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Outline of Lecture 10

Graph isomorphism problems
Solving graph isomorphism with spectral matching
Problems with standard algorithms

The "signature” of an eigenvector
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Graph matching based on point registration
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Material for this lecture

@ A. Sharma, R. Horaud, and D. Mateus. "3D Shape
Registration Using Spectral Graph Embedding and
Probabilistic Matching”. To appear soon as a book chapter.
2011.
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The Graph Isomorphism Problem

@ Let two graphs G4 and Gp have the same number of nodes,
and let 7 : V4 — Vp be a bijection;

@ 7 is an isomorphism if and only if:
un~v<= 7(u) ~n(v)

@ The notion of graph isomorphism allows to study the
structure of graphs.

@ The graph isomorphism problem: an algorithm that
determines whether two graphs are isomorphic

@ It is one of only two, out of 12 total, problems listed in Garey
& Johnson (1979) whose complexity remains unresolved: It

has not been proven to be included in, nor excluded from, P
(polynomial) or NP-complete.
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The Subgraph Isomorphism Problem

@ Let two graphs G4 with n4 nodes and Gg with npg nodes
such that ng > np.

@ One must determine whether G4 contains a subgraph that is
isomorphic to Gp.

@ The number of possible solutions is: ( nB > npg!
A

@ The problem is NP-complete (Nondeterministic polynomial).
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The Maximum Subgraph Matching Problem

@ Let two graphs G4 with n4 nodes and Gp with np nodes
such that nyg > npg.

@ Determine the largest pair of subgraphs (G';, G%3), with
Gy C Ga and G5 C Gp, such that G’y and GJ; are isomorphic.

@ The number of possible solutions is:

2 () ()

@ The problem is NP-complete
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How to Solve Graph Isomorphism Problems

@ Let's consider, as above two undirected graphs (weights are all
equal to 1) with the same number of nodes.

@ Let's define a metric between the two graphs as:

arg mﬂax Z Z(eij - €7r(z')7r(j))2

i=1 j=1
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Using Graph matrices

o Let W4 and W be the adjacency matrices of two graphs
with the same number of nodes n

o Let P € P, be a permutation matrix: exactly one entry in
each row and column is equal to 1, and all the other entries
are 0:

Left multiplication of W with P permutes the rows of W and
Right multiplication of W with P permutes the columns of W
What does PWPT?

W =UAU"

PWP' = (PU) A (PU)T

Think of the rows of U as the coordinates of the graph’s
vertices in spectral space ... the nodes are renamed
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A Simple Example

0110 Vi V2
101 1
Wa=11100
0100 V3 V4
010 0 01 1 1
1000 B + 1001
P=1ly9 00 1| WB=PWaP =1, 4 ¢ o
00 10 1100

Which corresponds to:

U1 <= U2, V2 <7 UL, VU3 <> U4q, V3 <7 U4
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The Graph Isomorphism Problem with Matrices

@ The metric between two graphs becomes:
P* =arg mFi,n W4 —PWgPT|?

@ where the Frobenius norm is being used:

|A||F _ZZQU ATA)

i=1 j=1
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An Exact Solution

@ When the metric is equal to zero:
W4 =PWzP'

@ Two isomophic graphs have the same eigenvalues;

@ The reverse is not always true.
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Finding an Exact Solution in the Spectral Domain

@ Let's write an equality:
W, =P*WgP*'
@ Consider the spectral decompositions:
W4 =U4A4U) and W = UgApU}
@ with the notation:
63 = UpS and S = Diag|s;], s; = £1
@ By substitution in the first equation, we obtain:

P* =UpSU),
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Short Discussion

@ There are as many solutions as the number of possible
S-matrices, i.e., 2™.

@ Not all of these solutions correspond to a valid permutation
matrix.

