of light is of 0.3 meters/nano-second.

TOF systems use either pulsed-modulation or continuous
wave modulation:

Pulsed-modulation measures the time-of-flight directly.
Allows long-distance measurements. The arrival time must be
detected very precisely. Needs very short light pulses with fast
rise- and fall-times and with high optical power – lasers or laser
diodes.
CW-modulation measures the phase difference between the
sent and received signals. Different shapes of signals are
possible, e.g., sinusoidal, square waves, etc. Cross-correlation
between the received and sent signals allows phase estimation
which is directly related to distance if the modulation
frequency is known.
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Principle of a TOF Camera

Radu Horaud Three-Dimensional Sensors: Lecture 3



Depth Estimation

The distance is computed with:

d =
1
2
cτ

In practice τ cannot be measured directly.

Continuous wave modulation: The phase difference between
the sent and received signals is measured.

The modulated frequency is in the range 10 to 100 MHz.

Relationship between phase shift and time of flight (f is the
modulation frequency):

φ = 2πfτ
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Cross-Correlation Between Sent and Received Signals

Emitted signal: s(t) = a cos(2πft)
Received signal: r(t) = A cos(2πf(t− τ)) +B

Cross-correlation between emitted and received signals:

C(x) = lim
T→∞

1
T

∫ T/2

−T/2
r(t)s(t+ x)dt

The solution is:

C(ψ) =
aA

2
cos(2πfτ︸ ︷︷ ︸

φ

+ 2πfx︸ ︷︷ ︸
ψ

) +B
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Demodulation Parameters

φ is the phase and is defined up to 2π, this is called phase
wrapping.

A is the amplitude of the received signal and it depends on
the object’s reflectivity and of the sensor’s sensitivity. The
amplitude decreases with 1/d2 mainly due to light spreading.

B is an offset coefficient due to the ambient illumination.
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The 4-Bucket Method
Estimate four values of C(ψ) at ψ0 = 00, ψ1 = 900,
ψ2 = 1800, ψ3 = 2700
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Phase, Amplitude, and Offset

From these four values of the cross-correlation signal we
obtain the following solutions for the phase, amplitude and
offset:

φ = 2πfτ = arctan
(
C(x3)− C(x1)
C(x0)− C(x1)

)
A =

1
2a

√
(C(x3)− C(x1))2 + (C(x0)− C(x1))2

B =
1
4

(C(x0) + C(x1) + (C(x2) + C(x3))
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Implementation Based on CCD/CMOS Technologies

The CCD (charge-coupled device) plays several roles:

Data acquisition or readout operation: the incoming photons
are converted into electron charges.
Clocking.
Signal Processing (demodulation).

After the demodulation, the signal C(ψ) is integrated at four
equally space intervals, over an equal-length ∆t, within one
modulation period T .

These four signal values are stored independently.

The cycle of integration and storage can be repeated over
many periods.

Example: for f = 30MHz and at 30 frames per second (FPS),
106 integration periods are possible.
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Depth from Phase and Modulation Frequency

Depth: d = 1
2cτ = c

2f
φ
2π

Minimum depth: dmin = 0 (φ = 0)
Maximum depth: dmax = c

2f (φ = 2π).

Phase wrapping: an inherent 2π phase ambiguity.

Hence the distance is computed up to a wrapping ambiguity:

d(i, j) =
(
φ(i, j)

2π
+ n(i, j)

)
dmax

where n = 0, 1, 2, . . . is the number of wrappings. This can
also be written as:

d(i, j) = dtof(i, j) + n(i, j)dmax

where d is the real depth value and dtof is the measured
depth value.
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More on Phase Wrapping

For f = 30MHz, the unambiguous range is from dmin = 0 to
dmax = 5 meters.

Solving for this ambiguity is called phase unwrapping.

The modulation frequency of the SR4000 camera can be
selected by the user. The camera can be operated at:

29/30/31 MHz corresponding to a maximum depth of 5.17m,
5m and 4.84m.
14.5/15/15.5 MHz corresponding to a maximum depth of
10.34m, 10m and 9.67m.

The accuracy increases with the modulation frequency.
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Observations

A TOF camera works at a very precise modulation frequency.
Consequently, it is possible to simultaneously and
synchronously use several TOF cameras by using a different
modulation frequency for each one of the cameras, e.g., six
cameras in the case of the SR4000.

A TOF camera needs a long integration time (IT), over
several time periods, to increase SNR, hence accuracy. In
turn, this introduces “motion blur” in the presence of moving
objects. Because of the need of long IT, fast shutter speeds
(as done with standard cameras) cannot be envisaged.

Sources of errors:

Demodulation error;
Integration error;
Temperature error.
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Back to Camera Model

The coordinates of the
image point m: x

y
1

 ≈ A−1

 u
v
1


The coordinates of the
world point M : X

Y
Z

 = Z

 x
y
1


Depth along a line of sight through m: ‖M‖

‖m‖ = Z
1 (1 is the

focal length)
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From Depth Values to Euclidean Coordinates

The TOF camera measures the depth d from the 3D point M
to the optical center, hence:

d = ‖M‖

.

Relationship between the image coordinates p = (u v 1)> and
the virtual camera coordinates m = (x y 1)> of the point m:

m = A−1p

Hence:

Z =
‖M‖
‖m‖

=
d

‖A−1p‖
We obtain for the Euclidean coordinates of the measured
point M :  X

Y
Z

 =
d

‖A−1p‖
A−1

 u
v
1


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Lens Distorsion Model

For TOF camera calibration it is advised to take into account
lens distorsion. For that purpose, we introduce ml = (xl yl 1)
between the image and camera coordinates: p = Aml. The
lens distorsion model is:(

xl
yl

)
= l1(r)

(
x
y

)
+ l2(x, y)

with: 
l1(r) = 1 + a1r

2 + a2r
4

l2(x, y) =
[

2xy r2 + 2x2

r2 + 2y2 2xy

](
a3

a4

)
r2 = x2 + y2
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TOF Camera Calibration

The CCD image sensor of a TOF camera provides both a
depth image and an amplitude+offset image.

The amplitude+offset image can be used by the OpenCV
packages to calibrate the camera, namely its intrinsic and
lens-distorsion parameters.

However, the low-resolution of the TOF images implies some
practical considerations.
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