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Outline of Lecture 4

Probabilities, densities;

Expectations, covariance, and correlation;
The Gaussian distribution — univariate case;
What is the curse of dimensionality?

The multivariate Gaussian distribution;

The Gaussian mixture model (GMM);

The Expectation-Maximization algorithm for Gaussian
mixtures.
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Material for This Lecture

@ C. Fraley and A. Raftery. Model-Based Clustering,
Discriminant Analysis, and Density Estimation. J. of the Am.
Stat. Ass. June 2002 (840 citations)

o C. M. Bishop. Pattern Recognition and Machine Learning.
2006. (Chapters 1, 2, & 9)

@ R. Horaud, F. Forbes, M. Yguel, G. Dewaele, and J. Zhang.
Rigid and Articulated Point Registration with Expectation
Conditional Maximization. |IEEE Trans. on Patt. An. and
Mach. Intell. March 2011. (the derivation of EM is based on
this paper).

e Software: MCLUST package (in R)
http://www.stat.washington.edu/mclust/
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Probability Theory (Discrete Random Variables)

@ Sum rule:

p(X) =) p(X,Y)
@ Product rule:

p(X,Y) = p(X|Y)p(Y) = p(Y[X)p(X)

o Bayes:
p(X[Y)p(Y)
p(Y|X) =
0 = S X mn)
. likelihood x prior
posterior =

normalization
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Probability Densities (Continuous Random Variables)

Probability that x lies in an interval:

b
p(x € (a,)) = / p(x)dz

p(x) is called the probability density over z.
p(z) = 1, p(z € (—00,00)) =1

nonlinear change of variable = = g(y):

dx

py(y) = pz(z) &

cumulative distribution function: P(z) = p(x € (—00, 2))

sum and product rules extend to probability densities.
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Expectation of a Scalar Function

e Expectation: the average value of some function f(x) under a
probability distribution p(x);

@ The continuous case: E[f] = [ p(z)f(z)dz

e The discrete case: E[f] =) . p(x;)f(zi)

@ Empirical expectation:

n

= lZf
i=1

o Functions of several variables: E.[f] =, p(z;) f(zi,y)

3

@ Expectation over two variables:

Ex,y[f(x,y)} = Zz ij($i,yj)f($i,yj)

e Conditional expectation: E.[f|y] = >, p(x:|y) f(x:)
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Variance and Covariance

@ Variance of f(z): a measure of the variations of f(z) around
E[f].
o Definition: var(f] = E[(f(z) — E[f(2)])’] = E[f*] - E[f]?
@ The variance of a scalar random variable x:
var|r] = E[z?] — E[z]?
@ The standard deviation: o, = \/var|x]

@ Covariance for two random variables:
covlr,y] = E[(z — Elz])(y — E[y])] = Elzy] — E[z]Ey]
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Covariance Matrices
Consider two vectors of random variables, € R? and y € R?".
The corresponding covariance matrices are:

@ a non symmetric D x D’ (rectangular) matrix:
Soy = covla,y] = Euylx — Ela))(y" — Ely'])]
= Epyley'] - Elz]Ely']

@ notice that:
-
Sye = ny

@ and a semi-definite positive symmetric D x D matrix:

Yr =covlx,x] = Ep.[(x-— E[m])(wT — E[mT])]

)

= Ey.lzx'] - Elz|E[z"]

)
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Covariance Matrices

With the notations: X = [z1...®i...xu], Y = [y; ...y, ... Y,]
and T = E[z|,y = E[y], we have:

1

=-XY' —zy'
n
1 T _ —=T
Yyr = EYX —yx
1 T =T
Yp=—-XX' —TT
n
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Joint Covariance Matrix

The covariance of the joint random variable < > of dimension

D+ D"

senee(3) ][5 e o

It is the symmetric (D + D) x (D + D’) matrix:

_ Yz 2::ch
= (50 52
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Correlation

@ Standardization of a scalar random variable z:

x — E[z]

Ox

i‘ p—
@ The covariance cov[Zy] = E[Z7] is a measure of the
correlation between the two variables:

T — Elz]y — Efy]

Pay = corr(z,y] = Eq {

o Letxy...xz;...xp and Y1 ...y; ...y, be n realizations of the
random variables, then:

Pzy = Z iz:‘)z
i
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Properties of Correlation

e Standardized data: E[z] =0 and var[z] =1

@ The value p;, is also known as the Pearson correlation
coefficient.

