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Introduction

@ | do not have a formal definition of manifold learning
@ The general philosophy of what we want to study:
e Input: An unorganized cloud of points in RP, where D (the
dimension of the observation space) may be arbitrarily large.
o Output: An intrinsic representation (parameterization) of the
linear or non-linear subspace that best characterizes the data.
o Linear dimensionality reduction: find a subspace R% ¢ R
with d < D, possibly d < D.

@ Non-linear dimensionality reduction: find a manifold M C R
and a global parameterization of that manifold.
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Metric spaces
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Manifolds
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Some definitions

@ Metric space: one can compute the distance between any
two points, e.g., Euclidean distances and Euclidean spaces.

@ Manifold: every point has a neighborhood that is
homeomorphic to an open subset of an Euclidean space.

@ The dimension of a manifold is equal to the dimension of this
Euclidean space

@ One may say that a manifold is locally Euclidean while
globally its structure is more complex.

@ A Riemannian manifold is differentiable; the tangent space at
each point on the manifold is an Euclidean space. The
dimension of the tangent space is equal to the dimension of
the manifold.
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Discrete-data analysis and manifolds

@ The theoretical properties of continous spaces/manifolds do
not easily extend to point clouds.

@ Ideally, one would like to deal with dense data that are
uniformly sampled from a linear or a non-linear space.

@ Of course, this is rarely the case and one is left with the
difficult task of analysing sparse and/or non-uniform sampled
data.

@ The representation of choice is an undirected graph:

o Linear case: it is a complete (fully connected) graph — easy
case.

o Non-linear case: it is a sparse (locally connected) graph —
difficult case.
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Methods for linear dimensionality reduction

Preamble: The space spanned by the data is linear and not the
method itself!

e Principal component analysis (PCA): It represents the
data using the directions of maximum variance; it boils down
to compute the principal eigenvectors of the covariance matrix
of the data.

e Multidimensional scaling (MDS): It is a distance preserving
method. It first computes a matrix whose entries are the
pairwise dot-products between the data points and then it
represents the data using the principal vectors of this Gram
matrix.

@ It can be shown that PCA and MDS are somehow equivalent:

e PCA needs the point coordinates
e MDS only needs the pairwise dot-products
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Methods for non-linear dimensionality reduction

o Graph-based methods: The first step is to build a sparse
graph with nodes representing data points and edges
representing neighborhood relations. The second step is to
build a graph matrix. The third step is to compute the
principal eigenvectors of this matrix.

o Kernel-based methods: They use a kernel function to
evaluate the dot-product and to construct a Gram matrix.
They may be seen as a generalization of MDS. They can also
be refered to as graph-based kernel methods (more on this
later).

@ Many other methods can be found in the literature and in
textbooks.
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Graph-based and kernel methods

Kernel PCA

ISOMAP

Laplacian eigenmaps (LE)
Locally linear embedding (LLE)
Hessian eigenmaps (HE)
Diffusion maps

Heat-kernel embedding (HKE)

Maximum variance unfolding
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Other methods

Principal curves and surfaces
Curvature component analysis (CCA)
Manifold charting

Local tangent-space alignment (LTSA)

Unsupervised kernel regression

Radu Horaud Data Analysis and Manifold Learning; Lecture 1



Where to read about manifold learning?

There are numerous classical and recent textbooks that address
linear/non-linear dimensionality reduction. Manifold learning is a
more recent term. There are several tens of papers in the machine
learning and statistics literature: NIPS, JML, JMLR, NECO,
PAMI, etc. These books are interesting:

e C. Bishop. Pattern Analysis and Machine Learning (chapter
12).

@ J. Shawe-Taylor & N. Cristianini. Kernel Methods in Pattern
Analysis (chapters 3, 5 & 6).

@ J. A. Lee & M. Verleysen. Nonlinear Dimensionality
Reduction.

@ A. J. Izenman. Modern Multivariate Statistical Learning
Techniques.
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Mathematical notations

@ Scalars: a, A, a, A ...
@ Vectors: u is a column vector while its transpose u | is a row
vector:
T _
u = (Up...U... Up)
@ 1 denotes a column vectors of 1's.
@ Matrices: U and its transpose U
U:[ul...un]:[ 1 ”1]
U ... Up2
o I, is the identity matrix of size n x n.
o I,,xn,m < n is a matrix formed with the top m rows of L,,.
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Dot-products, norms, distances, etc.

o Dot-product: (x;, ;) = > 1 TikTjr = az;-r:z:j

e Vector norm: ||z||? = (z,x)

e Distance: |z — x;|? = (zi, z;) + (xj, ;) — 2(x4, ;)

o Matrix norm: [[A|% =", > A2 =tr(ATA)

@ This norm is known as the Frobenlus norm and it is the most

used matrix norm.

