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Outline of Lecture 9

Kernels on graphs

The exponential diffusion kernel

The heat kernel of discrete manifolds

Properties of the heat kernel

The auto-diffusion function

Shape matching
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Material for this lecture

P. Bérard, G. Besson, & G. Gallot. Embedding Riemannian
manifolds by their heat kernel. Geometric and Functional
Analysis (1994): A rather theoretical paper.

J. Shawe-Taylor & N. Cristianini. Kernel Methods in Pattern
Analysis (chapter 10): A mild introduction to graph kernels.

R. Kondor and J.-P. Vert: Diffusion Kernels in ”Kernel
Methods in Computational Biology” ed. B. Scholkopf, K.
Tsuda and J.-P. Vert, (The MIT Press, 2004): An interesting
paper to read.

J. Sun, M. Ovsjanikov, & L. Guibas. A concise and provably
informative multi-scale signature based on heat diffusion.
Symposium on Geometric Processing (2009).

A. Sharma & R. Horaud. Shape matching based on diffusion
embedding and on mutual isometric consistency. NORDIA
workshop (2010).
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The Adjacency Matrix of a Graph (from Lecture #3)

For a graph with n vertices and with binary edges, the entries
of the n× n adjacency matrix are defined by:

A :=


Aij = 1 if there is an edge eij
Aij = 0 if there is no edge
Aii = 0

A =


0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0


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The Walks of Length 2

The number of walks of length 2 between two graph vertices:

N2(vi, vj) = A2(i, j)

Examples:
N2(v2, v3) = 1; N2(v2, v2) = 3

A2 =


2 1 1 1
1 3 1 0
1 1 2 1
1 0 1 1


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The Number of Walks of Length k

Theorem

The number of walks of length k joining any two nodes vi and vj
of a binary graph is given by the (i, j) entry of the matrix Ak:

Nk(vi, vj) = Ak(i, j)

A proof of this theorem is provided in:
Godsil and Royle. (2001). Algebraic Graph Theory. Springer.
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The Similarity Matrix of an Undirected Weighted Graph

We consider undirected weighted graphs; Each edge eij is
weighted by ωij > 0. We obtain:

Ω :=


Ω(i, j) = ω(vi, vj) = ωij if there is an edge eij
Ω(i, j) = 0 if there is no edge
Ω(i, i) = 0

We will refer to this matrix as the base similarity matrix
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Walks of Length 2

The weight of the walk from vi to vj through vl is defined as
the product of the corresponding edge weights:

ω(vi, vl)ω(vl, vj)

The sum of weigths of all walks of length 2:

ω2(vi, vj) =
n∑
l=1

ω(vi, vl)ω(vl, vj) = Ω2(i, j)
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Associated Feature Space

Let Ω = UΛU>, i.e., the spectral decomposition of a real
symmetric matrix.

We have Ω2 = UΛ2U> is symmetric semi-definite positive,
hence it can be interpreted as a kernel matrix, with:

ω2(vi, vj) =
n∑
l=1

ω(vi, vl)ω(vl, vj)

= 〈(ω(vi, vl))
n
l=1 , (ω(vj , vl))

n
l=1〉 = κ(vi, vj)

Associated feature space:

φ : vi → φ(vi) = (ω(vi, v1) . . . ω(vi, vl) . . . ω(vi, vn))>

It is possible to “enhance” the base similarity matrix by
linking vertices along walks of length 2.
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Combining Powers of the Base Similarity Matrix

More generally one can take powers of the base similarity
matrix as well as linear combinations of these matrices:

α1Ω + . . .+ αkΩk + . . .+ αKΩK

The eigenvalues of such a matrix must be nonnegative to
satisfy the kernel condition:

α1Λ + . . .+ αkΛk + . . .+ αKΛK � 0
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The Exponential Diffusion Kernel

Consider the following combination of powers of the base
similarity matrix:

K =
∞∑
k=0

µk

k!
Ωk

This corresponds to:
K = eµΩ

where µ is a decay factor chosen such that the influence of
longer walks decreases, since they are less reliable.

Spectral decomposition:

K = UeµΛU>

Hence K is a kernel matrix since its eigenvalues eµλi ≥ 0.
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Heat Diffusion on a Graph

The heat-diffusion equation on a Riemannian manifold:(
∂
∂t + ∆M

)
f(x; t) = 0

∆M denotes the geometric Laplace-Beltrami operator.

f(x; t) is the distribution of heat over the manifold at time t.

By extension, ∂
∂t + ∆M can be referred to as the heat

operator [Bérard et al. 1994].

This equation can also be written on a graph:(
∂

∂t
+ L

)
F (t) = 0

where the vector F (t) = (F1(t) . . . Fn(t))> is indexed by the
nodes of the graph.
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The Fundamental Solution

The fundamental solution of the (heat)-diffusion equation on
Riemannian manifolds holds in the discrete case, i.e., for
undirected weighted graphs.