@ The following three conditions are equivalent (Taylor &
Cristianini 2004):
Py =1, £ =7; y = ax + b for some a > 0 and b.

® pgy = —1if and only if £ = —7;

® pgy = 0 if the two variables are linearly uncorrelated.
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The Correlation Matrix

@ For two random vector variables € R and y € R we
obtain a D x D’ correlation matrix with entries:

1 2 — Elzl ves — Elus
pij:*Z ki [z]ykj [yj]

k=1 Tz; Ty

@ with:

)1 if 1=7
P = el=1;41] if i#j
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The Gaussian Distribution

The Gaussian distribution of a single real-valued variable z:

1 1
N(z|p, 0%) = Wexp <—W($ - M)2>

The mean: Efz] = u
2

The variance: var[z| = o
in D dimensions: N(z|u, 2) : RP — R
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The Maximum Likelihood Estimator

x = (x1,...,2,) is a set of n observations of the SAME
scalar random variable x

@ Assume that this data set is independent and identically
distributed (iid):

n n

p(l‘1, oo 7$n|u702) = Hp(ﬂj‘i|/,t,0'2) = HN(xi“‘aoj)
i=1 i=1
max p is equivalent to max In(p) or min(— In(p))
N
71np($17 s ,xN’/“L7O-2) = # Zn:l('x - lu’)Q - %
maximum likelihood solution: pasr, and ajng

Ino?—...

MLE underestimates the variance: bias
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The Curse of Dimensionality

@ curse: malédiction, fléau ...

@ Not all the intuitions developed in spaces of low
dimensionality will generalize to spaces of many dimensions

@ Example 1: Training a classifier in high dimensions
@ Example 2: How empty is a hypersphere?

Radu Horaud Data Analysis and Manifold Learning; Lecture 4



Classification
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The “Empty” Hypersphere

@ The volume of a sphere with radius 7: Vp(r) = KprP

@ The fraction of the volume lying in between r and r — e:

Vp(1) = Vp(1 —¢)
Vb(1)

=1-(1-¢"

o o o
S (=) 0
I

volume fraction

o
N

o

=)

02 04 06 0.8 1
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The Multivariate Gaussian Distribution

@ The Gaussian distribution for a D-dimensional vector x:

Nalas®) = oo (e - w2 e - )

@ The D-dimensional mean: p

@ The D x D covariance matrix: X
@ |X| denotes the determinant

o N(x|u,X):RP - R
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Analytical Properties (1)

o The quadratic form A? = (& — u) "7 (2 — p) is called the
Mahalanobis distance.

@ We already provided a geometric interpretation in Lecture #2.
Assuming that X is non singular, we have the following
spectral decomposition of its inverse:

D D 2
1 2 u (z — p)
Z )\— Dand: A Zl ( /2

The quadratic form and hence the Gaussian density will be

constant on hyper-ellipsoids with half eccentricities

1/2 1/2
A2
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Analytical Properties (1)

o With the change of variable y; = u, (z — p)

o The quadratic form becomes: A2 = "2 42/,

@ The covariance and its determinant:
D
Sy =A By =Tl M

@ The multivariate Gaussian distribution writes:

< 1y?
N(Z‘A) = H (27TA.)1/2 exp —5)\7
i=1 7 7

@ which is the product of D independent univariate centred
Gaussian distributions with variances \;.

@ The number of free parameters of a Gaussian distribution:
D+ D(D+1)/2=D(D+ 3)/2 hence it grows quadratically
with D.

