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Kernels on graphs

The exponential diffusion kernel

The heat kernel of discrete manifolds
Properties of the heat kernel

The auto-diffusion function

Shape matching
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Material for this lecture

o P. Bérard, G. Besson, & G. Gallot. Embedding Riemannian
manifolds by their heat kernel. Geometric and Functional
Analysis (1994): A rather theoretical paper.

@ J. Shawe-Taylor & N. Cristianini. Kernel Methods in Pattern
Analysis (chapter 10): A mild introduction to graph kernels.

@ R. Kondor and J.-P. Vert: Diffusion Kernels in " Kernel
Methods in Computational Biology” ed. B. Scholkopf, K.
Tsuda and J.-P. Vert, (The MIT Press, 2004): An interesting
paper to read.

@ J. Sun, M. Ovsjanikov, & L. Guibas. A concise and provably
informative multi-scale signature based on heat diffusion.
Symposium on Geometric Processing (2009).

@ A. Sharma & R. Horaud. Shape matching based on diffusion
embedding and on mutual isometric consistency. NORDIA
workshop (2010).

Radu Horaud Data Analysis and Manifold Learning; Lecture 9



The Adjacency Matrix of a Graph (from Lecture #3)

@ For a graph with n vertices and with binary edges, the entries
of the n x n adjacency matrix are defined by:

Aij; =1 if there is an edge ¢;;

A:=¢ A;; =0 if there is no edge
A =0
01 1 0 Vi V2
1 01 1
A= 1 100
0100 V3 V4
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The Walks of Length 2

@ The number of walks of length 2 between two graph vertices:
No(vi, v5) = A%(i, j)

@ Examples:
Na(vg,v3) = 1; Na(vz,v2) =3

Vi V2

A? =

o= =N
—_ = O =

1
1
2
1

O = W

V3 V4

Radu Horaud Data Analysis and Manifold Learning; Lecture 9



The Number of Walks of Length &

The number of walks of length k joining any two nodes v; and v;
of a binary graph is given by the (i,7) entry of the matrix A¥:

Ni(vi,vj) = A¥(i, 5)

@ A proof of this theorem is provided in:
Godsil and Royle. (2001). Algebraic Graph Theory. Springer.
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The Similarity Matrix of an Undirected Weighted Graph

o We consider undirected weighted graphs; Each edge ¢;; is
weighted by w;; > 0. We obtain:

Qi,5) = w(vi,vj) = w;; if there is an edge e;;
Q=1 Q,5)=0 if there is no edge
Q(i,i) =0

@ We will refer to this matrix as the base similarity matrix
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Walks of Length 2

@ The weight of the walk from v; to v; through v; is defined as
the product of the corresponding edge weights:

w(vi, vy)w(vr, v5)

@ The sum of weigths of all walks of length 2:

n

wa(vi, vj) = Y w(vi, v)w(vy, v;) = Q2(i, )
=1
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Associated Feature Space

o Let = UAUT  ie., the spectral decomposition of a real
symmetric matrix.

o We have Q% = UA?UT is symmetric semi-definite positive,
hence it can be interpreted as a kernel matrix, with:

n

wg(vi, ’Uj) = Zw(viy Ul)w(vla Uj)

= ((w (Ui’vl))?:l7(w(vj>vl))?:1> = K(vi, vj)
@ Associated feature space:

v — o(v;) = (w(vg,v1) - .. w(vg,vp) .. .w(vi,vn))—r

@ It is possible to “enhance” the base similarity matrix by
linking vertices along walks of length 2.
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Combining Powers of the Base Similarity Matrix

@ More generally one can take powers of the base similarity
matrix as well as linear combinations of these matrices:

a1+ 4+

@ The eigenvalues of such a matrix must be nonnegative to
satisfy the kernel condition:

A+ .. oA+ ag AT =0
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The Exponential Diffusion Kernel

Consider the following combination of powers of the base
similarity matrix:
oo
=3 Mo
k!
k=0

@ This corresponds to:
K = "

where 1 is a decay factor chosen such that the influence of
longer walks decreases, since they are less reliable.

Spectral decomposition:

K = UetAUT

Hence K is a kernel matrix since its eigenvalues e#* > 0.
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Heat Diffusion on a Graph

@ The heat-diffusion equation on a Riemannian manifold:
(% + AM) flxz;t) =0
@ A denotes the geometric Laplace-Beltrami operator.
o f(=z;t) is the distribution of heat over the manifold at time t.

