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Outline of Lecture 4

Probabilities, densities;

Expectations, covariance, and correlation;

The Gaussian distribution – univariate case;

What is the curse of dimensionality?

The multivariate Gaussian distribution;

The Gaussian mixture model (GMM);

The Expectation-Maximization algorithm for Gaussian
mixtures.
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Material for This Lecture

C. Fraley and A. Raftery. Model-Based Clustering,
Discriminant Analysis, and Density Estimation. J. of the Am.
Stat. Ass. June 2002 (840 citations)

C. M. Bishop. Pattern Recognition and Machine Learning.
2006. (Chapters 1, 2, & 9)

R. Horaud, F. Forbes, M. Yguel, G. Dewaele, and J. Zhang.
Rigid and Articulated Point Registration with Expectation
Conditional Maximization. IEEE Trans. on Patt. An. and
Mach. Intell. March 2011. (the derivation of EM is based on
this paper).

Software: MCLUST package (in R)
http://www.stat.washington.edu/mclust/
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Probability Theory (Discrete Random Variables)

Sum rule:
p(X) =

∑
i

p(X,Yi)

Product rule:

p(X,Y ) = p(X|Y )p(Y ) = p(Y |X)p(X)

Bayes:

p(Y |X) =
p(X|Y )p(Y )∑
i p(X|Yi)p(Yi)

posterior =
likelihood× prior

normalization
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Probability Densities (Continuous Random Variables)

Probability that x lies in an interval:

p(x ∈ (a, b)) =
∫ b

a
p(x)dx

p(x) is called the probability density over x.

p(x) ≥ 1, p(x ∈ (−∞,∞)) = 1
nonlinear change of variable x = g(y):

py(y) = px(x)
∣∣∣∣dxdy

∣∣∣∣
cumulative distribution function: P (z) = p(x ∈ (−∞, z))
sum and product rules extend to probability densities.
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Expectation of a Scalar Function

Expectation: the average value of some function f(x) under a
probability distribution p(x);

The continuous case: E[f ] =
∫
p(x)f(x)dx

The discrete case: E[f ] =
∑

i p(xi)f(xi)
Empirical expectation:

f = E[f ] ≈ 1
n

n∑
i=1

f(xi)

Functions of several variables: Ex[f ] =
∑

i p(xi)f(xi, y)
Expectation over two variables:
Ex,y[f(x, y)] =

∑
i

∑
j p(xi, yj)f(xi, yj)

Conditional expectation: Ex[f |y] =
∑

i p(xi|y)f(xi)
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Variance and Covariance

Variance of f(x): a measure of the variations of f(x) around
E[f ].
Definition: var[f ] = E[(f(x)− E[f(x)])2] = E[f2]− E[f ]2

The variance of a scalar random variable x:
var[x] = E[x2]− E[x]2

The standard deviation: σx =
√
var[x]

Covariance for two random variables:
cov[x, y] = E[(x− E[x])(y − E[y])] = E[xy]− E[x]E[y]
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Covariance Matrices

Consider two vectors of random variables, x ∈ RD and y ∈ RD′
.

The corresponding covariance matrices are:

a non symmetric D ×D′ (rectangular) matrix:

Σxy = cov[x,y] = Ex,y[(x− E[x])(y> − E[y>])]
= Ex,y[xy>]− E[x]E[y>]

notice that:
Σyx = Σ>xy

and a semi-definite positive symmetric D ×D matrix:

Σxx = cov[x,x] = Ex,x[(x− E[x])(x> − E[x>])]
= Ex,x[xx>]− E[x]E[x>]
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Covariance Matrices

With the notations: X = [x1 . . .xi . . .xn], Y = [y1 . . .yj . . .yn]
and x = E[x],y = E[y], we have:

Σxy =
1
n

XY> − x y>

Σyx =
1
n

YX> − y x>

Σxx =
1
n

XX> − x x>
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Joint Covariance Matrix

The covariance of the joint random variable

(
x
y

)
of dimension

D +D′:

Σxyxy = E

[(
x
y

)(
x> y>

)]
− E

[(
x
y

)]
E
[(
x> y>

)]
It is the symmetric (D +D′)× (D +D′) matrix:

Σxyxy =
(

Σxx Σxy

Σyx Σxx

)
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Correlation

Standardization of a scalar random variable x:

x̂ =
x− E[x]

σx

The covariance cov[x̂ŷ] = E[x̂ŷ] is a measure of the
correlation between the two variables:

ρxy = corr[x, y] = Ex,y

[
x− E[x]

σx

y − E[y]
σy

]
Let x1 . . . xi . . . xn and y1 . . . yi . . . yn be n realizations of the
random variables, then:

ρxy =
∑
i

x̂iŷi
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Properties of Correlation

Standardized data: E[x̂] = 0 and var[x̂] = 1
The value ρxy is also known as the Pearson correlation
coefficient.

