Data Analysis and Manifold Learning Lecture 10: Spectral Matching

Radu Horaud
INRIA Grenoble Rhone-Alpes, France
Radu.Horaud@inrialpes.fr
http://perception.inrialpes.fr/

Outline of Lecture 10

- Graph isomorphism problems
- Solving graph isomorphism with spectral matching
- Problems with standard algorithms
- The "signature" of an eigenvector
- Graph matching based on point registration

Material for this lecture

 A. Sharma, R. Horaud, and D. Mateus. "3D Shape Registration Using Spectral Graph Embedding and Probabilistic Matching". To appear soon as a book chapter. 2011.

The Graph Isomorphism Problem

- Let two graphs \mathcal{G}_A and \mathcal{G}_B have the same number of nodes, and let $\pi: \mathcal{V}_A \longrightarrow \mathcal{V}_B$ be a bijection;
- π is an isomorphism if and only if:

$$u \sim v \Longleftrightarrow \pi(u) \sim \pi(v)$$

- The notion of graph isomorphism allows to study the structure of graphs.
- The graph isomorphism problem: an algorithm that determines whether two graphs are isomorphic
- It is one of only two, out of 12 total, problems listed in Garey & Johnson (1979) whose complexity remains unresolved: It has not been proven to be included in, nor excluded from, P (polynomial) or NP-complete.

The Subgraph Isomorphism Problem

- Let two graphs \mathcal{G}_A with n_A nodes and \mathcal{G}_B with n_B nodes such that $n_A > n_B$.
- One must determine whether \mathcal{G}_A contains a subgraph that is isomorphic to \mathcal{G}_B .
- The number of possible solutions is: $\binom{n_B}{n_A}n_B!$
- The problem is NP-complete (Nondeterministic polynomial).

The Maximum Subgraph Matching Problem

- Let two graphs \mathcal{G}_A with n_A nodes and \mathcal{G}_B with n_B nodes such that $n_A > n_B$.
- Determine the largest pair of subgraphs $(\mathcal{G}'_A, \mathcal{G}'_B)$, with $\mathcal{G}'_A \subset \mathcal{G}_A$ and $\mathcal{G}'_B \subset \mathcal{G}_B$, such that \mathcal{G}'_A and \mathcal{G}'_B are isomorphic.
- The number of possible solutions is:

$$\sum_{i=1}^{n_B} \binom{i}{n_A} \binom{i}{n_B} i!$$

• The problem is NP-complete

How to Solve Graph Isomorphism Problems

- Let's consider, as above two undirected graphs (weights are all equal to 1) with the same number of nodes.
- Let's define a metric between the two graphs as:

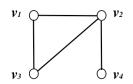
$$\arg\max_{\pi} \sum_{i=1}^{n} \sum_{j=1}^{n} (e_{ij} - e_{\pi(i)\pi(j)})^{2}$$

Using Graph matrices

- Let W_A and W_B be the adjacency matrices of two graphs with the same number of nodes n
- Let $P \in \mathcal{P}_n$ be a permutation matrix: exactly one entry in each row and column is equal to 1, and all the other entries are 0:
- \bullet Left multiplication of W with P permutes the rows of W and
- ullet Right multiplication of ${f W}$ with ${f P}$ permutes the columns of ${f W}$
- What does PWP^{\top} ?
- $\bullet \ \mathbf{W} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\top}$
- $\bullet \ \mathbf{PWP}^{\top} = (\mathbf{PU}) \ \mathbf{\Lambda} \ (\mathbf{PU})^{\top}$
- ullet Think of the rows of ${f U}$ as the coordinates of the graph's vertices in spectral space ... the nodes are renamed

A Simple Example

$$\mathbf{W}_A = \left[\begin{array}{cccc} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right]$$



$$\mathbf{P} = \left[egin{array}{cccc} 0 & 1 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{array}
ight] \quad \mathbf{W}_B = \mathbf{P} \mathbf{W}_A \mathbf{P}^ op = \left[egin{array}{cccc} 0 & 1 & 1 & 1 \ 1 & 0 & 0 & 1 \ 1 & 0 & 0 & 0 \ 1 & 1 & 0 & 0 \end{array}
ight]$$

Which corresponds to:

$$v_1 \leftrightarrow u_2, \ v_2 \leftrightarrow u_1, \ v_3 \leftrightarrow u_4, \ v_3 \leftrightarrow u_4$$

The Graph Isomorphism Problem with Matrices

The metric between two graphs becomes:

$$\mathbf{P}^{\star} = \arg\min_{\mathbf{P}} \|\mathbf{W}_A - \mathbf{P}\mathbf{W}_B \mathbf{P}^{\top}\|^2$$

• where the Frobenius norm is being used:

$$\|\mathbf{A}\|_F^2 = \sum_{i=1}^n \sum_{j=1}^n a_{ij}^2 = \mathsf{tr}(\mathbf{A}^\top \mathbf{A}).$$

An Exact Solution

When the metric is equal to zero:

$$\mathbf{W}_A = \mathbf{P} \mathbf{W}_B \mathbf{P}^{\top}$$

- Two isomophic graphs have the same eigenvalues;
- The reverse is not always true.

