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Outline of Lecture 8

Linear regression in "feature space”

Kernel construction and characterization of the feature space.
The kernel (Gram) matrix

The covariance matrix in feature space

Feature-space computations

Kernal PCA
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Material for this lecture

e C. Bishop. Pattern Analysis and Machine Learning (chapters
6 and 12).

@ J. Shawe-Taylor & N. Cristianini. Kernel Methods in Pattern
Analysis (chapters 2, 3, 5 and 6).
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The Kernel Function

o Consider a data set: X = [z1,...,x,] € R”

@ Definition of a kernel function: consider a nonlinear feature
space mapping: ¢ : € — ¢(x), with ¢(x) € RM. A kernel
satisfies:

Kz, x)) = ¢(%)T¢($J’) = (¢p(x:), d(x;))

@ The main principle of kernel methods is to interpret the kernel
function as an inner product in feature space and to design
algorithms without making explicit the function ¢.

@ This extends many algorithms by making use of the kernel
trick or kernel substitution.

@ For example, we can extend basic algorithms, such as PCA
and LDA in feature space, namely kernel PCA and kernel
Fisher discriminant, etc.
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Linear Regression in Feature Space

@ Replace the standard regression problem with:

M
Yy = Z W Om () = ngb(m)
m=1

@ The parameters wi, ..., wys can be estimated from a training
set of pairs (y;, ;) by minimizing the following criterion:

n

J(w) =5 | D (w'dlx)) —y)* + w w
j=1
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Least-square Solution

By taking the derivatives of J with respect to w and setting
them to zero, we obtain the following solution:

n

1
w=-—5 > (w'o(x)) — y;) ()
j=1
o Let aj = —+(w ' @(m;) — y;) be the j-th entry of a vector
acR"
o Let ® = [pp(x1)...d(xj)...p(x,)] be a M x n data matrix

in feature space.

@ Hence:
w = Pa

We will use a instead of w.
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Dual representation

@ Substitute w = ®a in J(w). We obtain:

1
J(a) =3 (aT<I>T<I><I>T<I>a —a'® By + AaT<1>T<I>a)

@ The n X n matrix:
K=3'®

is a Gram matrix in feature space (it will be referred to as a
kernel matrix), with entries:

kij = (p(xi), p(xj)) = K(xi, z;5)
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Solution in feature space

@ We obtain a new expression for J(w) as a function of vector
a and of the Gram matrix:

1
J(a) = 3 (aTKTKa —a'Ky + /\aTKa>

@ The solution is obtained by setting the gradient of J with
respect to a to zero:

a=(K+\)ly

which always has an inverse.
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Back to linear regression

@ The linear regression model allows a prediction for a new
input x:

M
Y= Z Winm (T) = wT¢(m)
m=1

@ By substitution this becomes:

TaT
y=a ® oz Za] k(xj, x
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Discussion

@ The dual representation allows the solution to be expressed
entirely in terms of the kernel function;

e Inversion of a M x M matrix (dimension of the feature space)
is replaced by inversion of a n x n matrix (number of points in
the training set).

@ It avoids computations in feature space when M is very large.

@ The feature-space is a vector space equipped with an
inner-product — metric space;

@ This means that there is a strong similarity between
feature-space methods and MDS (only the pairwise
inner-product between data points are needed to construct
algorithms).
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Constructing Kernels

@ A valid kernel function is such that the associated Gram
matrix is symmetric positive semidefinite.

@ The simplest kernel corresponds to ¢(x) = x, or
k(z,z')=x'a
e Valid kernels:

ci(z, ') with ¢ > 0; f(z)r(z,z') f(x'); exp(k(z,z'));
ki(x, ') + ko(x, 2'); Ki(x, x ko (x, 2);
k(p(x), p(x')); =T Az’ with A = 0.
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Kernel Normalization

o x — ¢(x)/||¢(x| which yields:

k(zx,x')
VE(x, z)k(x, x')

= k(m,x) 2k, 2 k(2

k(x,2') =

~1/2
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The Gaussian Kernel

_alll2
w(@, 7) = exp (lew!)

202

olx—2|P=z"z+a' 2 -2z
— T 2y _ 1
o Let f(x) =exp(—x ' x/20°) YRS
@ The Gaussian kernel writes:
r(z,a) = fx)exp(a'z'/o%)f(z))
exp(z'2'/0?)

Vexp(xTz/o?)exp(x' T /o2)

This is also known as the basis radial function (BRF) kernel.
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Mercer Kernel (In Brief!)

e Let X be a compact subset of R”. Suppose that k is a
continuous and symmetric function such that the integral
operator is positive

/ k(z, ') f(x)f(x")dedx’ > 0
XxX
for all f € Lo(X). An Lo function is a function that is square

integrable.

@ We can expand x(x, &) in a uniformly convergent series in
terms of functions {¢;}3°, satisfying (¢s, ¢;) = d;;

wl@,e) = oi(@)oi()
=1
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Inner-product Space

A vector space is an inner-product space if there exists a
real-valued symmetric bilinear map that satisfies:

(x,z) > 0

The inner product is strict if: (x,x) = 0 iff x = 0.

A strict inner product allows to define a norm of a vector
|lz||2 = /(x,x) and an associated metric or distance
& — 2’|

(]

A vector space with a metric is known as a metric space.

The feature space is a metric space, equipped with the strict
inner product.
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The Gram/Kernel Matrix

@ The n x n matrix:
K=&"&

is a Gram matrix in feature space, with entries:
kij = (@(xi), P(x;)) = K(Ti, x;)

o We remind that ® = [p(x1) ... P(x;) ... ¢(x,)] is the
M x n data matrix.