The following three conditions are equivalent (Taylor &
Cristianini 2004):
ρxy = 1; x̂ = ŷ; y = ax+ b for some a > 0 and b.

ρxy = −1 if and only if x̂ = −ŷ;

ρxy = 0 if the two variables are linearly uncorrelated.
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The Correlation Matrix

For two random vector variables x ∈ RD and y ∈ RD′
we

obtain a D ×D′ correlation matrix with entries:

ρij =
1
n

n∑
k=1

xki − E[xi]
σxi

ykj − E[yj ]
σyj

with:

ρij =
{

1 if i = j
∈ [−1; +1] if i 6= j
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The Gaussian Distribution

The Gaussian distribution of a single real-valued variable x:

N (x|µ, σ2) =
1

(2πσ2)1/2
exp

(
− 1

2σ2
(x− µ)2

)
The mean: E[x] = µ

The variance: var[x] = σ2

in D dimensions: N (x|µ,Σ) : RD → R
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The Maximum Likelihood Estimator

x = (x1, . . . , xn) is a set of n observations of the SAME
scalar random variable x

Assume that this data set is independent and identically
distributed (iid):

p(x1, . . . , xn|µ, σ2) =
n∏
i=1

p(xi|µ, σ2) =
n∏
i=1

N (xi|µ, σ2)

max p is equivalent to max ln(p) or min(− ln(p))
− ln p(x1, . . . , xN |µ, σ2) = 1

2σ2

∑N
n=1(x− µ)2 − N

2 lnσ2 − . . .
maximum likelihood solution: µML and σ2

ML

MLE underestimates the variance: bias
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The Curse of Dimensionality

curse: malédiction, fléau ...

Not all the intuitions developed in spaces of low
dimensionality will generalize to spaces of many dimensions

Example 1: Training a classifier in high dimensions

Example 2: How empty is a hypersphere?
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Classification
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The “Empty” Hypersphere

The volume of a sphere with radius r: VD(r) = KDr
D

The fraction of the volume lying in between r and r − ε:

VD(1)− VD(1− ε)
VD(1)

= 1− (1− ε)D
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The Multivariate Gaussian Distribution

The Gaussian distribution for a D-dimensional vector x:

N (x|µ,Σ) =
1

(2π)D/2|Σ|D/2
exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
The D-dimensional mean: µ

The D ×D covariance matrix: Σ

|Σ| denotes the determinant

N (x|µ,Σ) : RD → R
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Analytical Properties (I)

The quadratic form ∆2 = (x− µ)>Σ−1(x− µ) is called the
Mahalanobis distance.

We already provided a geometric interpretation in Lecture #2.
Assuming that Σ is non singular, we have the following
spectral decomposition of its inverse:

Σ−1 =
D∑
i=1

1
λi
uiu

>
i and: ∆2 =

D∑
i=1

(
u>i (x− µ)

λ1/2

)2

The quadratic form and hence the Gaussian density will be
constant on hyper-ellipsoids with half eccentricities

λ
1/2
1 , . . . , λ

1/2
D
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Analytical Properties (II)

With the change of variable yi = u>i (x− µ)
The quadratic form becomes: ∆2 =

∑D
i=1 y

2
i /λi

The covariance and its determinant:
ΣY = Λ, |ΣY | =

∏D
i=1 λi

The multivariate Gaussian distribution writes:

N (z|Λ) =
D∏
i=1

1
(2πλi)1/2

exp
(
−1

2
y2
i

λi

)
which is the product of D independent univariate centred
Gaussian distributions with variances λi.

The number of free parameters of a Gaussian distribution:
D +D(D + 1)/2 = D(D + 3)/2 hence it grows quadratically
with D.

