
Data Analysis and Manifold Learning
Lecture 8: A Brief Introduction to Kernel

Methods

Radu Horaud
INRIA Grenoble Rhone-Alpes, France

Radu.Horaud@inrialpes.fr
http://perception.inrialpes.fr/

Radu Horaud Data Analysis and Manifold Learning; Lecture 8

http://perception.inrialpes.fr/


Outline of Lecture 8

Linear regression in ”feature space”

Kernel construction and characterization of the feature space.

The kernel (Gram) matrix

The covariance matrix in feature space

Feature-space computations

Kernal PCA

Radu Horaud Data Analysis and Manifold Learning; Lecture 8



Material for this lecture

C. Bishop. Pattern Analysis and Machine Learning (chapters
6 and 12).

J. Shawe-Taylor & N. Cristianini. Kernel Methods in Pattern
Analysis (chapters 2, 3, 5 and 6).
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The Kernel Function

Consider a data set: X = [x1, . . . ,xn] ∈ RD

Definition of a kernel function: consider a nonlinear feature
space mapping: φ : x→ φ(x), with φ(x) ∈ RM . A kernel
satisfies:

κ(xi,xj) = φ(xi)>φ(xj) = 〈φ(xi),φ(xj)〉

The main principle of kernel methods is to interpret the kernel
function as an inner product in feature space and to design
algorithms without making explicit the function φ.

This extends many algorithms by making use of the kernel
trick or kernel substitution.

For example, we can extend basic algorithms, such as PCA
and LDA in feature space, namely kernel PCA and kernel
Fisher discriminant, etc.
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Linear Regression in Feature Space

Replace the standard regression problem with:

y =
M∑
m=1

wmφm(x) = w>φ(x)

The parameters w1, . . . , wM can be estimated from a training
set of pairs (yj ,xj) by minimizing the following criterion:

J(w) =
1
2

 n∑
j=1

(w>φ(xj)− yj)2 + λw>w


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Least-square Solution

By taking the derivatives of J with respect to w and setting
them to zero, we obtain the following solution:

w = − 1
λ

n∑
j=1

(w>φ(xj)− yj)φ(xj)

Let aj = − 1
λ(w>φ(xj)− yj) be the j-th entry of a vector

a ∈ Rn.

Let Φ = [φ(x1) . . .φ(xj) . . .φ(xn)] be a M × n data matrix
in feature space.

Hence:
w = Φa

We will use a instead of w.
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Dual representation

Substitute w = Φa in J(w). We obtain:

J(a) =
1
2

(
a>Φ>ΦΦ>Φa− a>Φ>Φy + λa>Φ>Φa

)
The n× n matrix:

K = Φ>Φ

is a Gram matrix in feature space (it will be referred to as a
kernel matrix), with entries:

κij = 〈φ(xi),φ(xj)〉 = κ(xi,xj)
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Solution in feature space

We obtain a new expression for J(w) as a function of vector
a and of the Gram matrix:

J(a) =
1
2

(
a>K>Ka− a>Ky + λa>Ka

)
The solution is obtained by setting the gradient of J with
respect to a to zero:

a = (K + λI)−1y

which always has an inverse.
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Back to linear regression

The linear regression model allows a prediction for a new
input x:

y =
M∑
m=1

wmφm(x) = w>φ(x)

By substitution this becomes:

y = a>Φ>φ(x) =
n∑
j=1

ajκ(xj ,x)

Radu Horaud Data Analysis and Manifold Learning; Lecture 8



Discussion

The dual representation allows the solution to be expressed
entirely in terms of the kernel function;

Inversion of a M ×M matrix (dimension of the feature space)
is replaced by inversion of a n× n matrix (number of points in
the training set).

It avoids computations in feature space when M is very large.

The feature-space is a vector space equipped with an
inner-product – metric space;

This means that there is a strong similarity between
feature-space methods and MDS (only the pairwise
inner-product between data points are needed to construct
algorithms).
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Constructing Kernels

A valid kernel function is such that the associated Gram
matrix is symmetric positive semidefinite.

