Data Analysis and Manifold Learning
Lecture 3: Graphs, Graph Matrices, and Graph Embeddings

Radu Horaud
INRIA Grenoble Rhone-Alpes, France
Radu.Horaud@inrialpes.fr
http://perception.inrialpes.fr/
Outline of Lecture 3

- What is spectral graph theory?
- Some graph notation and definitions
- The adjacency matrix
- Laplacian matrices
- Spectral graph embedding
Material for this lecture

- F. R. K. Chung. Spectral Graph Theory. 1997. (Chapter 1)
Spectral graph theory at a glance

- The *spectral graph theory* studies the properties of graphs via the eigenvalues and eigenvectors of their associated graph matrices: the *adjacency matrix*, the *graph Laplacian* and their variants.

- These matrices have been extremely well studied from an algebraic point of view.

- The Laplacian allows a natural link between discrete representations (graphs), and continuous representations, such as metric spaces and manifolds.

- Laplacian embedding consists in representing the vertices of a graph in the space spanned by the smallest eigenvectors of the Laplacian – *A geodesic distance on the graph becomes a spectral distance in the embedded (metric) space.*
Spectral graph theory and manifold learning

- First we construct a graph from $x_1, \ldots, x_n \in \mathbb{R}^D$
- Then we compute the d smallest eigenvalue-eigenvector pairs of the graph Laplacian
- Finally we represent the data in the \mathbb{R}^d space spanned by the corresponding orthonormal eigenvector basis. The choice of the dimension d of the embedded space is not trivial.
- Paradoxically, d may be larger than D in many cases!
Basic graph notations and definitions

We consider *simple graphs* (no multiple edges or loops), $\mathcal{G} = \{V, E\}$:

- $V(\mathcal{G}) = \{v_1, \ldots, v_n\}$ is called the *vertex set* with $n = |V|$;
- $E(\mathcal{G}) = \{e_{ij}\}$ is called the *edge set* with $m = |E|$;
- An edge e_{ij} connects vertices v_i and v_j if they are adjacent or neighbors. One possible notation for adjacency is $v_i \sim v_j$;
- The number of neighbors of a node v is called the *degree* of v and is denoted by $d(v)$, $d(v_i) = \sum_{v_i \sim v_j} e_{ij}$. If all the nodes of a graph have the same degree, the graph is *regular*; The nodes of an *Eulerian* graph have even degree.
- A graph is *complete* if there is an edge between every pair of vertices.
For a graph with n vertices, the entries of the $n \times n$ adjacency matrix are defined by:

$$A := \begin{cases}
A_{ij} = 1 & \text{if there is an edge } e_{ij} \\
A_{ij} = 0 & \text{if there is no edge} \\
A_{ii} = 0
\end{cases}$$

$$A = \begin{bmatrix}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{bmatrix}$$
Eigenvalues and eigenvectors

- A is a real-symmetric matrix: it has \(n \) real eigenvalues and its \(n \) real eigenvectors form an orthonormal basis.
- Let \(\{\lambda_1, \ldots, \lambda_i, \ldots, \lambda_r\} \) be the set of distinct eigenvalues.
- The eigenspace \(S_i \) contains the eigenvectors associated with \(\lambda_i \):
 \[
 S_i = \{x \in \mathbb{R}^n | Ax = \lambda_i x\}
 \]
- For real-symmetric matrices, the algebraic multiplicity is equal to the geometric multiplicity, for all the eigenvalues.
- The dimension of \(S_i \) (geometric multiplicity) is equal to the multiplicity of \(\lambda_i \).
- If \(\lambda_i \neq \lambda_j \) then \(S_i \) and \(S_j \) are mutually orthogonal.
Real-valued functions on graphs

- We consider real-valued functions on the set of the graph’s vertices, $f : V \rightarrow \mathbb{R}$. Such a function assigns a real number to each graph node.
- f is a vector indexed by the graph’s vertices, hence $f \in \mathbb{R}^n$.
- Notation: $f = (f(v_1), \ldots, f(v_n)) = (f_1, \ldots, f_n)$.
- The eigenvectors of the adjacency matrix, $A\mathbf{x} = \lambda \mathbf{x}$, can be viewed as *eigenfunctions*.