Spherical or isotropic covariance: Λ = λI↔ Σ = λI;
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Maximum Likelihood (Multivariate Case)

Consider a dataset X = [x1 . . .xn]> in which the observations
{xj} are drawn independently from a multivariate Gaussian.
The negative log-likelihood function writes:

− ln p(X|µ,Σ) =
nD

2
ln(2π)+

n

2
ln |Σ|+1

2

n∑
j=1

(xj−µ)>Σ−1(xj−µ)

By taking the derivatives with respect to mean and covariance
and setting these derivatives to zero, we obtain the ML mean:

µML =
1
n

n∑
j=1

xj

as well as the unbiased covariance:

C̃ =
1

n− 1

n∑
j=1

(xj − µML)(xj − µML)>
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Gaussian Mixtures
A mixture distribution: linear combinations of basic
distributions, such as Gaussians.
Consider a superposition of m Gaussian densities:

p(x) =
m∑
k=1

πkN (x|µk,Σk)

Each Gaussian density k is a component of the mixture with
its own mean and covariance.

x

p(x)
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The Mixing Coefficients

If we integrate p(x) with respect to x and note that both
p(x) and the individual Gaussian components are normalized,
we obtain:

m∑
k=1

πk = 1

From p(x) ≥ 0 and N (x|µk,Σk) ≥ 0 we obtain that

0 ≤ πk ≤ 1

Therefore, the mixing coefficients are probabilities, i.e., πk is
the prior probability of the k-th component.
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Probabilistic Interpretation

Using the sum and product rules:

p(x) =
m∑
k=1

p(x, k) =
m∑
k=1

p(x|k)p(k)

By identification with the Gaussian mixture:

p(k) = πk

p(x|k) = N (x|µk,Σk)

The posterior probabilities or responsabilities:

p(k|x) =
p(x|k)p(k)

p(x)
=

p(x|k)p(k)∑m
l=1 p(x|l)p(l)
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The EM algorithm

Introduced by Dempster, Laird, and Rubin in 1977 – 22,800
citations

EM is a maximum-likelihood estimator. In the case of
Gaussian mixtures it estimates: (i) the mean and covariance
of each component and (ii) the assignment of an observation
xj to a component (or a cluster) k.

EM alternates between two steps:
1 E-step: the conditional expectation of the complete-data

log-likelihood given the the observed data and the current
parameter estimates is computed;

2 M-step: parameters that maximize the expected log-likelihood
from the E-step are determined

Under fairly mild regularity conditions, EM converges to a
local maximum of the observed-data likelihood. These
conditions do not always hold in practice.
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Complete-Data: Observed Data + Missing Data

The observed data x1, . . . ,xj , . . . ,xn;

The missing (or unobserved) data: Z = (z1, . . . , zj , . . . , zn)
with:

zj =
{
k if xj belongs to group k
0 otherwise.

New notations:

P (zj = k) = πk

P (xj |zj = k) = N (xj |µk,Σk)

p(zj = k|xj) =
p(xj |zj = k)p(zj = k)∑m
l=1 P (xj |zj = l)p(zj = l)

= γjk
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The Observed-Data Log-Likelihood

The observed data are independent and identically distributed:
P (X) = P (x1, . . . ,xn) = P (x1) . . . P (xn)
The probability of one observation:

P (xj) =
∑m

k=1 P (xj |zj = k)P (zj = k)
=

∑m
k=1 πkN (xj |µk,Σk)

The Observed-data log-likelihood:

lnP (X) =
n∑
j=1

ln
m∑
k=1

πkN (xj |µk,Σk)

The direct maximization of this function is not a well posed
problem because of the presence of singularities (See
Bishop’06, page 432–435).
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The Complete-Data Log Likelihood

Compute lnP (X,Z) instead of lnP (X):

lnP (X,Z) = ln
n∏
j=1

P (xj , zj) = ln
n∏
j=1

P (xj |zj)P (zj)

with (δk(zj) = 1 if zj = k and 0 otherwise):

P (xj |zj)P (zj) =
m∏
k=1

(P (xj |zj = k)πk)
δk(zj)

Finally:

lnP (X,Z) =
n∑
j=1

m∑
k=1

δk(zj) (lnπk + lnP (xj |zj = k))︸ ︷︷ ︸
α
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The Conditional Expectation

Let’s compute the conditional expectation of the
complete-data log-likelihood given the observed data:

E[lnP (X,Z)|X] =
n∑
j=1

m∑
k=1

αE[δk(zj)|X]

From the formula for the conditional expectation we obtain:

E[δk(zj)|X] =
m∑
l=1

δj(l)P (zj = l|xj) = γjk

Finally, E[lnP (X,Z)|X] becomes:

−1
2

n∑
j=1

m∑
k=1

γjk

(
(xj − µk)>Σ−1

k (xj − µk) + lnπk + ln |Σk|
)
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The EM Algorithm for Gaussian Mixtures

It maximizes the conditional expectation of the
complete-data log-likelihood, in short:
expectation maximization;

It converges to a local maximum of the observed-data
log-likelihood;

In practice we minimize the negative expectation.
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An EM iteration

1 Initialize the means µk, the covariance matrices Σk and the
mixing coefficients πk.

2 E-step: Evaluate the responsibilities using the current
parameter values:

γjk =
πkN (xj |µk,Σk)∑m
l=1 πlN (xj |µl,Σl)

3 M-step: Re-estimate the parameters using the current
responsibilities: µnew

k , Σnew
k and πnew

k .