@ By extension, % + Ay can be referred to as the heat
operator [Bérard et al. 1994].

@ This equation can also be written on a graph:

(21)p-o

where the vector F(t) = (Fy(t)... F,(t))" is indexed by the
nodes of the graph.
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The Fundamental Solution

@ The fundamental solution of the (heat)-diffusion equation on
Riemannian manifolds holds in the discrete case, i.e., for
undirected weighted graphs.

@ The solution in the discrete case is:
F(t) = H(t)f
@ where H denotes the discrete heat operator:
H(t) = e 'L
@ f corresponds to the initial heat distribution:
F0)=f

@ Starting with a point-heat distribution at vertex v;, e.g.,
O0...fi=1. ..O)T, the distribution at ¢, i.e.,
F(t) = (Fi(t)...F,(t)) is given by the i-th column of the
heat operator.
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How to Compute the Heat Matrix?

@ The exponential of a matrix:

A_\AF
© T
k=0

@ Hence:

L — (—t)" &
e = Z E L
k=0

@ It belongs to the “exponential diffusion” family of kernels just
introduced with © = —t,¢t > 0.
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Spectral Properties of L

We start by recalling some basic facts about the combinatorial
graph Laplacian:

@ Symmetric semi-definite positive matrix: L = UAUT

@ Eigenvalues: 0 =)A; < X < ... < Ay

o Eigenvectors: u; = 1, uo,...,u,

@ )y and wugy are the Fiedler value and the Fiedler vector
° uZ-Tuj = 0;j

° uZ-T>1]l =0

o > uyp=0,Vke{2,...,n}

o —l<up<l,Vie{l,....n},Vke€{2,...,n}

n
L= Z /\kukug
k=2
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The Heat-kernel Matrix

H(t) = o~ tUAUT _ g—tAT =0

with:
e A = Diagle M .. e

o Eigenvalues: 1 = e 0 > e t2 > > et
@ Eigenvectors: same as the Laplacian matrix with their
properties (previous slide).
@ The heat trace (also referred to as the partition function):
n
Z(t) =tr(H) =) e ™
k=1
@ The determinant:
n
det(H) = H etk — —ttr(L) _ —tvol(g)
k=1
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The Heat-kernel

@ Computing the heat matrix:

n

H(t) = Z e~ P,

k=2

where we applied a deflation to get rid of the constant

eigenvector: H — H — uju

@ The heat kernel (en entry of the matrix above):

h(i,j;t) g e ’“uikujk
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Feature-space Embedding Using the Heat Kernel

H(t) = (Ue’%m> (Ue’%tA>T

@ Each row of the n x n matrix Ue /2 can be viewed as the

coordinates of a graph vertex in a feature space, i.e., the
mapping ¢ : V — R" ! x; = ¢(v;):

2 —Lex 2 T
x; = e 22U L..oe 2y ... e 2 Py,
T

@ The heat-kernel computes the inner product in feature space:

h(iaj; t) = <¢(Uz)a ¢(U])>
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The Auto-diffusion Function

o Each diagonal term of the heat matrix corresponds to the
norm of a feature-space point:

h(i,i;t) = Ze P2 = || ||?

@ This is also known as the auto-diffusion function (ADF), or
the amount of heat that remains at a vertex at time ¢.

@ The local maxima/minima of this function have been used for
a feature-based scale-space representation of shapes.

@ Associated shape descriptor: v; — h(i,i;t) hence it is a scalar
function defined over the graph.
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The ADF as a Shape Descriptor
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Spectral Distances

@ The heat distance:
di(i,j) = h(i,i;t) + h(j,j;t) — 2h(i, j; )
S g u)?
k=2
@ The commute-time distance:

derp (i, ) / —3 (g, — ugy,))2dt
t= Ok: 2

= (/\k Y2 (g, — Ujk)>2
k=2
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Principal Component Analysis

@ The covariance matrix in feature space:

o With: -
X = (Ue_%m) =[x1...x;... Ty

@ Remember that each column of U sums to zero.
1 1
0 —1< —e 2 < Tip < "2t < 1,V2<k<n
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Principal Component Analysis: The Mean

8|
Il

n
1 Z
n -

=1
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Principal Component Analysis: The Covariance

Radu Horaud Data Analysis and Manifold Learning; Lecture 9



Result I: The PCA of a Graph

@ The eigenvectors (of the combinatorial Laplacian) are the
principal components of the heat-kernel embedding: hence we
obtain a maximum-variance embedding

o The associated variances are e =2 /n, .. ., e*“‘n/n.

