Data Analysis and Manifold Learning Lecture 2: Properties of Symmetric Matrices and Examples

> Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/

Outline of Lecture 2

- Basic definitions, eigen decomposition, LU and Cholesky matrix factorizations;
- Spectral decomposition, powers, inverse, exponential;
- Geometric interpretation;
- The Raleigh-Ritz theorem and extensions;
- Computing eigenvalues and eigenvectors in practice: power method, inverse power method, and shifted inverse power method;

Material for this lecture

- R. A. Horn and C. R. Johnson. Matrix Analysis. Chapter 4: Hermitian and symmetric matrices.
- G. H. Golub and C. F. Van Loan. Matrix Computations. Chapter 8: The symmetric eigenvalue problem. Chapter 9: Lanczos methods.
- Software: http://www.caam.rice.edu/software/ARPACK/ written in Fortran77!

Some basic definitions

- Symmetry of a $D \times D$ matrix: $\mathbf{A} = \mathbf{A}^{\top}$
- \bullet Eigen decomposition: $\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\top}$ with the properties:
 - $\mathbf{U}\mathbf{U}^{\top} = \mathbf{U}^{\top}\mathbf{U} = \mathbf{I}_D$
 - All the eigenvalues are real numbers:

 $\lambda_{\min} = \lambda_1 \leq \ldots \leq \lambda_i \leq \ldots \leq \lambda_D = \lambda_{\max}$

- A is referred to as a *real symmetric matrix*;
- If $\lambda_1 \ge 0$ then it is a *positive semi-definite symmetric matrix*
- If $\lambda_1 > 0$ then it is a positive definite symmetric matrix
- Symmetric matrices are *nondefective*: the algebraic multiplicity of each eigenvalue is equal to its geometric multiplicity.

Spectral decomposition, deflation, powers, exponential

- A symmetric matrix can be written as $\mathbf{A} = \sum_{i=1}^{D} \lambda_i \boldsymbol{u}_i \boldsymbol{u}_i^{\top}$ where \boldsymbol{u}_i is a column vector of \mathbf{U} .
- The transformation $\widetilde{\mathbf{A}} = \mathbf{A} \lambda_k oldsymbol{u}_k oldsymbol{u}_k^ op$ is known as a deflation.
- Note that $\widetilde{\mathbf{A}} \boldsymbol{u}_k = \boldsymbol{0}$.
- $\mathbf{A}^2 = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^\top \mathbf{U} \mathbf{\Lambda} \mathbf{U}^\top = \mathbf{U} \mathbf{\Lambda}^2 \mathbf{U}^\top$
- More generally: $\mathbf{A}^k = \mathbf{U} \mathbf{\Lambda}^k \mathbf{U}^ op$
- The matrices $\mathbf{A}, \mathbf{A}^2, \dots, \mathbf{A}^k$ have the same eigenvectors u_i and eigenvalues $\lambda_i, \lambda_i^2, \dots, \lambda_i^k$.
- Matrix exponential: $e^{\mathbf{A}} = \sum_{k=0}^{\infty} \frac{\mathbf{A}^k}{k!}$
- We have: $e^{\mathbf{A}} = \mathbf{U}\mathsf{Diag}[e^{\lambda_1} \dots e^{\lambda_i} \dots e^{\lambda_D}]\mathbf{U}^{\top}$

Inverse and pseudo-inverse

- The inverse of a non-singular symmetric matrix: $\mathbf{A}^{-1} = \mathbf{U} \mathbf{\Lambda}^{-1} \mathbf{U}^{\top}.$
- Spectral decomposition: $\mathbf{A}^{-1} = \sum_{i=1}^{D} \frac{1}{\lambda_i} \boldsymbol{u}_i \boldsymbol{u}_i^{ op}$
- The matrices $\mathbf{A}^{-1}, \mathbf{A}^{-2}, \dots, \mathbf{A}^{-k}$ have eigenvectors u_i and eigenvalues $\lambda_i^{-1}, \lambda_i^{-2}, \dots, \lambda_i^{-k}$
- If a matrix has a zero eigenvalue with multiplicity m (is singular), rearrange the eigenvalues such that $\Lambda = \text{Diag}[\lambda_1 \dots \lambda_{D-m} \ 0 \dots 0].$
- The Moore-Penrose pseudoinverse :

$$\mathbf{A}^{\dagger} = \mathbf{U}\mathsf{Diag}[1/\lambda_1 \dots 1/\lambda_{D-m} \ 0 \dots 0]\mathbf{U}^{\top}$$