The solution in the discrete case is:

F (t) = H(t)f

where H denotes the discrete heat operator:

H(t) = e−tL

f corresponds to the initial heat distribution:

F (0) = f

Starting with a point-heat distribution at vertex vi, e.g.,
(0 . . . fi = 1 . . . 0)>, the distribution at t, i.e.,
F (t) = (F1(t) . . . Fn(t)) is given by the i-th column of the
heat operator.
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How to Compute the Heat Matrix?

The exponential of a matrix:

eA =
∞∑
k=0

Ak

k!

Hence:

e−tL =
∞∑
k=0

(−t)k

k!
Lk

It belongs to the “exponential diffusion” family of kernels just
introduced with µ = −t, t > 0.
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Spectral Properties of L

We start by recalling some basic facts about the combinatorial
graph Laplacian:

Symmetric semi-definite positive matrix: L = UΛU>

Eigenvalues: 0 = λ1 < λ2 ≤ . . . ≤ λn
Eigenvectors: u1 = 1,u2, . . . ,un

λ2 and u2 are the Fiedler value and the Fiedler vector

u>i uj = δij

u>i>11 = 0∑n
i=1 uik = 0,∀k ∈ {2, . . . , n}

−1 < uik < 1, ∀i ∈ {1, . . . , n},∀k ∈ {2, . . . , n}

L =
n∑
k=2

λkuku
>
k
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The Heat-kernel Matrix

H(t) = e−tUΛU>
= Ue−tΛU> � 0

with:
e−tΛ = Diag[e−tλ1 . . . e−tλn ]

Eigenvalues: 1 = e−t0 > e−tλ2 ≥ . . . ≥ e−tλn

Eigenvectors: same as the Laplacian matrix with their
properties (previous slide).

The heat trace (also referred to as the partition function):

Z(t) = tr(H) =
n∑
k=1

e−tλk

The determinant:

det(H) =
n∏
k=1

e−tλk = e−ttr(L) = e−tvol(G)
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The Heat-kernel

Computing the heat matrix:

H(t) =
n∑
k=2

e−tλkuku
>
k

where we applied a deflation to get rid of the constant
eigenvector: H −→ H− u1u

>
1

The heat kernel (en entry of the matrix above):

h(i, j; t) =
n∑
k=2

e−tλkuikujk
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Feature-space Embedding Using the Heat Kernel

H(t) =
(
Ue−

1
2
tΛ
)(

Ue−
1
2
tΛ
)>

Each row of the n× n matrix Ue−tΛ/2 can be viewed as the
coordinates of a graph vertex in a feature space, i.e., the
mapping φ : V → R

n−1, xi = φ(vi):

xi =
(
e−

1
2
tλ2ui2 . . . e−

1
2
tλkuik . . . e−

1
2
tλnuin

)>
= (xi2 . . . xik . . . xin)>

The heat-kernel computes the inner product in feature space:

h(i, j; t) = 〈φ(vi),φ(vj)〉
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The Auto-diffusion Function

Each diagonal term of the heat matrix corresponds to the
norm of a feature-space point:

h(i, i; t) =
n∑
k=2

e−tλku2
ik = ‖xi‖2

This is also known as the auto-diffusion function (ADF), or
the amount of heat that remains at a vertex at time t.

The local maxima/minima of this function have been used for
a feature-based scale-space representation of shapes.

Associated shape descriptor: vi → h(i, i; t) hence it is a scalar
function defined over the graph.
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The ADF as a Shape Descriptor

t = 0 t = 50 t = 500000
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Spectral Distances

The heat distance:

d2
t (i, j) = h(i, i; t) + h(j, j; t)− 2h(i, j; t)

=
n∑
k=2

(e−
1
2
tλk(uik − ujk))2

The commute-time distance:

d2
CTD(i, j) =

∫ ∞
t=0

n∑
k=2

(e−
1
2
tλk(uik − ujk))2dt

=
n∑
k=2

(
λ
−1/2
k (uik − ujk)

)2
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Principal Component Analysis

The covariance matrix in feature space:

CX =
1
n

n∑
i=1

(xi − x)(xi − x)>

With:

X =
(
Ue−

1
2
tΛ
)>

= [x1 . . .xi . . .xn]

Remember that each column of U sums to zero.