Finding an Exact Solution in the Spectral Domain

• Let's write an equality:

$$\mathbf{W}_A = \mathbf{P}^{\star} \mathbf{W}_B \mathbf{P}^{\star \top}$$

• Consider the spectral decompositions:

$$\mathbf{W}_A = \mathbf{U}_A \mathbf{\Lambda}_A \mathbf{U}_A^{ op}$$
 and $\mathbf{W}_B = \widetilde{\mathbf{U}}_B \mathbf{\Lambda}_B \widetilde{\mathbf{U}}_B^{ op}$

with the notation:

$$\widetilde{\mathbf{U}}_B = \mathbf{U}_B \mathbf{S}$$
 and $\mathbf{S} = \mathsf{Diag}[s_i], s_i = \pm 1$

• By substitution in the first equation, we obtain:

$$\mathbf{P}^{\star} = \mathbf{U}_{B} \mathbf{S} \mathbf{U}_{A}^{\top}$$

Short Discussion

- There are as many solutions as the number of possible S-matrices, i.e., 2^n .
- Not all of these solutions correspond to a valid permutation matrix.
- ullet There exist some S^* that exactly make P^* a permutation: these are *valid* solutions to the graph isomorphism problem
- Eigenspace alignment:

$$\mathbf{U}_A = \mathbf{P}^{\star} \mathbf{U}_B \mathbf{S}^{\star}$$

The rows of U_A can be interpreted as the coordinates of the graph's vertices in the eigenspace of W_A . The above equation can be interpreted as a registration between the embedding of the two graphs. Hence:

• The graph isomorphism problem can be viewed as a rigid registration problem in embedded space.

The Hoffman-Wienlandt Theorem

Theorem

(Hoffman and Wielandt) If \mathbf{W}_A and \mathbf{W}_B are real-symmetric matrices, and if α_i and β_i are their eigenvalues arranged in increasing order, $\alpha_1 \leq \ldots \leq \alpha_i \leq \ldots \leq \alpha_n$ and $\beta_1 \leq \ldots \leq \beta_i \leq \ldots \leq \beta_n$, then

$$\sum_{i=1}^{n} (\alpha_i - \beta_i)^2 \le \|\mathbf{W}_A - \mathbf{W}_B\|^2$$
 (1)

 This theorem is the fundamental building block of spectral graph matching.

Additional Results

Corollary

The inequality (1) becomes an equality when the eigenvectors of \mathbf{W}_A are aligned with the eigenvectors of \mathbf{W}_B up to a sign ambiguity:

$$\mathbf{U}_B = \mathbf{U_AS}.\tag{2}$$

Corollary

If \mathbf{Q} is an orthogonal matrix, then

$$\sum_{i=1}^{n} (\alpha_i - \beta_i)^2 \le \|\mathbf{W}_A - \mathbf{Q}\mathbf{W}_B\mathbf{Q}^\top\|^2.$$
 (3)

• Indeed, matrix $\mathbf{Q}\mathbf{W}_B\mathbf{Q}^{\top}$ has the same eigenvalues as matrix \mathbf{W}_B .

Umeyama's Theorem

Theorem

(Umeyama'1988) If \mathbf{W}_A and \mathbf{W}_B are real-symmetric matrices with n distinct eigenvalues (that can be ordered),

 $\alpha_1 < \ldots < \alpha_i < \ldots < \alpha_n$ and $\beta_1 < \ldots < \beta_i < \ldots < \beta_n$, the minimum of :

$$J(\mathbf{Q}) = \|\mathbf{W}_A - \mathbf{Q}\mathbf{W}_B\mathbf{Q}^\top\|^2$$

is achieved for:

$$\mathbf{Q}^{\star} = \mathbf{U}_A \mathbf{S} \mathbf{U}_B^{\top} \tag{4}$$

and hence (3) becomes an equality:

$$\sum_{i=1}^{n} (\alpha_i - \beta_i)^2 = \|\mathbf{W}_A - \mathbf{Q}^* \mathbf{W}_B \mathbf{Q}^{*\top}\|^2.$$

Method Proposed by Umeyama in 1988

Notice that (4) can be written as:

$$\mathbf{U}_A = \mathbf{Q}^* \mathbf{U}_B \mathbf{S}$$

which is a *relaxed* version of the permutation matrix in the exact isomorphism case (permuation is replaced by an orthogonal matrix).