4 Evaluate the log-likelihood and check for convergence of either
the parameters or the log-likelihood. If not, return to step 2.

Radu Horaud Data Analysis and Manifold Learning; Lecture 4



The parameters

µnew
k =

1
nk

n∑
j=1

γjkxj

Σnew
k =

1
nk

n∑
j=1

γjk(xj − µnew
k )(xj − µnew

k )>

πnew
k =

nk
n

nk =
n∑
j=1

γjk
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An example
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EM in Practice

Covariance models

How to initialize the algorithm?

Hierarchical clustering
K-means

How to choose the number of clusters (model selection)?

How to deal with non-Gaussian data (outliers)?
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Covariance Models

Spherical covariance, same or different size for each cluster:
Σk = σI,Σk = σkI

Constant covariance accross the clusters: Σk = Σ

The equal shape model : Σk = UkΛU>k
The equal orientation model : Σk = UΛkU>

etc.
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Hierarchical clustering

The classification-likelihood:

PCL(µ1,Σ1, . . . ,µm,Σm; z1, . . . , zn|X) =
n∏
j=1

N (xj |µzj
,Σzj )

The presence of class labels introduces a combinatorial aspect
making exact maximization impractical.

Model-based agglomerative hierarchical clustering (C. Fraley.
“Algorithms for model-based Gaussian hierarchical clustering”.
SIAM J. Sci. Comput. 1998):

Successively merging pairs of clusters corresponding to the
greatest increase in the classification-likelihood,
Starts with considering each observation as a singleton cluster
with spherical covariance
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K-means Clustering

See Bishop’2006 (pages 424–428) for more details.

What is a cluster: a group of points whose inter-point distance
are small compared to distances to points outside the cluster.

Cluster centers: µ1, . . . ,µm.

Goal: find an assignment of points to clusters as well as a set
of mean-vectors µk.

Notations: For each point xj there is a binary indicator
variable rjk ∈ {0, 1}.
Objective: minimize the following distorsion measure:

J =
n∑
j=1

m∑
k=1

rjk‖xj − µk‖2
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The K-means Algorithm

1 Initialization: Choose m and initial values for µ1, . . . ,µm.

2 First step: Assign the j-th point to the closest cluster center:

rjk =
{

1 if k = arg minl ‖xj − µl‖2
0 otherwise

3 Second Step: Minimize J to estimate the cluster centers:

µk =

∑n
j=1 rjkxj∑n
j=1 rjk

4 Convergence: Repeat until no more change in the
assignments.
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How Many Clusters?

Let Mm denote the “model” associated with m clusters, this
also corresponds to a parameter set:

Θm = (µ1,Σ1, . . . ,µm,Σm)

The posterior probability of a model given the data:

P (Mm|X) ∝ P (X|Mm)P (Mm)

The integrated-likelihood of a model Mm:

P (X|Mm) =
∫

Θm

P (X|Θm,Mm)P (Θm|Mm)dΘm

Radu Horaud Data Analysis and Manifold Learning; Lecture 4



Bayes Factor

Choose the model that is the most likely a posteriori. If
P (M1) = . . . = P (Mm), this amounts to choosing the model
with the highest integrated-likelihood.

Bayes factor:

B12 =
P (X|M1)
P (X|M2)

There is strong evidence for M1 if B12 > 100.
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The Bayesian Information Criterion (BIC)

The main difficulty in using Bayes factors is the evaluation of
the integrated-likelihood.

BIC approximation:

BICm = 2 lnP (X|Θ̂m,Mm)− ν ln(n)
≈ 2 lnP (X|Mm)

Good performance in the case of Gaussian mixtures, but Do
not expect a miracle!
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Dealing with Outliers

Add a uniform component to the mixture likelihood:

p(x) =
m∑
k=1

πkN (x|µk,Σk) + πm+1U(x|a, b)

This introduces an additional prior, modifies the posterior
probabilities and nothing else:

πm+1 = 1−
m∑
l=1

πl

γjk =
πkN (xj |µk,Σk)∑m

l=1 πlN (xj |µl,Σl) + πm+1∅
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