@ Spherical or isotropic covariance: A = A\l «— X = Al
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Maximum Likelihood (Multivariate Case)

o Consider a dataset X = [z1...x,]" in which the observations
{x;} are drawn independently from a multivariate Gaussian.
The negative log-likelihood function writes:

n

nD n 1 _
—Inp(X|p,X) = 71n(27r)+§1n]2|+§ Z(wj—u)TZ Yaxj—p)
j=1

@ By taking the derivatives with respect to mean and covariance
and setting these derivatives to zero, we obtain the ML mean:

1 n
Py = Z Lj
7j=1

@ as well as the unbiased covariance:

n

Z(mj — Marp) (T — ma)
j=1
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Gaussian Mixtures

@ A mixture distribution: linear combinations of basic
distributions, such as Gaussians.
o Consider a superposition of m Gaussian densities:

m
p(x) = Z?rk/\f(w!uk, k)
k=1
@ Each Gaussian density k is a component of the mixture with
its own mean and covariance.

p(x)a

n
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The Mixing Coefficients

o If we integrate p(x) with respect to « and note that both
p(x) and the individual Gaussian components are normalized,

we obtain:
m
Sr=
k=1

e From p(x) > 0 and N (x|p;, k) > 0 we obtain that
0<m, <1

@ Therefore, the mixing coefficients are probabilities, i.e., 7y is
the prior probability of the k-th component.
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Probabilistic Interpretation

@ Using the sum and product rules:

m m

p(@) =Y plx.k) =) pla|k)p(k)

k=1 k=1
o By identification with the Gaussian mixture:

p(k) = m
p(xlk) = N(z|p, Zk)

@ The posterior probabilities or responsabilities:

p(z|k)p(k)  p(z|k)p(k)

plkle) = = o = S ()

Radu Horaud Data Analysis and Manifold Learning; Lecture 4



The EM algorithm

@ Introduced by Dempster, Laird, and Rubin in 1977 — 22,800
citations

e EM is a maximume-likelihood estimator. In the case of
Gaussian mixtures it estimates: (i) the mean and covariance
of each component and (ii) the assignment of an observation
x; to a component (or a cluster) k.

o EM alternates between two steps:

@ E-step: the conditional expectation of the complete-data
log-likelihood given the the observed data and the current
parameter estimates is computed;

@ M-step: parameters that maximize the expected log-likelihood
from the E-step are determined

@ Under fairly mild regularity conditions, EM converges to a
local maximum of the observed-data likelihood. These
conditions do not always hold in practice.
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Complete-Data: Observed Data + Missing Data

@ The observed data x1,...,x;,...,Ty;
@ The missing (or unobserved) data: Z = (21,...,%j,...,2n)
with:

o k if ; belongs to group k
771 0 otherwise.

o New notations:

P(zj=k) = my
P(zjlzj =k) = N(zjlpy, Zi)

plalzy =kplz = k) _
oy P(wmjlzy = Dp(z; =1) 7

p(zj = k|z;)
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The Observed-Data Log-Likelihood

@ The observed data are independent and identically distributed:
P(X) :P(wlv'”aa:n) = P($1)P(mn)

@ The probability of one observation:

P(x;) = YL, P(xjlz; = k)P(z; = k)
>y TN (5] g, Zie)

@ The Observed-data log-likelihood:

I P(X) =) In> mN(a;]py, Z)
=1 k=1

@ The direct maximization of this function is not a well posed
problem because of the presence of singularities (See
Bishop'06, page 432-435).
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The Complete-Data Log Likelihood

e Compute In P(X, Z) instead of In P(X):

InP(X,Z) =In ] P(x;,2) = In [ ] Pla;|z)P(z)
=1 =

e with (0x(2;) =1 if z; = k and 0 otherwise):

m

P(w;]z;) P H (zjlzj =k ”k)(sk(zj)
k=1

o Finally:

mP(X,Z)=> > 6k(z) (Inmg + In Play|z; = k))
7=1 k=1

«
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The Conditional Expectation

@ Let's compute the conditional expectation of the
complete-data log-likelihood given the observed data:

n

E[lnP(X, Z)|X] = ZZ@E [0k (2)|X]
7j=1k=1

@ From the formula for the conditional expectation we obtain:

m

Elox(2)|X] =Y 6;(1)P(z = l;) = v
=1

e Finally, E[ln P(X, Z)|X] becomes:

1 e — _
~3 D> i (@5 — ) TS @ — ) + I+ In [

j=1k=1
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The EM Algorithm for Gaussian Mixtures

o It maximizes the conditional expectation of the
complete-data log-likelihood, in short:
expectation maximization;

@ It converges to a local maximum of the observed-data
log-likelihood;

@ In practice we minimize the negative expectation.
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An EM iteration

© Initialize the means p;,, the covariance matrices Xj, and the
mixing coefficients .