Choleski factorization

- We consider the case of positive **definite** symmetric matrices. They can be written as $\mathbf{A} = \mathbf{B}\mathbf{B}^{\top}$ but the choice of \mathbf{B} is not unique.
- Any such matrix can be decomposed as: A = LL[⊤] with L being a low-triangular matrix with nonnegative diagonal entries. This decomposition is unique.
- Complexity of Choleski decomposition algorithms for a $D \times D$ non singular matrix: D^3 FLOPS. This is twice more efficient than the LU decomposition.
- Let Ax = b. No matrix inversion needed to solve it! This can be rewritten as:

$$\left\{ egin{array}{c} \mathbf{L}m{y} = m{b} \ \mathbf{L}^ op m{x} = m{y} \end{array}
ight.$$

Matrix norms

• The Frobenius norm:

$$\|\mathbf{A}\|_F^2 = \mathrm{tr}(\mathbf{A}^\top \mathbf{A}) = \mathrm{tr}(\mathbf{U} \mathbf{\Lambda}^2 \mathbf{U}^\top) = \mathrm{tr}(\mathbf{\Lambda}^2) = \sum_{i=1}^D \lambda_i^2$$

• The spectral norm:

$$\max_{\boldsymbol{v}} \frac{\|\mathbf{A}\boldsymbol{v}\|}{\|\boldsymbol{v}\|} = \left(\max_{\boldsymbol{v}} \frac{\boldsymbol{v}^{\top}\mathbf{A}^{\top}\mathbf{A}\boldsymbol{v}}{\boldsymbol{v}^{\top}\boldsymbol{v}}\right)^{1/2} = \lambda_{\max}$$

(see the Raylegh-Ritz theorem below)

Geometric Interpretation

- Consider a positive definite symmetric matrix; In this case all the eigenvalues are strictly positive.
- Quadratic form for any vector ${m x}
 eq 0$:

$$oldsymbol{x}^{ op} \mathbf{A} oldsymbol{x} = (\mathbf{U}^{ op} oldsymbol{x})^{ op} oldsymbol{\Lambda} (\mathbf{U}^{ op} oldsymbol{x}) = \sum_{i=1}^D \lambda_i (oldsymbol{u}_i^{ op} oldsymbol{x})^2$$

• Let's transform the data into another coordinate frame: $z = \mathbf{U}^{\top} x$; we obtain: $x^{\top} \mathbf{A} x = z^{\top} \Lambda z$.

$$\boldsymbol{z}^{\top} \boldsymbol{\Lambda} \boldsymbol{z} = (z_1 / \lambda_1^{-1/2})^2 + \dots (z_D / \lambda_D^{-1/2})^2 = C$$

• This is an ellipsoid with axes $u_1 \dots u_D$ and with half eccentricities $\lambda_1^{-1/2} \dots \lambda_D^{-1/2}$ (Remember PCA...)

The Raylegh-Ritz theorem

Theorem

(Raylegh-Ritz). Let \mathbf{A} be a symmetric matrix with ordered eigenvalues, then:

$$egin{aligned} \lambda_1 oldsymbol{x}^ op oldsymbol{x} &\leq oldsymbol{x}^ op oldsymbol{A} & \leq \lambda_D oldsymbol{x}^ op oldsymbol{x} & orall oldsymbol{x} \ \lambda_{ ext{max}} &= \lambda_D = \max_{oldsymbol{x}
eq 0} oldsymbol{x}^ op oldsymbol{A} & = \max_{oldsymbol{x}^ op oldsymbol{x}} oldsymbol{x}^ op oldsymbol{A} & = \max_{oldsymbol{x}
eq 0} oldsymbol{x}^ op oldsymbol{A} & = \max_{oldsymbol{x}^ op oldsymbol{x}} oldsymbol{x}^ op oldsymbol{A} & = \max_{oldsymbol{x}
eq 0} oldsymbol{x}^ op oldsymbol{A} & = \max_{oldsymbol{x}^ op oldsymbol{x}} oldsymbol{x}^ op oldsymbol{A} & = \max_{oldsymbol{x}
eq 0} oldsymbol{x}^ op oldsymbol{A} & = \min_{oldsymbol{x}
eq 0} oldsymbol{x}^ op oldsymbol{A} & = \min_{oldsymbol{x}
eq oldsymbol{x}
eq oldsymbol{x} & = \min_{oldsymbol{x}
eq oldsymbol{x}
eq oldsymbol{A} & = \min_{oldsymbol{x}
eq oldsymbol{A} & = \max_{oldsymbol{X}
eq oldsymbol{A} & = \max_{oldsymbol{X}
eq oldsymbol{A} & = \max_{oldsymbol{X}
eq oldsymb$$

