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Outline of Lecture 2

Basic definitions, eigen decomposition, LU and Cholesky
matrix factorizations;

Spectral decomposition, powers, inverse, exponential;

Geometric interpretation;

The Raleigh-Ritz theorem and extensions;

Computing eigenvalues and eigenvectors in practice: power
method, inverse power method, and shifted inverse power
method;
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Material for this lecture

R. A. Horn and C. R. Johnson. Matrix Analysis. Chapter 4:
Hermitian and symmetric matrices.

G. H. Golub and C. F. Van Loan. Matrix Computations.
Chapter 8: The symmetric eigenvalue problem. Chapter 9:
Lanczos methods.

Software: http://www.caam.rice.edu/software/ARPACK/
written in Fortran77!
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Some basic definitions

Symmetry of a D ×D matrix: A = A>

Eigen decomposition: A = UΛU> with the properties:

UU> = U>U = ID

All the eigenvalues are real numbers:

λmin = λ1 ≤ . . . ≤ λi ≤ . . . ≤ λD = λmax

A is referred to as a real symmetric matrix ;

If λ1 ≥ 0 then it is a positive semi-definite symmetric matrix

If λ1 > 0 then it is a positive definite symmetric matrix

Symmetric matrices are nondefective: the algebraic
multiplicity of each eigenvalue is equal to its geometric
multiplicity.
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Spectral decomposition, deflation, powers, exponential

A symmetric matrix can be written as A =
∑D

i=1 λiuiu
>
i

where ui is a column vector of U.

The transformation Ã = A−λkuku>k is known as a deflation.

Note that Ãuk = 0.

A2 = UΛU>UΛU> = UΛ2U>

More generally: Ak = UΛkU>

The matrices A,A2, . . . ,Ak have the same eigenvectors ui
and eigenvalues λi, λ

2
i , . . . , λ

k
i .

Matrix exponential: eA =
∑∞

k=0
Ak

k!

We have: eA = UDiag[eλ1 . . . eλi . . . eλD ]U>
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Inverse and pseudo-inverse

The inverse of a non-singular symmetric matrix:
A−1 = UΛ−1U>.

Spectral decomposition: A−1 =
∑D

i=1
1
λi

uiu
>
i

The matrices A−1,A−2, . . . ,A−k have eigenvectors ui and
eigenvalues λ−1

i , λ−2
i , . . . , λ−ki

If a matrix has a zero eigenvalue with multiplicity m (is
singular), rearrange the eigenvalues such that
Λ = Diag[λ1 . . . λD−m 0 . . . 0].
The Moore-Penrose pseudoinverse :

A† = UDiag[1/λ1 . . . 1/λD−m 0 . . . 0]U>

Radu Horaud Data Analysis and Manifold Learning; Lecture 2



Choleski factorization

We consider the case of positive definite symmetric matrices.
They can be written as A = BB> but the choice of B is not
unique.

Any such matrix can be decomposed as: A = LL> with L
being a low-triangular matrix with nonnegative diagonal
entries. This decomposition is unique.

Complexity of Choleski decomposition algorithms for a D ×D
non singular matrix: D3 FLOPS. This is twice more efficient
than the LU decomposition.

Let Ax = b. No matrix inversion needed to solve it! This can
be rewritten as: {

Ly = b
L>x = y
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Matrix norms

The Frobenius norm:

‖A‖2F = tr(A>A) = tr(UΛ2U>) = tr(Λ2) =
D∑
i=1

λ2
i

The spectral norm:

max
v

‖Av‖
‖v‖

=
(

max
v

v>A>Av

v>v

)1/2

= λmax

(see the Raylegh-Ritz theorem below)
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Geometric Interpretation

Consider a positive definite symmetric matrix; In this case all
the eigenvalues are strictly positive.

Quadratic form for any vector x 6= 0:

x>Ax = (U>x)>Λ(U>x) =
D∑
i=1

λi(u>i x)2

Let’s transform the data into another coordinate frame:
z = U>x; we obtain: x>Ax = z>Λz.

z>Λz = (z1/λ
−1/2
1 )2 + . . . (zD/λ

−1/2
D )2 = C

This is an ellipsoid with axes u1 . . .uD and with half

eccentricities λ
−1/2
1 . . . λ

−1/2
D (Remember PCA...)
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The Raylegh-Ritz theorem

Theorem

(Raylegh-Ritz). Let A be a symmetric matrix with ordered
eigenvalues, then:

λ1x
>x ≤ x>Ax ≤ λDx>x ∀x

λmax = λD = max
x6=0

x>Ax

x>x
= max

x>x=1
x>Ax

λmin = λ1 = min
x6=0

x>Ax

x>x
= min

x>x=1
x>Ax
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Proof of the Raylegh-Ritz theorem

From the eigendecomposition: x>Ax =
∑D

i=1 λi
(
(U>x)i

)2
Notice that:

∑D
i=1

(
(U>x)i

)2 = ‖U>x‖2 = ‖x‖2 = x>x

Using the fact that the eigenvalues can be ordered, we get the
first part of the theorm.

