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Outline of Lecture 10

Graph isomorphism problems

Solving graph isomorphism with spectral matching

Problems with standard algorithms

The ”signature” of an eigenvector

Graph matching based on point registration
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Material for this lecture

A. Sharma, R. Horaud, and D. Mateus. ”3D Shape
Registration Using Spectral Graph Embedding and
Probabilistic Matching”. To appear soon as a book chapter.
2011.
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The Graph Isomorphism Problem

Let two graphs GA and GB have the same number of nodes,
and let π : VA −→ VB be a bijection;

π is an isomorphism if and only if:

u ∼ v ⇐⇒ π(u) ∼ π(v)

The notion of graph isomorphism allows to study the
structure of graphs.

The graph isomorphism problem: an algorithm that
determines whether two graphs are isomorphic

It is one of only two, out of 12 total, problems listed in Garey
& Johnson (1979) whose complexity remains unresolved: It
has not been proven to be included in, nor excluded from, P
(polynomial) or NP-complete.
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The Subgraph Isomorphism Problem

Let two graphs GA with nA nodes and GB with nB nodes
such that nA > nB.

One must determine whether GA contains a subgraph that is
isomorphic to GB.

The number of possible solutions is:

(
nB
nA

)
nB!

The problem is NP-complete (Nondeterministic polynomial).
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The Maximum Subgraph Matching Problem

Let two graphs GA with nA nodes and GB with nB nodes
such that nA > nB.

Determine the largest pair of subgraphs (G′A,G′B), with
G′A ⊂ GA and G′B ⊂ GB, such that G′A and G′B are isomorphic.

The number of possible solutions is:

nB∑
i=1

(
i
nA

)(
i
nB

)
i!

The problem is NP-complete
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How to Solve Graph Isomorphism Problems

Let’s consider, as above two undirected graphs (weights are all
equal to 1) with the same number of nodes.

Let’s define a metric between the two graphs as:

arg max
π

n∑
i=1

n∑
j=1

(eij − eπ(i)π(j))
2
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Using Graph matrices

Let WA and WB be the adjacency matrices of two graphs
with the same number of nodes n

Let P ∈ Pn be a permutation matrix: exactly one entry in
each row and column is equal to 1, and all the other entries
are 0:

Left multiplication of W with P permutes the rows of W and

Right multiplication of W with P permutes the columns of W

What does PWP>?

W = UΛU>

PWP> = (PU) Λ (PU)>

Think of the rows of U as the coordinates of the graph’s
vertices in spectral space ... the nodes are renamed
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A Simple Example

WA =


0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0



P =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 WB = PWAP> =


0 1 1 1
1 0 0 1
1 0 0 0
1 1 0 0


Which corresponds to:

v1 ↔ u2, v2 ↔ u1, v3 ↔ u4, v3 ↔ u4

Radu Horaud Data Analysis and Manifold Learning; Lecture 10



The Graph Isomorphism Problem with Matrices

The metric between two graphs becomes:

P? = arg min
P
‖WA −PWBP>‖2

where the Frobenius norm is being used:

‖A‖2F =
n∑
i=1

n∑
j=1

a2
ij = tr(A>A).
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An Exact Solution

When the metric is equal to zero:

WA = PWBP>

Two isomophic graphs have the same eigenvalues;

The reverse is not always true.
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Finding an Exact Solution in the Spectral Domain

Let’s write an equality:

WA = P?WBP?>

Consider the spectral decompositions:

WA = UAΛAU>
A and WB = ŨBΛBŨ>

B

with the notation:

ŨB = UBS and S = Diag[si], si = ±1

By substitution in the first equation, we obtain:

P? = UBSU>
A
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Short Discussion

There are as many solutions as the number of possible
S-matrices, i.e., 2n.

Not all of these solutions correspond to a valid permutation
matrix.

There exist some S? that exactly make P? a permutation:
these are valid solutions to the graph isomorphism problem

Eigenspace alignment:

UA = P?UBS?