![Graph with node values](image)
The adjacency matrix can be viewed as an operator

\[g = A f; g(i) = \sum_{i \sim j} f(j) \]

It can also be viewed as a quadratic form:

\[f^\top A f = \sum_{e_{ij}} f(i) f(j) \]
The incidence matrix of a graph

- Let each edge in the graph have an arbitrary but fixed orientation;
- The incidence matrix of a graph is a $|\mathcal{E}| \times |\mathcal{V}|$ ($m \times n$) matrix defined as follows:

$$\nabla := \begin{cases}
\nabla_{ev} = -1 & \text{if } v \text{ is the initial vertex of edge } e \\
\nabla_{ev} = 1 & \text{if } v \text{ is the terminal vertex of edge } e \\
\nabla_{ev} = 0 & \text{if } v \text{ is not in } e
\end{cases}$$

$$\nabla = \begin{bmatrix}
-1 & 1 & 0 & 0 & 0 \\
1 & 0 & -1 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 \\
0 & -1 & 0 & +1 & 0 \\
\end{bmatrix}$$

![Graph with vertices and edges]
The incidence matrix: A discrete differential operator

- The mapping \(f \rightarrow \nabla f \) is known as the **co-boundary mapping** of the graph.

\[
(\nabla f)(e_{ij}) = f(v_j) - f(v_i)
\]

- The matrix representation of the co-boundary mapping is given by:

\[
\begin{pmatrix}
-1 & 1 & 0 & 0 \\
1 & 0 & -1 & 0 \\
0 & -1 & 1 & 0 \\
0 & -1 & 0 & +1
\end{pmatrix}
\begin{pmatrix}
f(1) \\
f(2) \\
f(3) \\
f(4)
\end{pmatrix} =
\begin{pmatrix}
f(2) - f(1) \\
f(1) - f(3) \\
f(3) - f(2) \\
f(4) - f(2)
\end{pmatrix}
\]
The Laplacian matrix of a graph

- \(\mathbf{L} = \nabla^\top \nabla \)
- \((\mathbf{L}f)(v_i) = \sum_{v_j \sim v_i} (f(v_i) - f(v_j)) \)
- Connection between the Laplacian and the adjacency matrices:
 \[
 \mathbf{L} = \mathbf{D} - \mathbf{A}
 \]
- The degree matrix: \(\mathbf{D} := D_{ii} = d(v_i). \)

\[
\mathbf{L} = \begin{bmatrix}
2 & -1 & -1 & 0 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 2 & 0 \\
0 & -1 & 0 & 1 \\
\end{bmatrix}
\]
Example: A graph with 10 nodes
The adjacency matrix

\[A = \begin{bmatrix}
0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
\end{bmatrix} \]
The Laplacian matrix

\[L = \begin{bmatrix}
3 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 2 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 3 & 0 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 3 & -1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & -1 & 3 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 4 & -1 & -1 & 0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & -1 & 2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & -1 & 0 & 4 & -1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & -1 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 0 & 2 & 0
\end{bmatrix} \]
The Eigenvalues of this Laplacian

\[\Lambda = \begin{bmatrix}
0.0000 & 0.7006 & 1.1306 & 1.8151 & 2.4011 \\
3.0000 & 3.8327 & 4.1722 & 5.2014 & 5.7462
\end{bmatrix} \]
Matrices of an undirected weighted graph

- We consider *undirected weighted graphs*; Each edge e_{ij} is weighted by $w_{ij} > 0$. We obtain:

 $$\Omega := \begin{cases}
 \Omega_{ij} = w_{ij} & \text{if there is an edge } e_{ij} \\
 \Omega_{ij} = 0 & \text{if there is no edge} \\
 \Omega_{ii} = 0
 \end{cases}$$

- The degree matrix: $D = \sum_{i \sim j} w_{ij}$
The Laplacian on an undirected weighted graph