By dividing we obtain: λmin ≤ x>Ax
x>x ≤ λmax, (x 6= 0)

with equalities when x is a λ1 or λD eigenvector.

We have: x>Ax
x>x = (x>/

√
(x>x))A(x/

√
(x>x)) and hence

the minimization/maximization of the Raleigh quotient is
equivalent to: {

maxx x>Ax
x>x = 1
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What about the other eigenvalues/eigenvectors?

Let’s restrict x to be orthogonal to the smallest eigenvector
u1, i.e, u>1 x = 0:

x>Ax =
∑D

i=2 λi
(
(U>x)i

)2 ≥ λ2x
>x

with equality when x = u2

Therefore we obtain:

λ2 = min
x>x = 1
x>u1 = 0

x>Ax

λD−1 = max
x>x = 1
x>uD = 0

x>Ax
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Computing eigenvalues and eigenvectors in practice

The power method estimates the largest
eigenvalue/eigenvector pair or an eigenpair.

The power method + deflation estimates the second largest
eigenpair, etc.

The inverse power method estimates the smallest eigenpair.

The shifted inverse power method allows to obtain
intermediate eigenpairs.

The Lanczos method is an adaptation of the power method.
It is very useful for large and sparse matrices. It is used by the
ARPACK package.
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The power method

Input: A symmetric matrix A and a random vector x0.

At each iteration k:
1 Normalize yk = xk

‖xk‖1/2 and
2 xk+1 = Ayk.

Check for convergence: ‖yk+1 − yk‖ < ε

Output: uD = yk+1 and λD = y>k+1Ayk+1
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Justification of the power method

Let x0 =
∑D

i=1 αiui hence we obtain after the first iteration:

x1 = Ax0 =
∑D

i=1 αiλiui

Normalize this vector: y1 = 1
β1

∑D
i=1 αiλiui

More generally: yk+1 = 1
β1...βk+1

∑D
i=1 αiλ

k+1
i ui

At the limit this vector becomes the “largest” eigenvector:

y∞ = lim
k→∞

αDλ
k+1
D

β1 . . . βk+1

(
D−1∑
i=1

αi
αD

λk+1
i

λk+1
D

ui + uD

)
= uD

λD = y>∞Ay∞
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The power method with deflation

Consider the matrix Ã = A− λDuDu>D

Notice that (0,uD) is an eigenpair of Ã and that the
remaining eigenpairs remain unchanged (refer to the spectral
decomposition of A and to the fact that eigenvectors
corresponding to distinct eigenvalues are orthogonal).

It follows that the second largest eigenpair (λD−1,uD−1) of
A becomes the largest eigenpair of Ã

The power method can now be applied to Ã, etc.
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The inverse power method

The smallest eigenvector-eigenvalue pair (u1, λ1) of A
corresponds to the largest eigenvector-eigenvalue pair
(u1, λ

−1
1 ) of A−1.

The k-th iteration of the power method becomes:
xk+1 = A−1yk

which can be written as:
Axk+1 = yk

This can be solved using the Choleski factorization A = LL>:{
Lz = yk
L>xk+1 = z

Radu Horaud Data Analysis and Manifold Learning; Lecture 2



The shifted inverse power method

Let’s consider the matrix B = A− αI as well as an eigenpair
Au = λu.

(λ− α,u) becomes an eigenpair of B, indeed:

Bu = (A− αI)u = (λ− α)u

and hence B is a real symmetric matrix with eigenpairs
(λ1 − α,u1), . . . (λi − α,ui), . . . (λD − α,uD)
If α > 0 is choosen such that |λj − α| � |λi − α| ∀i 6= j then
λj − α becomes the smallest (in magnitude) eivenvalue.

The inverse power method (in conjuction with the LU
decomposition of B) can be used to estimate the eigenpair
(λj − α,uj).
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