@ E-step: Evaluate the responsibilities using the current
parameter values:

TS N (| g, 20)

© M-step: Re-estimate the parameters using the current
responsibilities: pf€W, MW and 7€V
@ Evaluate the log-likelihood and check for convergence of either

the parameters or the log-likelihood. If not, return to step 2.
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The parameters

1 n
new o
K = — Yk
ng “—
7=1
1 n
new __ new new,\ T
o= o Yik (@i — pge ) (@5 — pg )
ki
ng
anew  _

n

n
ng = E Yik

Jj=1
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An example

-2 0 (d) 2 -2 0 (e) 2 -2 0 ) 2
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EM in Practice

@ Covariance models
@ How to initialize the algorithm?

e Hierarchical clustering
e K-means

@ How to choose the number of clusters (model selection)?

@ How to deal with non-Gaussian data (outliers)?
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Covariance Models

Spherical covariance, same or different size for each cluster:
=0l 3, =01l

Constant covariance accross the clusters: X, = X

The equal shape model: X, = UkAUII

The equal orientation model: ¥, = UALUT

etc.
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Hierarchical clustering

@ The classification-likelihood:

PCL(IJ‘DZD s 7“m72m;217 s 7Zn’X) = HN(m]“J’ZJaZZ])
j=1

@ The presence of class labels introduces a combinatorial aspect
making exact maximization impractical.

@ Model-based agglomerative hierarchical clustering (C. Fraley.
“Algorithms for model-based Gaussian hierarchical clustering” .
SIAM J. Sci. Comput. 1998):

e Successively merging pairs of clusters corresponding to the
greatest increase in the classification-likelihood,

e Starts with considering each observation as a singleton cluster
with spherical covariance
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K-means Clustering

See Bishop'2006 (pages 424—-428) for more details.

@ What is a cluster: a group of points whose inter-point distance
are small compared to distances to points outside the cluster.

o Cluster centers: pq,..., l,,.

@ Goal: find an assignment of points to clusters as well as a set
of mean-vectors p;,.

e Notations: For each point x; there is a binary indicator
variable rj;, € {0,1}.

@ Objective: minimize the following distorsion measure:

n m
T=> rikles — ml?

j=1 k=1

Radu Horaud Data Analysis and Manifold Learning; Lecture 4



The K-means Algorithm

© Initialization: Choose m and initial values for p,..., p,,.

@ First step: Assign the j-th point to the closest cluster center:

o 1 if k= argmin ||lz; — w?
7 0 otherwise

© Second Step: Minimize J to estimate the cluster centers:

by — D j=1 TiKT;
L = Zi=l M
Z?:1 Tjk

@ Convergence: Repeat until no more change in the
assignments.
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How Many Clusters?

@ Let M,, denote the “model" associated with m clusters, this
also corresponds to a parameter set:

®m - (I*l'la 217 A Em)
@ The posterior probability of a model given the data:
P(M,u|X)  P(X| M) P(My,)

@ The integrated-likelihood of a model M,,:

P(X| M) = / P(X|®y, My) (O] My )dO,
Om

Radu Horaud Data Analysis and Manifold Learning; Lecture 4



Bayes Factor

@ Choose the model that is the most likely a posteriori. If
P(M;) =...= P(M,,), this amounts to choosing the model
with the highest integrated-likelihood.

@ Bayes factor:
. POXAL)
12

~ P(X|Ma)
There is strong evidence for M if B1s > 100.
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The Bayesian Information Criterion (BIC)

@ The main difficulty in using Bayes factors is the evaluation of
the integrated-likelihood.

@ BIC approximation:

BIC,, = 2InP(X|O,,, M,,)—vin(n)
21n P(X|M,,)

Q

@ Good performance in the case of Gaussian mixtures, but Do
not expect a miracle!
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Dealing with Outliers

@ Add a uniform component to the mixture likelihood:

p(x) = mN (|, Tk) + Tl (]a, b)
k=1

@ This introduces an additional prior, modifies the posterior
probabilities and nothing else:

m
Tm+1 = 1 — ZT‘-Z
=1

Yik = WkN(mj‘uk72k)
’ Yoy mN (x|, ) + T 0
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