- $L = D - \Omega$
- The Laplacian as an operator:

$$ (Lf)(v_i) = \sum_{v_j \sim v_i} w_{ij} (f(v_i) - f(v_j)) $$

- As a quadratic form:

$$ f^\top Lf = \frac{1}{2} \sum_{e_{ij}} w_{ij} (f(v_i) - f(v_j))^2 $$

- L is symmetric and positive semi-definite $\iff w_{ij} \geq 0$.
- L has n non-negative, real-valued eigenvalues:

$$ 0 = \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n. $$
Other adjacency matrices

- The normalized weighted adjacency matrix
 \[\Omega_N = D^{-1/2} \Omega D^{-1/2} \]

- The transition matrix of the Markov process associated with the graph:
 \[\Omega_R = D^{-1} \Omega = D^{-1/2} \Omega_N D^{1/2} \]
Several Laplacian matrices

- The *unnormalized Laplacian* which is also referred to as the *combinatorial Laplacian* L_C,
- the *normalized Laplacian* L_N, and
- the *random-walk Laplacian* L_R also referred to as the *discrete Laplace operator*.

We have:

\[
\begin{align*}
L_C &= D - \Omega \\
L_N &= D^{-1/2} L_C D^{-1/2} = I - \Omega_N \\
L_R &= D^{-1} L_C = I - \Omega_R
\end{align*}
\]
Relationships between all these matrices

\[L_C = D^{1/2}L_ND^{1/2} = DL_R \]
\[L_N = D^{-1/2}L_CD^{-1/2} = D^{1/2}L_RD^{-1/2} \]
\[L_R = D^{-1/2}L_ND^{1/2} = D^{-1}L_C \]
Some spectral properties of the Laplacians

<table>
<thead>
<tr>
<th>Laplacian</th>
<th>Null space</th>
<th>Eigenvalues</th>
<th>Eigenvectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbf{L}_C) = (\mathbf{U} \Lambda \mathbf{U}^\top)</td>
<td>(\mathbf{u}_1 = \mathbf{1})</td>
<td>(0 = \lambda_1 < \lambda_2 \leq \cdots \leq \lambda_n \leq 2 \max_i (d_i))</td>
<td>(\mathbf{u}_{i>1} \mathbf{1} = 0), (\mathbf{u}_i \mathbf{u}j = \delta{ij})</td>
</tr>
<tr>
<td>(\mathbf{L}_N) = (\mathbf{W} \Gamma \mathbf{W}^\top)</td>
<td>(\mathbf{w}_1 = \mathbf{D}^{1/2} \mathbf{1})</td>
<td>(0 = \gamma_1 < \gamma_2 \leq \cdots \leq \gamma_n \leq 2)</td>
<td>(\mathbf{w}_{i>1} \mathbf{D}^{1/2} \mathbf{1} = 0), (\mathbf{w}_i \mathbf{w}j = \delta{ij})</td>
</tr>
<tr>
<td>(\mathbf{L}_R) = (\mathbf{T} \Gamma \mathbf{T}^{-1}) (\mathbf{T} = \mathbf{D}^{-1/2} \mathbf{W})</td>
<td>(\mathbf{t}_1 = \mathbf{1})</td>
<td>(0 = \gamma_1 < \gamma_2 \leq \cdots \leq \gamma_n \leq 2)</td>
<td>(\mathbf{t}_{i>1} \mathbf{D} \mathbf{1} = 0), (\mathbf{t}_i \mathbf{D} \mathbf{t}j = \delta{ij})</td>
</tr>
</tbody>
</table>
Spectral properties of adjacency matrices

From the relationship between the normalized Laplacian and adjacency matrix: \(L_N = I - \Omega_N \) one can see that their eigenvalues satisfy \(\gamma = 1 - \delta \).

