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Outline of Lecture 6

A short reminder from Lecture 1

Probabilistic formulation of PCA

Maximum-likelihood PCA

EM PCA

What is Bayesian PCA?

Factor Analysis
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Material for This Lecture

C. M. Bishop. Pattern Recognition and Machine Learning.
2006. (Chapter 12)

More involved readings:

S. Roweis. EM algorithms of PCA and SPCA. NIPS 1998.
M. E. Tipping and C. M. Bishop. Pobabilistic Principal
Component Analysis. J. R. Stat. Soc. B. 1999.
M. E. Tipping and C. M. Bishop. Mixtures of Probabilistic
Principal Component Analysers. Neural Computation. 1999.
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PCA at a Glance

The input (observation) space: X = [x1 . . .xj . . .xn],
xj ∈ RD

The output (latent) space: Y = [y1 . . .yj . . .yn], yj ∈ Rd

Projection: Y = W>X with W> a d×D matrix.

Reconstruction: X = WY with W a D × d matrix.

W>W = Id, i.e., W> is a row-orthonormal matrix when
both data sets X and Y are represented in orthonormal bases:
yj = Ũ>(xj − x).

W>W> = Λ−1
d , i.e., this corresponds to the case of

whitening : yj = Λ−1/2
d Ũ>(xj − x).

Remember that W> was estimated from the d largest
eigenvalue-eigenvector pairs of the data covariance matrix.
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From Lecture #1: Data Projection on a Linear Subspace

From Y = W>X we have

YY> = W>XX>W = W>ŨΛdŨ>W

1 The projected data has a diagonal covariance matrix:
YY> = Λd, by identification we obtain

W> = Ũ>

2 The projected data has an identity covariance matrix, this is
called whitening the data: YY> = Id

W> = Λ−
1
2

d Ũ>

In what follow, we will consider W (reconstruction) istead of
W> (projection).
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The Probabilistic Framework (I)

Consider again the reconstruction of the observed variables
from the latent variables. A point x is reconstructed from y
with:

x− µ = Wy + ε

ε ∈ RD is the reconstruction error and let’s suppose that it
has a Gaussian distribution with zero mean and spherical
covariance:

ε = N (ε|0, σ2I)
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The Probabilistic Framework (II)

We can now define the conditional distribution of the observed
variable x conditioned on the value of the latent variable y:

P (x|y) = N (x|Wy + µ, σ2I)

The prior distribution of the latent variable is a Gaussian with
zero-mean and unit-covariance:

P (y) = N (y|0, I)

The marginal distribution P (x) can be obtained from the sum
and product rules, supposing continuous latent variables:

P (x) =
∫

y
P (x|y)P (y)dy

This is a linear-Gaussian model, hence it is Gaussian as well:

P (x) = N (x|µ,C)
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The Probabilistic Framework (III)

The mean and covariance of this predictive distribution can be
formally derived from the expression of x and from the
Gaussian distributions just defined:

E[x] = E[Wy + µ+ ε] = WE[y] + E[µ] + E[ε] = µ

C = E[(x− µ)(x− µ)>] = E[(Wy + ε)(Wy + ε)]>

= WE[yy>]W> + E[εε>] = WW> + σ2I

If assumed that y and ε are independent. Gaussian
distributions require the inverse of the covariance matrix:

C−1 = σ−2(I−WM−1W>)

Where M = W>W + σ2I is a d× d matrix. This is
interesting when d� D.
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Maximum-likelihood PCA (I)

The observed-data log-likelihood writes:

lnP (x1, . . . ,xn|µ,W, σ2) =
n∑

j=1

lnP (xj |µ,W, σ2)

This expression can be developed using the previous
equations, to obtain:

lnP (X|µ,C) = −n
2
(D ln(2π)+ln |C|)−1

2

n∑
j=1

(xj−µ)>C−1(xj−µ)
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Maximum-likelihood PCA (II)

The log-likelihood is quadratic in µ, by setting the derivative
with respect to µ equal to zero, we obtain the expected result:

µML =
n∑

j=1

xj = x

Maximization with respect to W and σ2, while is more
complex, has a closed-form solution:

WML = Ũ(Λd − σ2
MLId)1/2R

σ2
ML =

1
D − d

D∑
i=d+1

λi

With ΣX = UΛU>, d < D, and RR> = I (a d× d matrix).
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Maximum-likelihood PCA (Discussion)

The covariance of the predictive density, C = WW> + σ2I,
is not affected by the arbitrary orthogonal transformation R
of the latent space:

C = ŨΛdŨ> − σ2(I− ŨŨ>)

The covariance projected onto a unit vector is v>Cv. We
obtain the following cases:

v is orthogonal to Ũ, then v>Cv = σ2I or the average
variance associated with the discarded dimensions.
v is one of the column vectors of Ũ, then u>i Cui = λi

Matrix R introduces an arbitrary orthogonal transformation of
the latent space.