The simplest kernel corresponds to φ(x) = x, or

κ(x,x′) = x>x′

Valid kernels:

cκ(x,x′) with c > 0; f(x)κ(x,x′)f(x′); exp(κ(x,x′));
κ1(x,x′) + κ2(x,x′); κ1(x,x′)κ2(x,x′);
κ(φ(x),φ(x′)); x>Ax′ with A � 0.
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Kernel Normalization

x→ φ(x)/‖φ(x‖ which yields:

κ̂(x,x′) =
κ(x,x′)√

κ(x,x)κ(x′,x′)

= κ(x,x)−1/2κ(x,x′)κ(x′,x′)−1/2
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The Gaussian Kernel

κ(x,x′) = exp
(
−‖x− x

′‖2

2σ2

)

‖x− x′‖2 = x>x+ x′>x′ − 2x>x′

Let f(x) = exp(−x>x/2σ2) = 1√
exp(x>x/σ2)

The Gaussian kernel writes:

κ(x,x′) = f(x) exp(x>x′/σ2)f(x′)

=
exp(x>x′/σ2)√

exp(x>x/σ2) exp(x′>x′/σ2)

This is also known as the basis radial function (BRF) kernel.

Radu Horaud Data Analysis and Manifold Learning; Lecture 8



Mercer Kernel (In Brief!)

Let X be a compact subset of RD. Suppose that k is a
continuous and symmetric function such that the integral
operator is positive∫

X×X
κ(x,x′)f(x)f(x′)dxdx′ ≥ 0

for all f ∈ L2(X). An L2 function is a function that is square
integrable.

We can expand κ(x,x′) in a uniformly convergent series in
terms of functions {φi}∞i=1 satisfying 〈φi, φj〉 = δij

κ(x,x′) =
∞∑
i=1

φi(x)φi(x′)
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Inner-product Space

A vector space is an inner-product space if there exists a
real-valued symmetric bilinear map that satisfies:

〈x,x〉 ≥ 0

The inner product is strict if: 〈x,x〉 = 0 iff x = 0.

A strict inner product allows to define a norm of a vector
‖x‖2 =

√
〈x,x〉 and an associated metric or distance

‖x− x′‖2.

A vector space with a metric is known as a metric space.

The feature space is a metric space, equipped with the strict
inner product.
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The Gram/Kernel Matrix

The n× n matrix:
K = Φ>Φ

is a Gram matrix in feature space, with entries:

κij = 〈φ(xi),φ(xj)〉 = κ(xi,xj)

We remind that Φ = [φ(x1) . . .φ(xj) . . .φ(xn)] is the
M × n data matrix.

It is symmetric, positive, semidefinite:

x>Kx = x>Φ>Φx = ‖Φx‖22

This matrix was studied in Lecture #1 within the context of
MDS. Here we have a generalization because each entry is a
kernel function which is more general hat the dot-product of
MDS.
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Spectral Decomposition of the Kernel Matrix

Let (λ1,v1), . . . , (λn,vn) be the eigenvalue-eigenvector pairs
of a Kernel matrix. It can be written as:

K =
n∑
k=1

λkvkv
>
k

Each matrix entry can be written as:

κij = κ(xi,xj) =
n∑
k=1

λkvikvjk = 〈φ(xi),φ(xj)〉

with φ(xi) = (
√
λ1vi1, . . .

√
λkvik, . . .

√
λnvin)>.

Therefore, we can think of the eigenvectors as defining a
feature space.
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Feature-space Computations

The norm of a feature-space vector:

‖φ(x)‖22 = 〈φ(x),φ(x)〉 = κ(x,x)

The norm of a linear combination:

‖
n∑
i=1

αiφ(xi)‖2 =
n∑
i=1

n∑
j=1

αiαjκ(xi,xj)

Distance between two feature-space vectors:

‖φ(xi)− φ(xj)‖22 = κ(xi,xi) + κ(xj ,xj)− 2κ(xi,xj)
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Center of Mass

Notation: φ = 1
n

∑n
i=1φ(xi)

There is no explicit dual representation for this point.
Moreover, it is not the image of a ”valid” data point.