Proof of the Raylegh-Ritz theorem

- From the eigendecomposition: $\boldsymbol{x}^{ op} \mathbf{A} \boldsymbol{x} = \sum_{i=1}^{D} \lambda_i \left((\mathbf{U}^{ op} \boldsymbol{x})_i \right)^2$
- Notice that: $\sum_{i=1}^{D} \left((\mathbf{U}^{\top} \boldsymbol{x})_i \right)^2 = \|\mathbf{U}^{\top} \boldsymbol{x}\|^2 = \|\boldsymbol{x}\|^2 = \boldsymbol{x}^{\top} \boldsymbol{x}$
- Using the fact that the eigenvalues can be ordered, we get the first part of the theorm.
- By dividing we obtain: $\lambda_{\min} \leq \frac{\boldsymbol{x}^{\top} \mathbf{A} \boldsymbol{x}}{\boldsymbol{x}^{\top} \boldsymbol{x}} \leq \lambda_{\max}, \; (\boldsymbol{x} \neq 0)$
- with equalities when ${m x}$ is a λ_1 or λ_D eigenvector.
- We have: $\frac{x^{\top}Ax}{x^{\top}x} = (x^{\top}/\sqrt{(x^{\top}x)})A(x/\sqrt{(x^{\top}x)})$ and hence the minimization/maximization of the Raleigh quotient is equivalent to:

$$\left\{\begin{array}{l}\max_{\boldsymbol{x}}\boldsymbol{x}^{\top}\mathbf{A}\boldsymbol{x}\\\boldsymbol{x}^{\top}\boldsymbol{x}=1\end{array}\right.$$

What about the other eigenvalues/eigenvectors?

• Let's restrict x to be orthogonal to the smallest eigenvector \mathbf{u}_1 , i.e, $\mathbf{u}_1^\top x = 0$:

•
$$oldsymbol{x}^{ op} \mathbf{A} oldsymbol{x} = \sum_{i=2}^{D} \lambda_i \left((\mathbf{U}^{ op} oldsymbol{x})_i
ight)^2 \geq \lambda_2 oldsymbol{x}^{ op} oldsymbol{x}$$

- ullet with equality when $oldsymbol{x}=oldsymbol{u}_2$
- Therefore we obtain:

$$\lambda_2 = \min_{\substack{\boldsymbol{x}^{\top} \boldsymbol{x} = 1 \\ \boldsymbol{x}^{\top} \boldsymbol{u}_1 = 0}} \boldsymbol{x}^{\top} \mathbf{A} \boldsymbol{x}$$

$$\lambda_{D-1} = \max_{\substack{oldsymbol{x}^{ op} oldsymbol{x} = 1 \ oldsymbol{x}^{ op} oldsymbol{u}_D = 0}} oldsymbol{x}^{ op} oldsymbol{A} oldsymbol{x}$$

Computing eigenvalues and eigenvectors in practice

- The *power method* estimates the largest eigenvalue/eigenvector pair or an *eigenpair*.
- The *power method* + *deflation* estimates the second largest eigenpair, etc.
- The inverse power method estimates the smallest eigenpair.
- The *shifted inverse power method* allows to obtain intermediate eigenpairs.
- The Lanczos method is an adaptation of the power method. It is very useful for large and sparse matrices. It is used by the ARPACK package.