@ The embedded points are strictly contained in a
hyper-parallelepipedon with volume [}, e~

Radu Horaud Data Analysis and Manifold Learning; Lecture 9



Dimensionality Reduction (1)

@ Dimensionality reduction consists in selecting the K largest
eigenvalues, K < n, conditioned by ¢, hence the criterion:
choose K and ¢, such that (scree diagram):

Yy e Nn

@ This is not practical because one needs to compute all the
eigenvalues.

Radu Horaud Data Analysis and Manifold Learning; Lecture 9



Dimensionality Reduction (2)

@ An alternative possibility is to use the determinant of the
covariance matrix, and to choose the first K eigenvectors
such that (with o > 1):

K41 —tx
Hz’:; e t)"/”

a(K)=In [[eye ™ /n

@ which yields:

K+1

a(K) =t <tr(L) - Z )\i> +(n—K)lnn
=2

@ This allows to choose K for a scale t.
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Normalizing the Feature-space

Observe that the heat-kernels collapse to 0 at infinity:
limy_,o0 h(7,5;t) = 0. To prevent this problem, several
normalizations are possible:

@ Trace normalization
@ Unit hyper-sphere normalization

@ Time-invariant embedding
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Trace Normalization

@ Observe that lim; o h(7,5;t) =0
@ Use the trace of the operator to normalize the embedding:

~ €T

with: Z(t) = S ptl et

@ the k-component of the i-coordinate writes:

()

Ti(t) =
() K+1 ¢y, 1/2
1=2 €
o At the limit:
, T
Bit—oo)=( 72 . ME 0 . 0)

where m is the multiplicity of the first non-null eigenvalue.
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Unit Hyper-sphere Normalization

@ The embedding lies on a unit hyper-sphere of dimension K:

~ Z;
T, = —7
R

@ The heat distance becomes a geodesic distance on a spherical
manifold:

h(i, j;t)
(h(i,ist)h(j, j;t))1/?

@ At the limit (m is the multiplicity of the largest non-null

ds(i,j;t) = arccos @T:ch = arccos

eigenvalue):
~ Y Q- N — e — A
xi(t - OO) - ( ( zn;gl “121)1/2 (Z?;gl “?1)1/2 )
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Time-invariant Embedding

@ Integration over time:

LT = / H(t) = / > e Mg dt
0 0 k=2
= Z —upu, = UATU
5 Ak

o with: AT = Diag[\;',..., A\ 1.
o Matrix LT is called the discrete Green's function
[ChungYau2000], the Moore-Penrose pseudo-inverse of the

Laplacian.
T
@ Embedding: x; = ()\2 1/2 )\KJr/luzKH)

e Covariance: Cx = %Diag[)\g ?"'7>‘I_(+1]
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Examples of Normalized Embeddings

-’

t =50 = 5000 = 500000
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Shape Matching (1)

t =200, t' = 201.5 t =90, t' = 1005

Radu Horaud Data Analysis and Manifold Learning; Lecture 9



Shape Matching (2)
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Shape Matching (3)

Radu Horaud Data Analysis and Manifold Learning; Lecture 9



Sparse Shape Matching

@ Shape/graph matching is equivalent to matching the
embedded representations [Mateus et al. 2008]

@ Here we use the projection of the embeddings on a unit
hyper-sphere of dimension K and we apply rigid matching.

@ How to select ¢t and t/, i.e., the scales associated with the two
shapes to be matched?

@ How to implement a robust matching method?
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Scale Selection

@ Let Cx and Cx/ be the covariance matrices of two different
embeddings X and X’ with respectively n and n’ points:

det(CX) = det(CX/)

@ det(Cyx measures the volume in which the embedding X lies.
Hence, we impose that the two embeddings are contained in
the same volume.

@ From this constraint we derive:

t'tr(L') = t tr(L) + K logn/n’
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Robust Matching

@ Build an association graph.

@ Search for the largest set of mutually compatible nodes
(maximal clique finding).

@ See [Sharma and Horaud 2010] (Nordia workshop) for more
details.

Radu Horaud Data Analysis and Manifold Learning; Lecture 9