Norm, distance from a point, and expected distance:

‖φ‖2 =
n∑
i=1

n∑
j=1

1
n

1
n
κ(xi,xj) =

1
n2

n∑
i=1

n∑
j=1

κ(xi,xj)

‖φ(x)− φ‖2 = 〈φ(x),φ(x)〉+ 〈φ,φ〉 − 2〈φ(x),φ〉

= κ(x,x) +
1
n2

n∑
i,j=1

κ(xi,xj)−
2
n

n∑
i=1

κ(x,xi)

1
n

n∑
k=1

‖φ(xk)− φ‖2 =
1
n

n∑
k=1

κ(xk,xk)−
1
n2

n∑
i=1

n∑
j=1

κ(xi,xj)
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The Kernel Matrix of Centered Data

In feature-space the centered data writes:

φ̂(x) = φ(x)− φ

The corresponding entry of the associated kernel matrix
writes:

κ̂(x,x′) = 〈φ(x)− φ,φ(x′)− φ〉

= κ(x,x′)− 1
n

n∑
i=1

(
κ(x,xi)− κ(x′,xi)

)
+

1
n2

n∑
i,j=1

κ(xi,xj)

In matrix form:

K̂ = K− 1
n

n∑
i=1

(
11
>K + K11>

)
+

1
n2

(1>K1)11>
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The Spread of the Data

The M × n data matrix in feature space:

Φ = [φ(x1) . . .φ(xj) . . .φ(xn)]

The covariance matrix for centered data is an M ×M matrix:

C =
1
n

ΦΦ>

Each entry of this matrix is:

cst =
1
n

n∑
i=1

φ(xi)s φ(xi)t
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The Projected Variance

For centered data, the variance along a vector v writes:

σ2
v =

1
n
v>ΦΦ>v

If the data are not centered:

σ2
v =

1
n
v>ΦΦ>v −

(
1
n
v>Φ1

)2
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Dual Representation of the Projected Variance

Let’s write v as a combination of the feature-space points:
v =

∑n
i=1 αiφ(xi) = Φα.

By substitution in the formula of the projected variance, we
obtain:

σ2
v =

1
n
α>Φ>ΦΦ>Φα−

(
1
n
α>Φ>Φ1

)2

=
1
n
α>K2α−

(
1
n
α>K1

)2
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Eigendecomposition of Covariance and Kernel Matrices

For centred data we have:

C =
1
n

ΦΦ> with {(µi,ui)}Mi=1

K = Φ>Φ with {(λi,vi)}ni=1

By premultiplication of ΦΦ>u = nµu with Φ> we obtain:

v = Φ>u and λ = nµ

From which we obtain: ‖v‖2 = u>ΦΦ>u = nµ = λ

The normalized eigenvector of the kernel matrix is:

v = λ−1/2Φ>u

There is a similar dual expression:

u = λ−1/2Φv
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Traces

The traces are related by:

tr(C) =
1
n

tr(K)

The trace of the kernel matrix:

tr(K) =
n∑
i=1

κ(xi,xi)

The total variance in feature-space:

M∑
i=1

µi =
1
n

n∑
i=1

κ(xi,xi)

This can be used to estimate the dimension m�M of the
reduced feature space.
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Covariance Eigenvectors in Feature-space

The eigenvectors of the covariance matrix:

U =
[
λ
−1/2
1 Φv1 . . . λ

−1/2
k Φvk . . .

]
= ΦVΛ−1/2

Each eigenvector:

uk = λ
−1/2
k Φvk = λ

−1/2
k

n∑
i=1

vikφ(xi)

Let: βk = λ
−1/2
k vk = (λ−1/2

k v1k . . . λ
−1/2
k vik . . . λ

−1/2
k vnk)

Hence:

uk =
n∑
i=1

βikφ(xi)
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Projection of a data point on a principal direction

Let’s project a data point in feature space φ(x) onto an
eigenvector of the covariance matrix:

u>k φ(x) = 〈uk,φ(x)〉

=
n∑
i=1

βik〈φ(xi),φ(x)〉

=
n∑
i=1

βikκ(xi,x)

Let U be the M ×m matrix formed with m�M
eigenvectors of C. A feature point can be mapped in the
eigenspace of C with:

φ̃(x) = U>φ(x)

Radu Horaud Data Analysis and Manifold Learning; Lecture 8



Kernel PCA

Consider the centered kernel matrix:

K̂ = K− 1
n

n∑
i=1

(
11
>K + K11>

)
+

1
n2

(1>K1)11>

Compute the eigen decomposition of this matrix and retain
the m largest eigenvalue-eigenvector pairs:

K̂ = VΛV>

Compute the vectors: βk = λ
−1/2
k vk, k = 1 . . .m

Transform the data:

φ̃(x) = U>φ(x)

Radu Horaud Data Analysis and Manifold Learning; Lecture 8



Additional Topics of Interest

Kernel K-means clustering
http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.79.2967&rep=rep1&type=pdf

Kernel Fisher discriminant analysis
http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=788121

Diffusion kernels (next course)
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