<table>
<thead>
<tr>
<th>Adjacency matrix</th>
<th>Eigenvalues</th>
<th>Eigenvectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Omega_N = W\Delta W^\top), (\Delta = I - \Gamma)</td>
<td>(-1 \leq \delta_n \leq \ldots \leq \delta_2 < \delta_1 = 1)</td>
<td>(w_i^\top w_j = \delta_{ij})</td>
</tr>
<tr>
<td>(\Omega_R = T\Delta T^{-1})</td>
<td>(-1 \leq \delta_n \leq \ldots \leq \delta_2 < \delta_1 = 1)</td>
<td>(t_i^\top Dt_j = \delta_{ij})</td>
</tr>
</tbody>
</table>
The Laplacian of a graph with one connected component

- \(Lu = \lambda u \).
- \(L1 = 0 \), \(\lambda_1 = 0 \) is the smallest eigenvalue.
- The one vector: \(1 = (1 \ldots 1)^\top \).
- \(0 = u^\top Lu = \sum_{i,j=1}^n w_{ij} (u(i) - u(j))^2 \).
- If any two vertices are connected by a path, then \(u = (u(1), \ldots, u(n)) \) needs to be constant at all vertices such that the quadratic form vanishes. Therefore, a graph with one connected component has the constant vector \(u_1 = 1 \) as the only eigenvector with eigenvalue 0.
A graph with \(k > 1 \) connected components

- Each connected component has an associated Laplacian. Therefore, we can write matrix \(\mathbf{L} \) as a block diagonal matrix:

\[
\mathbf{L} = \begin{bmatrix}
\mathbf{L}_1 & & \\
& \ddots & \\
& & \mathbf{L}_k
\end{bmatrix}
\]

- The spectrum of \(\mathbf{L} \) is given by the union of the spectra of \(\mathbf{L}_i \).
- Each block corresponds to a connected component, hence each matrix \(\mathbf{L}_i \) has an eigenvalue \(0 \) with multiplicity 1.
- The spectrum of \(\mathbf{L} \) is given by the union of the spectra of \(\mathbf{L}_i \).
- The eigenvalue \(\lambda_1 = 0 \) has multiplicity \(k \).
The eigenspace of $\lambda_1 = 0$ with multiplicity k

- The eigenspace corresponding to $\lambda_1 = \ldots = \lambda_k = 0$ is spanned by the k mutually orthogonal vectors:

 \[
 \mathbf{u}_1 = \mathbf{1}_{L_1} \\
 \ldots \\
 \mathbf{u}_k = \mathbf{1}_{L_k}
 \]

- with $\mathbf{1}_{L_i} = (0000111110000)^\top \in \mathbb{R}^n$

- These vectors are the *indicator vectors* of the graph’s connected components.

- Notice that $\mathbf{1}_{L_1} + \ldots + \mathbf{1}_{L_k} = \mathbf{1}$
The Fiedler vector of the graph Laplacian

- The first non-null eigenvalue λ_{k+1} is called the Fiedler value.
- The corresponding eigenvector u_{k+1} is called the Fiedler vector.
- The multiplicity of the Fiedler eigenvalue depends on the graph’s structure and it is difficult to analyse.
- The Fiedler value is the *algebraic connectivity of a graph*, the further from 0, the more connected.
- The Fiedler vector has been extensively used for *spectral bi-partioning*
Eigenvectors of the Laplacian of connected graphs

- \(u_1 = 1, L1 = 0 \).
- \(u_2 \) is the *Fiedler vector* with multiplicity 1.
- The eigenvectors form an orthonormal basis: \(u_i^\top u_j = \delta_{ij} \).
- For any eigenvector \(u_i = (u_i(v_1) \ldots u_i(v_n))^\top \), \(2 \leq i \leq n \):
 \[
 u_i^\top 1 = 0
 \]
- Hence the components of \(u_i \), \(2 \leq i \leq n \) satisfy:
 \[
 \sum_{j=1}^{n} u_i(v_j) = 0
 \]
- Each component is bounded by:
 \[-1 < u_i(v_j) < 1\]
Laplacian embedding: Mapping a graph on a line

- Map a weighted graph onto a line such that connected nodes stay as close as possible, i.e., minimize
 \[\sum_{i,j=1}^{n} w_{ij}(f(v_i) - f(v_j))^2, \]
 or:
 \[\arg \min_{f} f^\top L f \text{ with: } f^\top f = 1 \text{ and } f^\top 1 = 0 \]

- The solution is the eigenvector associated with the smallest nonzero eigenvalue of the eigenvalue problem: \(L f = \lambda f \), namely the Fiedler vector \(u_2 \).

