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Introduction

@ Assume that the data (such as 3D shapes) lie on a closed
Riemannian manifold M C R%

@ The general idea is to characterize these data by embedding
the manifold into a metric space;

@ There is no explicit description of the manifold. Instead we
have discrete data sampled from a continous surface, e.g., a
point cloud.

@ Embedding consists in two steps:

© Build an undirected weighted graph and
@ Analyze the properties of the graph using the eigenvalues and
eigenvectors of various operators or graph matrices.

@ This will reveal the intrinsic geometry of the
point-cloud/graph.
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The discrete heat operator

@ We will base our analysis on the algebraic/spectral properties
of the discrete heat operator, i.e., yet another graph matrix.

@ This matrix can also be viewed as a Gramm matrix and hence
each matrix entry can be viewed as a kernel, the heat kernel
defining a dot product in the embedded space (or feature
space).

@ The heat kernel can be used in the framework of kernel
methods.

@ Manifold embedding in a metric space with reasonable
dimension may be viewed as data preprocessing for many
machine learning/vision tasks: clustering, dimensionality
reduction, segmentation, matching, recognition, classification,
etc.
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Segmentation

[Sharma et al 2009]
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Matching

[Mateus et al 2008], [Knossow et al 2009]
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Tracking

[Varanasi et al 2008]
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Recognition

. Head
Left Arm -

Upper Torso

Right Arm - Lower Torso
. Left Thigh
- Left Calf

Right Thigh —— |
Right Calf “ Left Foot
Right Foot

Radu Horaud — ECCV'10 Tutorial Graph Analysis with the Heat Kernel



Classification

Class ?

Query Shape

Repository

Radu Horaud — ECCV'10 Tutorial Graph Analysis with the Heat Kernel



Background

o Algebraic/spectral graph theory studies the eigenvalues and
eigenvectors of the graph matrices (adjacency, Laplacian
operators).

@ Kernel methods study the data via the Gramm matrix, i.e.,
Gij =< ¢(x;), ¢(x;) >, without making explicit the feature
(embedded) space.

@ Spectral methods for dimensionality reduction (PCA, MDS,
LLE, Kernel PCA, Laplacian embedding, LTSA, etc.) search
for a low-dimensional structure in high-dimensional data.
However, we may end up in an embedded space with
dimensionality higher than the initial data.
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Outline of the tutorial

Graph matrices and their spectral properties

Random walks on undirected weighted graphs (not addressed)
Heat diffusion on a Riemannian manifold

The discrete heat operator and the heat kernel

Spectral properties

Principal component analysis and dimensionality reduction

Normalizing the embedding

Application to shape analysis: scale-space feature extraction,
segmentation, matching.
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Basic graph notations

@ We consider undirected weighted graphs:
G ={V,E} with a node set V = {vy,...,v,} and an edge set

& ={ey}.
@ Each edge ¢;; is weighted by wj;.
@ We consider real-valued functions f : V — R.

@ f is a vector indexed by the graph's vertices, hence f € R”
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Examples of graphs

Electric networks

Chemical structures

Social networks

Images

Image databases

Meshes (discretized surfaces)

Shapes

etc.
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The graph of a cloud of points

]
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K-nearest neighbor graph
e-radius graph
A fully connected clique around

each point [Weinberger & Saul
2006].

KNN may guarantee that the
graph is connected (depends on the
implementation)

e-radius does not guarantee that
the graph has one connected
component

X, X;eR?

w(i,j) >0

Possible choice:

w(i, j) = exp(—=d*(i, j) /0?)
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The weighted adjacency matrix

@ A real symmetric matrix defined by:

Q(i,j) = wi; if there is en edge ¢;;
Q=4q Q@4,5)=0 if there is no edge
Qi) =0

@ The degree matrix: D = D;; = Z?Zl Wij.
@ The graph volume: vol(G) = >""" | Dy
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The Laplacian matrix of a graph

e L=D-9.

o Example: a binary-weighted graph and its Laplacian.

2 -1 -1 0 Vi vz
-1 3 -1 -1

=14 1 2 o
0 -1 0 1 ys Vs
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Other graph matrices

@ The normalized weighted adjacency matrix
Qy =D '/2QD /2

@ The transition matrix of the associated time-reversible Markov
chain:
Qr=D'Q =D 2qQyD!?
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Other Laplacian matrices

o the normalized Laplacian:
Ly=D1'2L.D 2 =1-Qy

@ the random-walk Laplacian also referred to as the discrete
Laplace operator:

Lp=D'Lo=1-Qp
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The Laplacian as an operator

(]

Consider real-valued functions f: V — R.

f=C(f1...fn) is a vector indexed by the graph’s vertices,
hence f € R™.