• For each sign matrix \mathbf{S} (remember that there are 2^n such matrices) there is an orthogonal matrix that satisfies Umeyama's theorem, but not all these matrices can be easily relaxed to a permutation, and not all these permutations correspond to an isomorphism.

Umeyama's Heuriststic

• Take the absolute values of the eigenvector's components:

$$\overline{\mathbf{U}}_A(i,j) = |u_{ij}|$$

 It can be shown that the problem can be written as the following maximization problem:

$$\max_{\mathbf{Q}} \operatorname{tr}(\overline{\mathbf{U}}_A \overline{\mathbf{U}}_B^{\top} \mathbf{Q}^{\top})$$

This is not, however, such an easy problem to solve (See Umeyama'1988 for more details).

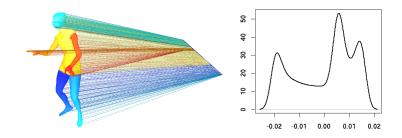
• It can be looked at as an assignment problem, namely extracting a permutation matrix \mathbf{P} from the nonnegative matrix $\overline{\mathbf{Q}} = \overline{\mathbf{U}}_A \overline{\mathbf{U}}_B^{\mathsf{T}}$.

Discussion

The method just described has serious limitations:

- It applies to graphs with the same number of nodes;
- It assumes that there are no eigenvalue multiplicities and that the eigenvalues can be reliably ordered;
- The heuristic proposed is weak and it does not necessarily lead to a simple algorithm;
- Other heuristics were proposed.

Eigenvector Histogram



- The Laplacian eigenvector associated with the smallest non-null eigenvalue is the direction of maximum variance of a graph (principal component)
- The histogram of this eigenvector's entries is invariant to vertex ordering.

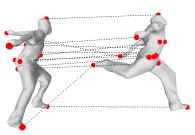
Characterization of These Histograms

- ullet If $\mathbf{L}oldsymbol{u} = \lambdaoldsymbol{u}$ then: $\mathbf{P}\mathbf{L}\mathbf{P}^{ op}\ \mathbf{P}oldsymbol{u} = \lambda\mathbf{P}oldsymbol{u}$
- ullet The vectors u and $\mathbf{P}u$ have the same histograms;
- Remind that for each eigenvector u_i of \mathbf{L} we have $-1 < u_{ik} < +1$, $\overline{u}_k = 0$, and $\sigma_k = 1/n$.
- The number of bins and the bin-width are invariant:

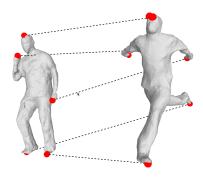
$$w_k = \frac{3.5\sigma_k}{n^{1/3}} = \frac{3.5}{n^{4/3}}$$
 $b_k = \frac{\sup_i u_{ik} - \inf_i u_{ik}}{w_k} \approx \frac{n^{4/3}}{2}$

• The histogram is not invariant to the sign change, i.e., $H\{u\} \neq H\{-u\}$.

Shape Matching (1)



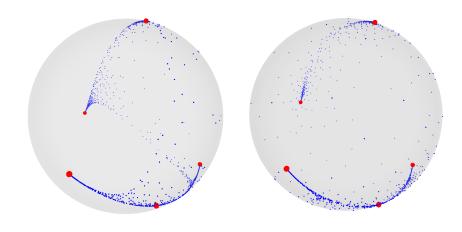
$$t = 200$$
, $t' = 201.5$



$$t = 90$$
, $t' = 1005$

Shape Matching (2)

Shape Matching (3)



Sparse Shape Matching

- Shape/graph matching is equivalent to matching the embedded representations [Mateus et al. 2008]
- ullet Here we use the projection of the embeddings on a unit hyper-sphere of dimension K and we apply rigid matching.
- How to select t and t', i.e., the scales associated with the two shapes to be matched?
- How to implement a robust matching method?

Scale Selection

• Let C_X and $C_{X'}$ be the covariance matrices of two different embeddings X and X' with respectively n and n' points:

$$\det(\mathbf{C}_X) = \det(\mathbf{C}_{X'})$$

- $\det(\mathbf{C}_X$ measures the volume in which the embedding X lies. Hence, we impose that the two embeddings are contained in the same volume.
- From this constraint we derive:

$$t'\operatorname{tr}(\mathbf{L}') = t\operatorname{tr}(\mathbf{L}) + K\log n/n'$$

Robust Matching

- Build an association graph.
- Search for the largest set of mutually compatible nodes (maximal clique finding).
- See [Sharma and Horaud 2010] (Nordia workshop) for more details.

