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Introduction

I do not have a formal definition of manifold learning

The general philosophy of what we want to study:

Input: An unorganized cloud of points in RD, where D (the
dimension of the observation space) may be arbitrarily large.
Output: An intrinsic representation (parameterization) of the
linear or non-linear subspace that best characterizes the data.

Linear dimensionality reduction: find a subspace Rd ⊂ RD

with d < D, possibly d� D.

Non-linear dimensionality reduction: find a manifold M⊂ Rd

and a global parameterization of that manifold.
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Metric spaces
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Manifolds
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Some definitions

Metric space: one can compute the distance between any
two points, e.g., Euclidean distances and Euclidean spaces.

Manifold: every point has a neighborhood that is
homeomorphic to an open subset of an Euclidean space.

The dimension of a manifold is equal to the dimension of this
Euclidean space

One may say that a manifold is locally Euclidean while
globally its structure is more complex.

A Riemannian manifold is differentiable; the tangent space at
each point on the manifold is an Euclidean space. The
dimension of the tangent space is equal to the dimension of
the manifold.
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Discrete-data analysis and manifolds

The theoretical properties of continous spaces/manifolds do
not easily extend to point clouds.

Ideally, one would like to deal with dense data that are
uniformly sampled from a linear or a non-linear space.

Of course, this is rarely the case and one is left with the
difficult task of analysing sparse and/or non-uniform sampled
data.

The representation of choice is an undirected graph:

Linear case: it is a complete (fully connected) graph – easy
case.
Non-linear case: it is a sparse (locally connected) graph –
difficult case.
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Methods for linear dimensionality reduction

Preamble: The space spanned by the data is linear and not the
method itself!

Principal component analysis (PCA): It represents the
data using the directions of maximum variance; it boils down
to compute the principal eigenvectors of the covariance matrix
of the data.

Multidimensional scaling (MDS): It is a distance preserving
method. It first computes a matrix whose entries are the
pairwise dot-products between the data points and then it
represents the data using the principal vectors of this Gram
matrix.

It can be shown that PCA and MDS are somehow equivalent:

PCA needs the point coordinates
MDS only needs the pairwise dot-products
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Methods for non-linear dimensionality reduction

Graph-based methods: The first step is to build a sparse
graph with nodes representing data points and edges
representing neighborhood relations. The second step is to
build a graph matrix. The third step is to compute the
principal eigenvectors of this matrix.

Kernel-based methods: They use a kernel function to
evaluate the dot-product and to construct a Gram matrix.
They may be seen as a generalization of MDS. They can also
be refered to as graph-based kernel methods (more on this
later).

Many other methods can be found in the literature and in
textbooks.
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Graph-based and kernel methods

Kernel PCA

ISOMAP

Laplacian eigenmaps (LE)

Locally linear embedding (LLE)

Hessian eigenmaps (HE)

Diffusion maps

Heat-kernel embedding (HKE)

Maximum variance unfolding

...
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Other methods

Principal curves and surfaces

Curvature component analysis (CCA)

Manifold charting

Local tangent-space alignment (LTSA)

Unsupervised kernel regression

...
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Where to read about manifold learning?

There are numerous classical and recent textbooks that address
linear/non-linear dimensionality reduction. Manifold learning is a
more recent term. There are several tens of papers in the machine
learning and statistics literature: NIPS, JML, JMLR, NECO,
PAMI, etc. These books are interesting:

C. Bishop. Pattern Analysis and Machine Learning (chapter
12).

J. Shawe-Taylor & N. Cristianini. Kernel Methods in Pattern
Analysis (chapters 3, 5 & 6).

J. A. Lee & M. Verleysen. Nonlinear Dimensionality
Reduction.

A. J. Izenman. Modern Multivariate Statistical Learning
Techniques.
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Mathematical notations

Scalars: a, A, α, λ ...

Vectors: u is a column vector while its transpose u> is a row
vector:

u> = (u1 . . . ui . . . un)

1 denotes a column vectors of 1’s.

Matrices: U and its transpose U>

U = [u1 . . .un] =
[
u11 . . . un1

u12 . . . un2

]
In is the identity matrix of size n× n.

Im×n,m < n is a matrix formed with the top m rows of In.
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Dot-products, norms, distances, etc.

Dot-product: 〈xi,xj〉 =
∑

k xikxjk = x>i xj

Vector norm: ‖x‖2 = 〈x,x〉
Distance: ‖xi − xj‖2 = 〈xi,xi〉+ 〈xj ,xj〉 − 2〈xi,xj〉
Matrix norm: ‖A‖2F =

∑
i

∑
j A

2
ij = tr(A>A)

This norm is known as the Frobenius norm and it is the most
used matrix norm.

Radu Horaud Data Analysis and Manifold Learning; Lecture 1



An Intuitive Introduction to PCA and MDS

Let’s start with a few more notations:

The input (observation) space: X = [x1 . . .xi . . .xn],
xi ∈ RD

The output (latent) space: Y = [y1 . . .yi . . .yn], yi ∈ Rd

Projection: Y = Q>X with Q> a d×D matrix.

Reconstruction: X = QY with Q a D × d matrix.