Radu Horaud Data Analysis and Manifold Learning; Lecture 1



An Intuitive Introduction to PCA and MDS

@ Let's start with a few more notations:

The input (observation) space: X = [x1... ;... Ty,

x; € RP

The output (latent) space: Y = [y ...¥;...y,], y; € R?
Projection: Y = Q"X with Q' a d x D matrix.
Reconstruction: X = QY with Q a D x d matrix.
Q'Q=1,

Reconstruction will be useful for building a generative model —
probabilistic PCA.
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Computing the spread of the data

@ We start with n scalars x7 ... x,; the mean and the variance
are given by:

__ 1 1 2 1 2 -2

:C:EZ% UIZEZ(%—%) zﬁin—x
(2 (2 (2

@ More generally, for the data set X:

w1 ,
@ Themean: T= -5 x;

@ The covariance matrix is of dimension D x D:

_ _ 1 S
Yx = - z:(alcZ —Z)(x; —T) = EXXT —TE
3
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The Gram matrix

@ The Gram matrix: Consider n data points @7 ...x, with
mean Z. The (i, ) entry of the associated centred Gram
matrix is the dot-product of two centred data points:

Gz‘j = <acz —x,T; — f>
@ The centred Gram matrix writes:
T
G-= (X _ 51T> (X _ 51T> —JX"XJ

with: J =1-— %11T. G is an n X n positive semi-definite
symmetric matrix.

@ Note that its dimension corresponds to the number of data
points and not to the dimension of the underlying space.
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The covariance and Gram matrices, side by side

For the same centred data set we have:
A D x D covariance matrix: Xy = %XXT
A n x n Gram matrix: Gy = XX

Let X = USV be the singular value decomposition (SVD)
of the data set.

@ We obtain for our matrices

nXy =US?’U" and Gy = VS?V'
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Changing the coordinate frame
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Orthogonal transformations

@ If we ignore the translation between two frames, D is reduced
to a D x D orthonormal matrix R:

e RR" =1Ip
@ The rows are mutually orthogonal, the columns are mutually

orthogonal, the norm of each row- and column-vector is equal
to 1.

o det(R) = +£1
@ These matrices belong to Op which is a notation for the
orthogonal group of dimension D

o The special orthogonal group SOp is characterized by
det(R) = +1
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Projecting the data

projection Y

—

O

Latent space

Observed space
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"Reconstructing” the data

Latent space

Observed space

reconstruction
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Projection Versus Reconstruction

@ Projection of R” onto R%: Remove D — d rows of R to
obtain a d x D row-orthogonal matrix Q.

Reconstructin of RY from R%: Remove D — d columns of R
to obtain a D x d column-orthogonal matrix Q

Q'Q=1I,but QQ" #1Ip !

Questions:
o How to choose the low-dimensional reference frame?
e How to choose d?
e How to select d principal directions?

@ Both PCA and MDS attempt to answer these questions.
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Maximum Variance Formulation of PCA

@ Let's project the data X onto a line along a unit vector u.
The variance along this line writes:

ou = Y @ - @)

= uTEXu

@ Maximizing the variance under the constraint that w is a unit
vector:

u* = arg max {uTEXu + A1 - uTu)}
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Maximum variance solution

o First note that the D x D covariance matrix is a symmetric
semi-definite positive matrix. Therefore the quadratic form
above is non-negative.

@ Taking the derivative with respect to w and setting the
derivatives equal to 0, yields: ¥ xyu = Au

@ Making use of the fact that u is a unit vector we obtain:

Oy = A

@ Solution: The principal or largest eigenvector—eigenvalue pair

(Umax, Amax) Of the covariance matrix.
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Eigendecomposition of the Covariance Matrix

@ Assume that the data are centred:
nEy =XX' =UAU"

Where U is a D x D orthogonal matrix and A is the diagonal
matrix of eigenvalues.

o If the data point lie on a lower dimensional space:
rank(X) =d < D
and
A=1[\...2 0...0]
nEx = UA U

o U= Ulpyg is a D x d column-orthgonal matrix
(reconstruction).

o U' = ngdUT is a d X D row-orthgonal matrix (projection).
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Data Projection on a Linear Subspace
e From Y = Q"X we have
YY' =Q'XX'Q=Q'UA,U'Q
@ The projected data has a diagonal covariance matrix:
YY" = Ay, by identification we obtain
QT — fJ'T

@ The projected data has an identity covariance matrix, this is
called whitening the data: YY T =1,

1~
QT _ Ad ZUT
@ Projection of the data points onto principal direction wu;:

Wi--yn) = NPl (1)

whitening
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lllustration of PCA - the input data
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lllustration of PCA - centering the data
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lllustration of PCA - principal eigenvectors of the data
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Metric MDS

@ MDS uses the Gram matrix (dot-products). The data points
X are not explicitly required.

@ Minimization criterion:
min |Gx — Y'Y|% with Gx = VAGV'
@ Note that:
IGx =Y Y|%2 =tr(GLGx)+tr((Y'Y)?) —2tr(Gx YY)
@ The criterion becomes:
miny {tr((Y"Y)?) —2tr(GxY "Y)} and the solution and

its covariance are:

1
Y=A2V' 02y =YY" = Ay
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ISOMAP (non-metric MDS)

@ This is the first example of a method that can deal with a
data set that does not span a linear space.

o ISOMAP (Tenenbaum et al. 2000) is a method that does
exactly this:

© Use the K nearest neighbor algorithm (KNN) to build a sparse
graph over the data

@ Compute the geodesic distances between all the vertex pairs

© Apply the MDS algorithm

Radu Horaud Data Analysis and Manifold Learning; Lecture 1