The rows of UA can be interpreted as the coordinates of the
graph’s vertices in the eigenspace of WA. The above
equation can be interpreted as a registration between the
embedding of the two graphs. Hence:

The graph isomorphism problem can be viewed as a rigid
registration problem in embedded space.
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The Hoffman-Wienlandt Theorem

Theorem

(Hoffman and Wielandt) If WA and WB are real-symmetric
matrices, and if αi and βi are their eigenvalues arranged in
increasing order, α1 ≤ . . . ≤ αi ≤ . . . ≤ αn and
β1 ≤ . . . ≤ βi ≤ . . . ≤ βn, then

n∑
i=1

(αi − βi)2 ≤ ‖WA −WB‖2 (1)

This theorem is the fundamental building block of spectral
graph matching.
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Additional Results

Corollary

The inequality (1) becomes an equality when the eigenvectors of
WA are aligned with the eigenvectors of WB up to a sign
ambiguity:

UB = UAS. (2)

Corollary

If Q is an orthogonal matrix, then

n∑
i=1

(αi − βi)2 ≤ ‖WA −QWBQ>‖2. (3)

Indeed, matrix QWBQ> has the same eigenvalues as matrix
WB.
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Umeyama’s Theorem

Theorem

(Umeyama’1988) If WA and WB are real-symmetric matrices
with n distinct eigenvalues (that can be ordered),
α1 < . . . < αi < . . . < αn and β1 < . . . < βi < . . . < βn, the
minimum of :

J(Q) = ‖WA −QWBQ>‖2

is achieved for:
Q? = UASU>

B (4)

and hence (3) becomes an equality:

n∑
i=1

(αi − βi)2 = ‖WA −Q?WBQ?>‖2.
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Method Proposed by Umeyama in 1988

Notice that (4) can be written as:

UA = Q?UBS

which is a relaxed version of the the permutation matrix in
the exact isomorphism case (permuation is replaced by an
orthogonal matrix).

For each sign matrix S (remember that there are 2n such
matrices) there is an orthogonal matrix that satisfies
Umeyama’s theorem, but not all these matrices can be easily
relaxed to a permutation, and not all these permutations
correspond to an isomorphism.
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Umeyama’s Heuriststic

Take the absolute values of the eigenvector’s components:

UA(i, j) = |uij |

It can be shown that the problem can be written as the
following maximization problem:

max
Q

tr(UAU>
BQ>)

This is not, however, such an easy problem to solve (See
Umeyama’1988 for more details).

It can be looked at as an assignment problem, namely
extracting a permutation matrix P from the nonnegative

matrix Q = UAU>
B.
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Discussion

The method just described has serious limitations:

It applies to graphs with the same number of nodes;

It assumes that there are no eigenvalue multiplicities and that
the eigenvalues can be reliably ordered;

The heuristic proposed is weak and it does not necessarily
lead to a simple algorithm;

Other heuristics were proposed.
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Eigenvector Histogram

The Laplacian eigenvector associated with the smallest
non-null eigenvalue is the direction of maximum variance of a
graph (principal component)

The histogram of this eigenvector’s entries is invariant to
vertex ordering.
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Characterization of These Histograms

If Lu = λu then: PLP> Pu = λPu

The vectors u and Pu have the same histograms;

Remind that for each eigenvector ui of L we have
−1 < uik < +1, uk = 0, and σk = 1/n.

The number of bins and the bin-width are invariant:

wk =
3.5σk
n1/3

=
3.5
n4/3

bk =
supi uik − infi uik

wk
≈ n4/3

2

The histogram is not invariant to the sign change, i.e.,
H{u} 6= H{−u}.
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Shape Matching (1)

t = 200, t′ = 201.5 t = 90, t′ = 1005
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Shape Matching (2)
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Shape Matching (3)
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Sparse Shape Matching

Shape/graph matching is equivalent to matching the
embedded representations [Mateus et al. 2008]

Here we use the projection of the embeddings on a unit
hyper-sphere of dimension K and we apply rigid matching.

How to select t and t′, i.e., the scales associated with the two
shapes to be matched?

How to implement a robust matching method?
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Scale Selection

Let CX and CX′ be the covariance matrices of two different
embeddings X and X′ with respectively n and n′ points:

det(CX) = det(CX′)

det(CX measures the volume in which the embedding X lies.
Hence, we impose that the two embeddings are contained in
the same volume.

From this constraint we derive:

t′ tr(L′) = t tr(L) +K log n/n′
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Robust Matching

Build an association graph.

Search for the largest set of mutually compatible nodes
(maximal clique finding).

See [Sharma and Horaud 2010] (Nordia workshop) for more
details.

i, i’

i, j’ i, l’

j, j’

k, k’

l, l’

j, k’
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