@ It is symmetric, positive, semidefinite:
e Ke=x2'® ®x = ||®z|>

@ This matrix was studied in Lecture #1 within the context of
MDS. Here we have a generalization because each entry is a

kernel function which is more general hat the dot-product of
MDS.
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Spectral Decomposition of the Kernel Matrix

@ Let (\,v1),..., (A, vy,) be the eigenvalue-eigenvector pairs
of a Kernel matrix. It can be written as:

n
K= Z )\kvkv;
k=1

@ Each matrix entry can be written as:
Rij = K ',ma] Z)‘kvzkvﬂc = ¢( ) ¢(ZIZ])>

@ with ¢($Z) = (\/XUH, R \/E?}ik, R \/Evm)T

@ Therefore, we can think of the eigenvectors as defining a
feature space.
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Feature-space Computations

@ The norm of a feature-space vector:

lp(@)|3 = (¢(x), p(x)) = r(z,z)

@ The norm of a linear combination:

IIZ(M’ (a:)[|* = ZZ%% K(@i, ;)

=1 j=1

@ Distance between two feature-space vectors:

(i) — p()lI3 = (i, i) + k@), ;) — 26 (@i, )
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Center of Mass

o Notation: ¢ =237 | ¢(;)
@ There is no explicit dual representation for this point.
Moreover, it is not the image of a "valid" data point.

@ Norm, distance from a point, and expected distance:

I D) DEENER SRS D DI

=1 j=1 =1 j=1
lp(x) — B> = (p(=),d(x)) + (b, P) — 2(¢(w >¢>
= /{(a:,a:)%—% Z K(xi, x)) Zmaz x;)
7,7=1 7,:1
U5 bt - BT = S wlwem) — o 0wl a)
k=1 k=1 i=1 j=1
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The Kernel Matrix of Centered Data

@ In feature-space the centered data writes:
p(x) = p(x) — ¢

@ The corresponding entry of the associated kernel matrix
writes:

il a) = (d(x) - ¢ d(z) — @)

1 ‘
= k(z,x') -~ Z (ﬁ(m,wi) — k(x, zI:Z o Z K(T;, T
i 1,j=1
@ In matrix form:
. 1 « 1
R=K--> (11"K+ KMT) +—(1TK1)11"
n = n
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The Spread of the Data

@ The M x n data matrix in feature space:

® = [p(x1)...p(x;) ... p(x,)]

@ The covariance matrix for centered data is an M x M matrix:
1
C=_-%68"
n

@ Each entry of this matrix is:

cu =3 Bla)s Bl
=1
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The Projected Variance

@ For centered data, the variance along a vector v writes:
1
0% = v & v
n
o If the data are not centered:

1 1 2
= E’UT‘I)@T’U — <an'1>Il>
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Dual Representation of the Projected Variance

@ Let's write v as a combination of the feature-space points:
v=>",qp(x;) = Pa.

@ By substitution in the formula of the projected variance, we
obtain:

2
o = laT@TQNI'T‘I)a— loﬁ@ﬂm
v n n

1 1 2
= Za'K?a-— <aTK]1>
n n
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Eigendecomposition of Covariance and Kernel Matrices

@ For centred data we have:

C = %Mﬂ with { (i, wi)}2,
K = ®'® with {(\;,v)},
o By premultiplication of ®® "u = nuu with & we obtain:
v==®"uand \ = npu

o From which we obtain: ||v[|? = u'®® Tu =ny =\

@ The normalized eigenvector of the kernel matrix is:
v=A"120"Ty
@ There is a similar dual expression:

—-1/2
u=\"1"2dv
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Traces

@ The traces are related by:

@ The trace of the kernel matrix:

n

tr(K) = Z k(xi, ;)

i=1
@ The total variance in feature-space:

n

al 1
> pi= - > k(i)
i=1

=1

@ This can be used to estimate the dimension m < M of the
reduced feature space.
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Covariance Eigenvectors in Feature-space

@ The eigenvectors of the covariance matrix:
U=| 5P u . A 8oy L | = @VAT

@ Each eigenvector:
n
up = )\’;1/2@’016 = )\121/2 Z’Ulk¢(33z)
i=1

Let: By = Ay 2op = (A, Pouk A v A o)

@ Hence:

up = Bd(w:)
=1
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Projection of a data point on a principal direction

@ Let's project a data point in feature space ¢(x) onto an
eigenvector of the covariance matrix:

u,l—¢(ac) = (uk, ¢(x))
— S Gul(@), dla))
i=1

= ) Busilwi,x)
i=1

@ Let U be the M x m matrix formed with m < M
eigenvectors of C. A feature point can be mapped in the
eigenspace of C with:

¢(z) =U" ¢()
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Kernel PCA

o Consider the centered kernel matrix:
K-K-1 Zn: (MTK + KMT) + L aTknT
n < n2

@ Compute the eigen decomposition of this matrix and retain
the m largest eigenvalue-eigenvector pairs:

K=VAV'

o Compute the vectors: 8, = A,;l/ka, k=1...m

@ Transform the data:

¢(z) = U ¢()
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Additional Topics of Interest

@ Kernel K-means clustering
http://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.79.2967&rep=repl&type=pdf

@ Kernel Fisher discriminant analysis
http://ieeexplore.ieee.org/xpls/abs_all. jsp?
arnumber=788121

e Diffusion kernels (next course)
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