−1 < −e−
1
2
tλk < xik < e−

1
2
tλk < 1,∀2 ≤ k ≤ n
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Principal Component Analysis: The Mean

x =
1
n

n∑
i=1

xi

=
1
n
e−

1
2
tΛ


∑n

i=1 ui2
...∑n

i=1 uin


=

 0
...
0


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Principal Component Analysis: The Covariance

CX =
1
n

n∑
i=1

xix
>
i

=
1
n

XX>

=
1
n

(
Ue−

1
2
tΛ
)> (

Ue−
1
2
tΛ
)

=
1
n
e−tΛ
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Result I: The PCA of a Graph

The eigenvectors (of the combinatorial Laplacian) are the
principal components of the heat-kernel embedding: hence we
obtain a maximum-variance embedding

The associated variances are e−tλ2/n, . . . , e−tλn/n.

The embedded points are strictly contained in a
hyper-parallelepipedon with volume

∏n
i=2 e

−tλi .
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Dimensionality Reduction (1)

Dimensionality reduction consists in selecting the K largest
eigenvalues, K < n, conditioned by t, hence the criterion:
choose K and t, such that (scree diagram):

α(K) =
∑K+1

i=2 e−tλi/n∑n
i=2 e

−tλi/n
≈ 0.95

This is not practical because one needs to compute all the
eigenvalues.
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Dimensionality Reduction (2)

An alternative possibility is to use the determinant of the
covariance matrix, and to choose the first K eigenvectors
such that (with α > 1):

α(K) = ln
∏K+1
i=2 e−tλi/n∏n
i=2 e

−tλi/n

which yields:

α(K) = t

(
tr(L)−

K+1∑
i=2

λi

)
+ (n−K) lnn

This allows to choose K for a scale t.
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Normalizing the Feature-space

Observe that the heat-kernels collapse to 0 at infinity:
limt→∞ h(i, j; t) = 0. To prevent this problem, several
normalizations are possible:

Trace normalization

Unit hyper-sphere normalization

Time-invariant embedding
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Trace Normalization

Observe that limt→∞ h(i, j; t) = 0
Use the trace of the operator to normalize the embedding:

x̂i =
xi√
Z(t)

with: Z(t) ≈
∑K+1

k=2 e−tλk

the k-component of the i-coordinate writes:

x̂ik(t) =

(
e−tλku2

ik

)1/2(∑K+1
l=2 e−tλl

)1/2

At the limit:

x̂i(t→∞) =
(

ui2√
m

. . . ui m+1√
m

0 . . . 0
)>

where m is the multiplicity of the first non-null eigenvalue.
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Unit Hyper-sphere Normalization

The embedding lies on a unit hyper-sphere of dimension K:

x̃i =
xi
‖xi‖

The heat distance becomes a geodesic distance on a spherical
manifold:

dS(i, j; t) = arccos x̃>i x̃j = arccos
h(i, j; t)

(h(i, i; t)h(j, j; t))1/2

At the limit (m is the multiplicity of the largest non-null
eigenvalue):

x̃i(t→∞) =
(

ui2

(
Pm+1

l=2 u2
il)

1/2 . . . ui m+1

(
Pm+1

l=2 u2
il)

1/2 0 . . . 0
)>
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Time-invariant Embedding

Integration over time:

L† =
∫ ∞

0
H(t) =

∫ ∞
0

n∑
k=2

e−tλkuku
>
k dt

=
n∑
k=2

1
λk
uku

>
k = UΛ†U>

with: Λ† = Diag[λ−1
2 , . . . , λ−1

n ].
Matrix L† is called the discrete Green’s function
[ChungYau2000], the Moore-Penrose pseudo-inverse of the
Laplacian.

Embedding: xi =
(
λ
−1/2
2 ui2 . . . λ

−1/2
K+1ui K+1

)>
Covariance: CX = 1

nDiag[λ−1
2 , . . . , λ−1

K+1]
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Examples of Normalized Embeddings

t = 50 t = 5000 t = 500000
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Shape Matching (1)

t = 200, t′ = 201.5 t = 90, t′ = 1005
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Shape Matching (2)
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Shape Matching (3)
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Sparse Shape Matching

Shape/graph matching is equivalent to matching the
embedded representations [Mateus et al. 2008]

Here we use the projection of the embeddings on a unit
hyper-sphere of dimension K and we apply rigid matching.

How to select t and t′, i.e., the scales associated with the two
shapes to be matched?

How to implement a robust matching method?
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Scale Selection

Let CX and CX′ be the covariance matrices of two different
embeddings X and X′ with respectively n and n′ points:

det(CX) = det(CX′)

det(CX measures the volume in which the embedding X lies.
Hence, we impose that the two embeddings are contained in
the same volume.

From this constraint we derive:

t′ tr(L′) = t tr(L) +K log n/n′
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Robust Matching

Build an association graph.

Search for the largest set of mutually compatible nodes
(maximal clique finding).

See [Sharma and Horaud 2010] (Nordia workshop) for more
details.

i, i’

i, j’ i, l’

j, j’

k, k’

l, l’

j, k’
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