Q>Q = Id

Reconstruction will be useful for building a generative model –
probabilistic PCA.
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Computing the spread of the data

We start with n scalars x1 . . . xn; the mean and the variance
are given by:

x =
1
n

∑
i

xi σx =
1
n

∑
i

(xi − x)2 =
1
n

∑
i

x2
i − x2

More generally, for the data set X:

The mean: x = 1
n

∑
i xi

The covariance matrix is of dimension D ×D:

ΣX =
1
n

∑
i

(xi − x)(xi − x)> =
1
n

XX> − x x>
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The Gram matrix

The Gram matrix: Consider n data points x1 . . .xn with
mean x. The (i, j) entry of the associated centred Gram
matrix is the dot-product of two centred data points:

Gij = 〈xi − x,xj − x〉

The centred Gram matrix writes:

G =
(
X− x1>

)> (
X− x1>

)
= JX>XJ

with: J = I− 1
n11>. G is an n× n positive semi-definite

symmetric matrix.

Note that its dimension corresponds to the number of data
points and not to the dimension of the underlying space.
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The covariance and Gram matrices, side by side

For the same centred data set we have:

A D ×D covariance matrix: ΣX = 1
nXX>

A n× n Gram matrix: GX = X>X

Let X = USV> be the singular value decomposition (SVD)
of the data set.

We obtain for our matrices

nΣX = US2U> and GX = VS2V>
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Changing the coordinate frame
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Orthogonal transformations

If we ignore the translation between two frames, D is reduced
to a D ×D orthonormal matrix R:

RR> = ID

The rows are mutually orthogonal, the columns are mutually
orthogonal, the norm of each row- and column-vector is equal
to 1.

det(R) = ±1
These matrices belong to OD which is a notation for the
orthogonal group of dimension D

The special orthogonal group SOD is characterized by
det(R) = +1
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Projecting the data
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”Reconstructing” the data
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Projection Versus Reconstruction

Projection of RD onto Rd: Remove D − d rows of R> to
obtain a d×D row-orthogonal matrix Q>.

Reconstructin of RD from R
d: Remove D − d columns of R

to obtain a D × d column-orthogonal matrix Q

Q>Q = Id but QQ> 6= ID !!

Questions:

How to choose the low-dimensional reference frame?
How to choose d?
How to select d principal directions?

Both PCA and MDS attempt to answer these questions.
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Maximum Variance Formulation of PCA

Let’s project the data X onto a line along a unit vector u.
The variance along this line writes:

σu =
1
n

∑
i

(u>(xi − x))2

= u>

(
1
n

∑
i

(xi − x)(xi − x)>
)

u

= u>ΣXu

Maximizing the variance under the constraint that u is a unit
vector:

u? = arg max
{

u>ΣXu + λ(1− u>u)
}
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Maximum variance solution

First note that the D ×D covariance matrix is a symmetric
semi-definite positive matrix. Therefore the quadratic form
above is non-negative.

Taking the derivative with respect to u and setting the
derivatives equal to 0, yields: ΣXu = λu

Making use of the fact that u is a unit vector we obtain:
σu = λ

Solution: The principal or largest eigenvector–eigenvalue pair
(umax,λmax) of the covariance matrix.
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Eigendecomposition of the Covariance Matrix

Assume that the data are centred:

nΣX = XX> = UΛU>

Where U is a D ×D orthogonal matrix and Λ is the diagonal
matrix of eigenvalues.

If the data point lie on a lower dimensional space:

rank(X) = d < D

and
Λ = [λ1 . . . λd 0 . . . 0]

nΣX = ŨΛdŨ>

Ũ = UID×d is a D × d column-orthgonal matrix
(reconstruction).

Ũ> = I>D×dU
> is a d×D row-orthgonal matrix (projection).
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Data Projection on a Linear Subspace

From Y = Q>X we have

YY> = Q>XX>Q = Q>ŨΛdŨ>Q

1 The projected data has a diagonal covariance matrix:
YY> = Λd, by identification we obtain

Q> = Ũ>

2 The projected data has an identity covariance matrix, this is
called whitening the data: YY> = Id

Q> = Λ−
1
2

d Ũ>

Projection of the data points onto principal direction ui:

(y1 . . . yn) = λ
−1/2
i︸ ︷︷ ︸

whitening

u>i (x1 . . .xn)
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Illustration of PCA - the input data

Radu Horaud Data Analysis and Manifold Learning; Lecture 1



Illustration of PCA - centering the data
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Illustration of PCA - principal eigenvectors of the data
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Metric MDS

MDS uses the Gram matrix (dot-products). The data points
X are not explicitly required.

Minimization criterion:

min
Y
‖GX −Y>Y‖2F with GX = ṼΛdṼ>

Note that:

‖GX−Y>Y‖2F = tr(G>XGX)+ tr((Y>Y)2)−2tr(GXY>Y)

The criterion becomes:
minY

{
tr((Y>Y)2)− 2tr(GXY>Y)

}
and the solution and

its covariance are:

Y = Λ
1
2
d Ṽ> , nΣY = YY> = Λd
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ISOMAP (non-metric MDS)

This is the first example of a method that can deal with a
data set that does not span a linear space.

ISOMAP (Tenenbaum et al. 2000) is a method that does
exactly this:

1 Use the K nearest neighbor algorithm (KNN) to build a sparse
graph over the data

2 Compute the geodesic distances between all the vertex pairs
3 Apply the MDS algorithm
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