- Practical computation of the eigenpair \(\lambda_2, u_2 \): the shifted inverse power method (see lecture 2).
Let’s consider the matrix $B = A - \alpha I$ as well as an eigenpair $Au = \lambda u$.

$(\lambda - \alpha, u)$ becomes an eigenpair of B, indeed:

$$Bu = (A - \alpha I)u = (\lambda - \alpha)u$$

and hence B is a real symmetric matrix with eigenpairs $(\lambda_1 - \alpha, u_1), \ldots (\lambda_i - \alpha, u_i), \ldots (\lambda_D - \alpha, u_D)$.

If $\alpha > 0$ is chosen such that $|\lambda_j - \alpha| \ll |\lambda_i - \alpha| \forall i \neq j$ then $\lambda_j - \alpha$ becomes the smallest (in magnitude) eigenvalue.

The inverse power method (in conjunction with the LU decomposition of B) can be used to estimate the eigenpair $(\lambda_j - \alpha, u_j)$.

Radu Horaud: Data Analysis and Manifold Learning; Lecture 3
Example of mapping a graph on the Fiedler vector
Laplacian embedding

- Embed the graph in a k-dimensional Euclidean space. The embedding is given by the $n \times k$ matrix $F = [f_1 f_2 \ldots f_k]$ where the i-th row of this matrix – $f^{(i)}$ – corresponds to the Euclidean coordinates of the i-th graph node v_i.

- We need to minimize (Belkin & Niyogi ’03):

$$\arg \min_{f_1 \ldots f_k} \sum_{i,j=1}^{n} w_{i,j} \| f^{(i)} - f^{(j)} \|^2 \text{ with: } F^\top F = I.$$

- The solution is provided by the matrix of eigenvectors corresponding to the k lowest nonzero eigenvalues of the eigenvalue problem $Lf = \lambda f$.
Spectral embedding using the *unnormalized* Laplacian

- Compute the eigendecomposition $L = D - \Omega$.
- Select the k smallest non-null eigenvalues $\lambda_2 \leq \ldots \leq \lambda_{k+1}$
- $\lambda_{k+2} - \lambda_{k+1} = \text{eigengap}$.
- We obtain the $n \times k$ matrix $U = [u_2 \ldots u_{k+1}]$:

\[
U = \begin{bmatrix}
 u_2(v_1) & \ldots & u_{k+1}(v_1) \\
 \vdots & & \vdots \\
 u_2(v_n) & \ldots & u_{k+1}(v_n)
\end{bmatrix}
\]

- $u_i^\top u_j = \delta_{ij}$ (orthonormal vectors), hence $U^\top U = I_k$.
- Column i ($2 \leq i \leq k + 1$) of this matrix is a mapping on the eigenvector u_i.

Radu Horaud
Data Analysis and Manifold Learning; Lecture 3
Examples of one-dimensional mappings

u_2

u_3

u_4

u_8
Euclidean L-embedding of the graph’s vertices

- (Euclidean) L-embedding of a graph:

$$X = \Lambda_k^{-\frac{1}{2}} U^\top = [x_1 \ldots x_j \ldots x_n]$$

The coordinates of a vertex v_j are:

$$x_j = \begin{pmatrix}
\frac{u_2(v_j)}{\sqrt{\lambda_2}} \\
\vdots \\
\frac{u_{k+1}(v_j)}{\sqrt{\lambda_{k+1}}}
\end{pmatrix}$$

- A formal justification of using this will be provided later.
The Laplacian of a mesh

A mesh may be viewed as a graph: \(n = 10,000 \) vertices, \(m = 35,000 \) edges. ARPACK finds the smallest 100 eigenpairs in 46 seconds.
Example: Shape embedding