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Outline of Lecture 5

@ Minimum-error formulation of PCA
@ PCA for high-dimensional spaces

@ Fischer’s discriminant analysis for two classes and
generalization to K classes
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Material for This Lecture

e C. M. Bishop. Pattern Recognition and Machine Learning.
2006. (Chapters 4 and 12)

@ http://en.wikipedia.org/wiki/Linear_discriminant_
analysis
@ Numerous textbooks treat PCA and LDA
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Projecting the Data

o Let X = (zy,...,xj,...,x,) C R,
@ Consider an orthonormal basis vector, e.g., the columns of a
D x D orthonormal matrix U, namely u; u; = §;;.

@ We can write:

D
pp— ..y 'th R
a:] = a]zuz Wi Oéﬂ = $]~ u;
=1

@ Moreover, consider a lower-dimensional subspace of dimension
d < D. We approximate each data point with:

x; —Zzﬂuz+ Z biu;

i=d+1

Radu Horaud Data Analysis and Manifold Learning; Lecture 5



Minimizing the Distorsion

@ Choose the vectors {u;} and the scalars {zj;} and {b;} that
minimize the following distorsion error:

1< _
J = EZ lj — ;2
j=1
@ By substitution of x; and by setting the derivatives to 0,
0J/0zj; =0, 0J/0b; = 0 we obtain:

2y = cchui, i=1...d

b, = ETui, t=d+1...D
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Closed-form Expression of the Distorsion

@ By substitution we obtain the following distorsion between
each data point and its projection onto the principal subspace:

D
T —Tj = Z ((w] — i)Tuz> u;

i=d+1

This error-vector lies in a space perpendicular to the principal
space. The distorsion becomes:

ZZ zcuz—a: uz ZuTEuZ

] 1i=d+1 i=d+1
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Minimizing the Distorsion (1)

@ Note that in the previous equation,
1/n Zyzl(w;uz — 7 u;)?
corresponds to the variance of the projected data onto u,;.
Minimizing the distorsion is equivalent to minimizing the
variances along the directions perpendicular to the principal
directions u; ... ug. This can be done by minimizing J with

respect to Ugy1 ... Up:

D D
j = Z uiTEui + Z Ai(l — u;—ul)
i=d+1 i=d+1
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Minimizing the Distorsion (I1)

@ By setting the derivatives to 0 we obtain:

aJ
8u,-

@ The distorsion becomes:

J=Xgp1+ ...+ Ap

@ The principal directions correspond to the largest d
eigenvalue-eigenvector pairs of the covariance matrix X
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Choosing the Dimension of the Principal Subspace

@ The covariance matrix can be written as ¥ = UAU'. The
trace of the diagonal matrix A can be interpreted as the total
variance.

@ One way to choose the principal subspace is to choose the
largest d eigenvalue-eigenvector pairs such that:

- DX S W —A1++)\d’2—;095

a(d)_)\1+...+/\D_ tr(X)
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High-dimensional Data

@ When D is very large, the number of data points n may be
smaller than the dimension. In this case it is better to use the
n X n Gram matrix instead of the D x D covariance matrix.

@ For centred data we have:

» = %XXT with (A;, u;)
G = XX with (u,v;)
@ By premultiplication of XX "u = nAu with X we obtain:
v=X"u and p =nA

@ From which we obtain: u = iX'v
@ Assuming that the eigenvectors of the Gram matrix are
normalized, we obtain:

u 1

(2T
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Discriminant Analysis

@ Project the high-dimensional input vector to one dimension,
i.e., along the direction of w:

y=w' x

@ This results in a loss of information and well-separated
clusters in the initial space may overlap in one dimension.

@ With a proper choice of of w one can select a projection that
maximizes the class separation.

Radu Horaud Data Analysis and Manifold Learning; Lecture 5



Two-Class Problem

@ Let's assume that the data points belong to two clusters, C;
and Cy and that the mean vectors of these two clusters are

T =1/m Zjécl x; and To = 1/ny Z]ECQ x;

@ One can choose w to maximize the distance between the
projected means: 7, — 7y = w ' (T1 — T2)

@ We can enforce the constraint w ' w = 1 using a Lagrance
multiplier and obtain the following solution:

W =T — I

@ This solution is optimal when the two clusters are spherical.
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Fisher's Linear Discriminant

@ The solution consists in enforce small variances within each

class. The criterion to be maximized becomes:
— =2
(T1 — T2)
cr% + a%

J(w) =
@ Where the within cluster projected variance is:

1 _
of=— Y (4 —7)°

n
& J€Ck
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Maximizing Fisher's Criterion

@ The criterion can be rewriten in the form:

w' T pw

Tw) = TS w

@ Where X5 is the between-cluster covariance and Xy the
total within-cluster covariance. They are given by:

g = (51—52)(51—52)—'—
Tw = *Z zj— @)
J€C1
b Y () - w)
J€C2

o Optimal solution: w = Xy} (T1 — X2)
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Discriminant Analysis

@ The method just described can be applied to a training data
set, where each data point belongs to one of the two clusters.

@ Once the choice of an optimal direction of projection was
performded, the projected data can be used to construct a
discriminant.

@ The projected training data belongs to a 1D Gaussian mixture
with two clusters, C; and Co. The parameters of eachone of
these two clusters can be computed with (k = 1,2):

_ 1 _
T = ng/n, Jp=w Ty, and ob = - Z(yj —Tp)?
J€Ck

o Classification of a new data point y can be done using the
class-posterior probabilities:

C = arg max N (y7, 07)
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Fisher's Discriminant for Multiple Classes

@ The two-class discriminant analysis can be extended to K > 2
classes.

@ The idea is to consider several linear projections, i.e.,
yk:w;x withk=1... K —1.
@ A formal derivation can be found in: C. M. Bishop. Pattern

Recognition and Machine Learning. 2006. (Chapter 4, pp
191-192).
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