The power method

- Input: A symmetric matrix A and a random vector x_0 .
- At each iteration k:
 - 1 Normalize $\boldsymbol{y}_k = \frac{\boldsymbol{x}_k}{\|\boldsymbol{x}_k\|^{1/2}}$ and 2 $\boldsymbol{x}_{k+1} = \mathbf{A} \boldsymbol{y}_k.$
- Check for convergence: $\|oldsymbol{y}_{k+1} oldsymbol{y}_k\| < arepsilon$
- Output: $\mathbf{u}_D = \boldsymbol{y}_{k+1}$ and $\lambda_D = \boldsymbol{y}_{k+1}^{\top} \mathbf{A} \boldsymbol{y}_{k+1}$

Justification of the power method

- Let $x_0 = \sum_{i=1}^{D} \alpha_i u_i$ hence we obtain after the first iteration: $x_1 = \mathbf{A} x_0 = \sum_{i=1}^{D} \alpha_i \lambda_i u_i$
- Normalize this vector: $oldsymbol{y}_1 = rac{1}{eta_1} \sum_{i=1}^D lpha_i \lambda_i oldsymbol{u}_i$
- More generally: $m{y}_{k+1} = rac{1}{eta_1...eta_{k+1}} \sum_{i=1}^D lpha_i \lambda_i^{k+1} m{u}_i$
- At the limit this vector becomes the "largest" eigenvector:

$$\boldsymbol{y}_{\infty} = \lim_{k \to \infty} \frac{\alpha_D \lambda_D^{k+1}}{\beta_1 \dots \beta_{k+1}} \left(\sum_{i=1}^{D-1} \frac{\alpha_i}{\alpha_D} \frac{\lambda_i^{k+1}}{\lambda_D^{k+1}} \boldsymbol{u}_i + \boldsymbol{u}_D \right) = \boldsymbol{u}_D$$

$$\lambda_D = \boldsymbol{y}_{\infty}^{\top} \mathbf{A} \boldsymbol{y}_{\infty}$$

The power method with deflation

- Consider the matrix $\widetilde{\mathbf{A}} = \mathbf{A} \lambda_D \boldsymbol{u}_D \boldsymbol{u}_D^\top$
- Notice that $(0, u_D)$ is an eigenpair of $\widetilde{\mathbf{A}}$ and that the remaining eigenpairs remain unchanged (refer to the spectral decomposition of \mathbf{A} and to the fact that eigenvectors corresponding to **distinct** eigenvalues are orthogonal).
- It follows that the second largest eigenpair (λ_{D-1}, u_{D-1}) of A becomes the largest eigenpair of \widetilde{A}
- \bullet The power method can now be applied to $\widetilde{\mathbf{A}},$ etc.

The inverse power method

- The smallest eigenvector-eigenvalue pair (u₁, λ₁) of A corresponds to the largest eigenvector-eigenvalue pair (u₁, λ₁⁻¹) of A⁻¹.
- The k-th iteration of the power method becomes: $m{x}_{k+1} = \mathbf{A}^{-1} m{y}_k$
- which can be written as:

 $\mathbf{A} \boldsymbol{x}_{k+1} = \boldsymbol{y}_k$

• This can be solved using the Choleski factorization $\mathbf{A} = \mathbf{L}\mathbf{L}^{\top}$:

$$\left\{ egin{array}{ll} \mathbf{L}oldsymbol{z} = oldsymbol{y}_k \ \mathbf{L}^ op oldsymbol{x}_{k+1} = oldsymbol{z} \end{array}
ight.$$

The shifted inverse power method

- Let's consider the matrix $\mathbf{B} = \mathbf{A} \alpha \mathbf{I}$ as well as an eigenpair $\mathbf{A}\boldsymbol{u} = \lambda \boldsymbol{u}$.
- $(\lambda \alpha, \boldsymbol{u})$ becomes an eigenpair of **B**, indeed:

$$\mathbf{B}\boldsymbol{u} = (\mathbf{A} - \alpha \mathbf{I})\boldsymbol{u} = (\lambda - \alpha)\boldsymbol{u}$$

and hence **B** is a **real symmetric** matrix with eigenpairs $(\lambda_1 - \alpha, \boldsymbol{u}_1), \dots (\lambda_i - \alpha, \boldsymbol{u}_i), \dots (\lambda_D - \alpha, \boldsymbol{u}_D)$

- If $\alpha > 0$ is choosen such that $|\lambda_j \alpha| \ll |\lambda_i \alpha| \quad \forall i \neq j$ then $\lambda_j \alpha$ becomes the smallest (in magnitude) eivenvalue.
- The inverse power method (in conjuction with the LU decomposition of B) can be used to estimate the eigenpair $(\lambda_j \alpha, u_j)$.