@ There exist some S* that exactly make P* a permutation:
these are valid solutions to the graph isomorphism problem

o Eigenspace alignment:
U, =P*UpS”

The rows of U4 can be interpreted as the coordinates of the
graph's vertices in the eigenspace of W 4. The above
equation can be interpreted as a registration between the
embedding of the two graphs. Hence:

@ The graph isomorphism problem can be viewed as a rigid
registration problem in embedded space.
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The Hoffman-Wienlandt Theorem

Theorem

(Hoffman and Wielandt) If W 4 and W g are real-symmetric
matrices, and if a;; and [3; are their eigenvalues arranged in
increasing order, a; < ... < a; < ... <y and
Pr<...<Bi<...< By, then

n

D (@i =B < |[Wa—-Wp|? (1)

u=ll

@ This theorem is the fundamental building block of spectral
graph matching.
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Additional Results

Corollary

The inequality (1) becomes an equality when the eigenvectors of
W 4 are aligned with the eigenvectors of W up to a sign
ambiguity:

Up =U\S. (2)

| A\

Corollary

If Q is an orthogonal matrix, then

n

D (i = B)* < [Wa—QW5QT|. 3)

i=1

V.

o Indeed, matrix QW 5Q " has the same eigenvalues as matrix
Wg.
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Umeyama’s Theorem

Theorem

(Umeyama’1988) If W 4 and W are real-symmetric matrices
with n distinct eigenvalues (that can be ordered),

o <...<qg<..<apand (1 <...<fB; <...< B, the
minimum of :

J(Q) = [W4-QW5QT|?
is achieved for:
Q* = U,SUj (4)
and hence (3) becomes an equality:

n

Y (@i =B = |Wa-QWpQ*"|*.

=1
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Method Proposed by Umeyama in 1988

o Notice that (4) can be written as:
Uy =Q"UpS

which is a relaxed version of the the permutation matrix in
the exact isomorphism case (permuation is replaced by an
orthogonal matrix).

@ For each sign matrix S (remember that there are 2" such
matrices) there is an orthogonal matrix that satisfies
Umeyama'’s theorem, but not all these matrices can be easily
relaxed to a permutation, and not all these permutations
correspond to an isomorphism.
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Umeyama’s Heuriststic

@ Take the absolute values of the eigenvector's components:

@ It can be shown that the problem can be written as the
following maximization problem:

m(%x tr(ﬁAﬁ;QT)

This is not, however, such an easy problem to solve (See
Umeyama’'1988 for more details).

@ It can be looked at as an assignment problem, namely
extracting a permutation matrix P from the nonnegative

matrix Q = ﬁAﬁ;.
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Discussion

The method just described has serious limitations:

o It applies to graphs with the same number of nodes;

@ It assumes that there are no eigenvalue multiplicities and that
the eigenvalues can be reliably ordered;

@ The heuristic proposed is weak and it does not necessarily
lead to a simple algorithm;

@ Other heuristics were proposed.
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Eigenvector Histogram
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@ The Laplacian eigenvector associated with the smallest
non-null eigenvalue is the direction of maximum variance of a
graph (principal component)

@ The histogram of this eigenvector's entries is invariant to
vertex ordering.
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Characterization of These Histograms

o If Lu = \u then: PLPT Pu = \Pu

@ The vectors u and Pu have the same histograms;

@ Remind that for each eigenvector u; of L we have
-1 <wuyp <+1,u,=0,and op =1/n.

@ The number of bins and the bin-width are invariant:

3.50r 3.5

nl/3 — pA/3

sup; uip — infiui _n

W =

4/3
b, =

W 2

@ The histogram is not invariant to the sign change, i.e.,

Radu Horaud Data Analysis and Manifold Learning; Lecture 10



Shape Matching (1)

t =200, t' = 201.5 t =90, t' = 1005
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Shape Matching (2)
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Shape Matching (3)
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Sparse Shape Matching

@ Shape/graph matching is equivalent to matching the
embedded representations [Mateus et al. 2008]

@ Here we use the projection of the embeddings on a unit
hyper-sphere of dimension K and we apply rigid matching.

@ How to select ¢t and t/, i.e., the scales associated with the two
shapes to be matched?

@ How to implement a robust matching method?
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Scale Selection

@ Let Cx and Cx/ be the covariance matrices of two different
embeddings X and X’ with respectively n and n’ points:

det(CX) = det(CX/)

@ det(Cyx measures the volume in which the embedding X lies.
Hence, we impose that the two embeddings are contained in
the same volume.

@ From this constraint we derive:

t'tr(L') = t tr(L) + K logn/n’
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Robust Matching

@ Build an association graph.

@ Search for the largest set of mutually compatible nodes
(maximal clique finding).

@ See [Sharma and Horaud 2010] (Nordia workshop) for more
details.
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