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Outline of Lecture 5

Minimum-error formulation of PCA

PCA for high-dimensional spaces

Fischer’s discriminant analysis for two classes and
generalization to K classes
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Material for This Lecture

C. M. Bishop. Pattern Recognition and Machine Learning.
2006. (Chapters 4 and 12)

http://en.wikipedia.org/wiki/Linear_discriminant_
analysis

Numerous textbooks treat PCA and LDA
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Projecting the Data

Let X = (x1, . . . ,xj , . . . ,xn) ⊂ RD,

Consider an orthonormal basis vector, e.g., the columns of a
D ×D orthonormal matrix U, namely u>i uj = δij .

We can write:

xj =
D∑
i=1

αjiui with αji = x>j ui

Moreover, consider a lower-dimensional subspace of dimension
d < D. We approximate each data point with:

x̃j =
d∑
i=1

zjiui +
D∑

i=d+1

biui
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Minimizing the Distorsion

Choose the vectors {uj} and the scalars {zji} and {bi} that
minimize the following distorsion error:

J =
1
n

n∑
j=1

‖xj − x̃j‖2

By substitution of x̃j and by setting the derivatives to 0,
∂J/∂zji = 0, ∂J/∂bi = 0 we obtain:

zji = x>j ui, i = 1 . . . d

bi = x>ui, i = d+ 1 . . . D
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Closed-form Expression of the Distorsion

By substitution we obtain the following distorsion between
each data point and its projection onto the principal subspace:

xj − x̃j =
D∑

i=d+1

(
(xj − x)>ui

)
ui

This error-vector lies in a space perpendicular to the principal
space. The distorsion becomes:

J =
1
n

n∑
j=1

D∑
i=d+1

(x>j ui − x>ui)2 =
D∑

i=d+1

u>i Σui
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Minimizing the Distorsion (I)

Note that in the previous equation,
1/n

∑n
j=1(x

>
j ui − x>ui)2

corresponds to the variance of the projected data onto ui.
Minimizing the distorsion is equivalent to minimizing the
variances along the directions perpendicular to the principal
directions u1 . . .ud. This can be done by minimizing J̃ with
respect to ud+1 . . .uD:

J̃ =
D∑

i=d+1

u>i Σui +
D∑

i=d+1

λi(1− u>i ui)
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Minimizing the Distorsion (II)

By setting the derivatives to 0 we obtain:

∂J̃

∂ui
= 0 ↔ Σui = λiui, i = d+ 1 . . . D

The distorsion becomes:

J̃ = λd+1 + . . .+ λD

The principal directions correspond to the largest d
eigenvalue-eigenvector pairs of the covariance matrix Σ
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Choosing the Dimension of the Principal Subspace

The covariance matrix can be written as Σ = UΛU>. The
trace of the diagonal matrix Λ can be interpreted as the total
variance.

One way to choose the principal subspace is to choose the
largest d eigenvalue-eigenvector pairs such that:

α(d) =
λ1 + . . .+ λd
λ1 + . . .+ λD

=
λ1 + . . .+ λd

tr(Σ)
≈ 0.95
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High-dimensional Data

When D is very large, the number of data points n may be
smaller than the dimension. In this case it is better to use the
n× n Gram matrix instead of the D ×D covariance matrix.

For centred data we have:

Σ =
1
n

XX> with (λi,ui)

G = X>X with (µi,vi)

By premultiplication of XX>u = nλu with X> we obtain:

v = X>u and µ = nλ

From which we obtain: u = 1
µXv

Assuming that the eigenvectors of the Gram matrix are
normalized, we obtain:

u

‖u‖
=

1
√
µ

Xv
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Discriminant Analysis

Project the high-dimensional input vector to one dimension,
i.e., along the direction of w:

y = w>x

This results in a loss of information and well-separated
clusters in the initial space may overlap in one dimension.

With a proper choice of of w one can select a projection that
maximizes the class separation.
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Two-Class Problem

Let’s assume that the data points belong to two clusters, C1
and C2 and that the mean vectors of these two clusters are
x1 = 1/n1

∑
j∈C1 xj and x2 = 1/n2

∑
j∈C2 xj

One can choose w to maximize the distance between the
projected means: y1 − y2 = w>(x1 − x2)
We can enforce the constraint w>w = 1 using a Lagrance
multiplier and obtain the following solution:

w = x1 − x2

This solution is optimal when the two clusters are spherical.
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Fisher’s Linear Discriminant

The solution consists in enforce small variances within each
class. The criterion to be maximized becomes:

J(w) =
(x1 − x2)2

σ2
1 + σ2

2

Where the within cluster projected variance is:

σ2
k =

1
nk

∑
j∈Ck

(yj − yk)2
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Maximizing Fisher’s Criterion

The criterion can be rewriten in the form:

J(w) =
w>ΣBw

w>ΣWw

Where ΣB is the between-cluster covariance and ΣW the
total within-cluster covariance. They are given by:

ΣB = (x1 − x2)(x1 − x2)>

ΣW =
1
n1

∑
j∈C1

(xj − x1)(xj − x1)>

+
1
n2

∑
j∈C2

(xj − x2)(xj − x2)>

Optimal solution: w = Σ−1
W (x1 − x2)
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Discriminant Analysis

The method just described can be applied to a training data
set, where each data point belongs to one of the two clusters.

Once the choice of an optimal direction of projection was
performded, the projected data can be used to construct a
discriminant.

The projected training data belongs to a 1D Gaussian mixture
with two clusters, C1 and C2. The parameters of eachone of
these two clusters can be computed with (k = 1, 2):

πk = nk/n, yk = w>xk, and σ2
k =

1
nk

∑
j∈Ck

(yj − yk)2

Classification of a new data point y can be done using the
class-posterior probabilities:

C = arg max
k

πkN (y|yk, σ2
k)
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Fisher’s Discriminant for Multiple Classes

The two-class discriminant analysis can be extended to K > 2
classes.

The idea is to consider several linear projections, i.e.,
yk = w>k x with k = 1 . . .K − 1.

A formal derivation can be found in: C. M. Bishop. Pattern
Recognition and Machine Learning. 2006. (Chapter 4, pp
191-192).
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