Radu Horaud Data Analysis and Manifold Learning; Lecture 6



From Probabilistic to Standard PCA

The maximum-likelihood solution allows to estimate the
reconstruction matrix W and the variance σ. The projection
can be estimated from the pseudo-inverse of the
reconstruction. We obtain:

(W>W)−1W> = (Λd − σ2Id)−1/2Ũ>

When σ2 = 0 this corresponds to the standard PCA solution –
rotating, projecting and whitening the data.
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EM for PCA

We can derive an EM algorithm for PCA, by following the EM
framework: derive the complete-data log-likelihood
conditioned by the observed data, and take its expectation:

lnP (X,Y|µ,W, σ2) =
n∑

j=1

(lnP (xj |yj) + lnP (yj))

Then we take the expectation with respect to the posterior
distribution of the latent variables, E[lnP (X,Y|µ,W, σ2)],
which depends on the current model parameters µ = x, W,
and σ2, as well as on (these are the posterior statistics):

E[yj ] = M−1W>(xj − x)

E[yjy
>
j ] = σ2M−1 + E[yj ]E[yj ]

>
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The EM Algorithm

Initialize the parameter values W and σ2.

E-step: Estimate the posterior statistics E[yj ] and E[yjy
>
j ]

using the current parameter values.

M-step: Update the parameter values from the current ones
to new ones:

Wnew =

 n∑
j=1

(xj − x)E[yj ]
>

 n∑
j=1

E[yjy
>
j ]

−1

σ2
new =

1
nD

n∑
j=1

(‖xj − x‖2 − 2E[yj ]
>W>

new(xj − x)

+ tr(E[yjy
>
j ]W>

newWnew))
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EM for PCA (Discussion)

Computational efficiency for high-dimensional spaces. EM is
iterative, but each iteration can be quite efficient. The
covariance matrix is never estimated explicitly.

The case of σ2 = 0 corresponds to a valid EM algorithm: S.
Roweis. EM algorithms of PCA and SPCA. NIPS 1998.

The case of EM in the presence of missing data can be found
in M. E. Tipping and C. M. Bishop. Pobabilistic Principal
Component Analysis. J. R. Stat. Soc. B. 1999
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Bayesian PCA (I)

Select the dimension d of the latent space.

The generative model just introduced (well defined likelihood
function) allows to address the problem in a principled way.

The idea is to consider each column in W as having an
independent Gaussian prior:

P (W|α) =
d∏

i=1

(αi

2π

)D/2
exp

(
−1

2
αiw

>
i w

)
where αi = 1/σ2

i is called the precision parameter. The
objective is to estimate these parameters, one for each
principal direction, and select only a subset of these directions.

We need to select directions of maximum variance, hence
directions with infinite precision will be disregarded.
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Bayesian PCA (II)

The approach is based on evidence approximation or empirical
Bayes.

The marginal likelihood function (the latent space W is
integrated out):

P (X|α,µ, σ2) =
∫
P (X|µ,W, σ2)︸ ︷︷ ︸

ML PCA

P (W|α)dW

The formal derivation is quite involved. The maximization
with respect to the precision parameters yields a simple form:

αnew
i =

D

w>i w

This estimation is interleaved with the EM updates for
estimating W and σ2.
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Factor Analysis

Probabilistic PCA so far (the predictive covariance is
isotropic):

P (x|y) = N (x|Wy + µ, σ2I)

In factor analysis, the covariance is diagonal rather than
isotropic:

P (x|y) = N (x|Wy + µ,Ψ)

the columns of W are called factor loadings and the diagonal
entries of Ψ are called uniquenesses.

The factor analysis point of view: one form of latent-variable
density model, the form of the latent space is of interest but
not the particular choice of coordinates (up to an orthogonal
transformation).

The factor analysis parameters, W, and Ψ are estimated via
the maximum likelihood and EM frameworks.
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