@ L is an operator, g = L f, such that:

gi= > wii(fi — fr)

Vj U

@ The associated quadratic form:

FILF =D wy(fi— 1)

€ij
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Laplacian embedding: mapping a graph on an eigenvector

e Map a weighted graph onto a line such that connected nodes
stay as close as possible, i.e., minimize szzl Wii(fi — £i)%
or:

argm}n FILf with: fTf=1and fT1=0

@ The solution is the eigenvector associated with the smallest

nonzero eigenvalue of the eigenvalue problem: Lu = Au,
namely the Fiedler vector us.
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Example of mapping a shape onto the Fiedler vector
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Laplacian embedding

@ Embed the graph in a k-dimensional Euclidean space. The
embedding is given by the n x k matrix F = [f{fo... fi]
where the i-th row of this matrix — f — corresponds to the
Euclidean coordinates of the i-th graph node v;.

e We need to minimize [Belkin & Niyogi '03]:
n . .
arg min Z Wil ff = £7)* with: FTF =1L
1d kqg5=1

@ The solution is provided by the matrix of eigenvectors
corresponding to the k lowest nonzero eigenvalues of the
eigenvalue problem Lu = \u.
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Examples of one-dimensional mappings

uz

Uy

Radu Horaud — ECCV'10 Tutorial Graph Analysis with the Heat Kernel



Heat diffusion on a graph

e Diffusion on a Riemannian manifold: (% + Apm) f(z,t) =0
@ A denotes the geometric Laplace-Beltrami operator.

e f(z,t) is the distribution of heat at time ¢ and at each
manifold location.

@ By extension, % + A can be referred to as the heat
operator [Bérard et al. 1994].

@ This equation can also be written on a graph

(2 1) 100

where the vector f(t) = (fi(t)... fn(t)) is indexed by the
nodes of the graph.
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The fundamental solution

@ The fundamental solution of the (heat)-diffusion equation on
Riemannian manifolds holds in the discrete case, i.e., for
undirected weighted graphs, see [Chung 1997], [Chung & Yau
2000].

@ The solution in the discrete case is:
f(t) =H(t)£(0)
@ where H denotes the discrete heat operator :
H(t) = e
@ f(0) corresponds to the initial heat distribution:

F0)=(0...fi=1...0)

@ Starting with this distribution, the heat distribution at ¢, i.e.,
f(@t)=(f1(t)... fn(t)) is given by the i-th column of the heat
operator.
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How to compute the heat matrix?

@ The exponential of a matrix:

@ Hence:

(More on this later)
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Spectral properties of L

We start by recalling some basic facts about the combinatorial
graph Laplacian:

@ Symmetric semi-definite positive matrix: L = UAUT

@ Eigenvalues: 0 =)A; < X < ... < Ay

o Eigenvectors: u; = 1, uo,...,u,

@ )y and wugy are the Fiedler value and the Fiedler vector
° uZ-Tuj = 0;j

° uZ-T>1]l =0

o > uyp=0,Vke{2,...,n}

o —l<up<l,Vie{l,....n},Vke€{2,...,n}

n
L= Z /\kukug
k=2
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The heat matrix

H(t) = e~ tUAUT _ g —tAyT

with:
e A = Diag[e M .. e

Eigenvalues: 1 = e 0 > e 2 > | > et
Eigenvectors: same as the Laplacian matrix with their
properties (previous slide).

The heat trace (also referred to as the partition function):

n

Z(t) = trace (H) = Z e

k=1

The determinant:

det(H) = H o—tAk — —ttrace (L) _ ,—tvol(g)
k=1
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The heat matrix/kernel

@ Computing the heat matrix:

n

H(t) = Z e~ P,

k=2

where we applied a deflation to get rid of the constant

eigenvector: H — H — uju

@ The heat kernel (en entry of the matrix above):

h(i,j;t) g e ’“uikujk

Radu Horaud — ECCV'10 Tutorial Graph Analysis with the Heat Kernel



Feature-space embedding using the heat kernel

H(t) = (Ue’%m> (Ue’%tA>T

@ Each row of the n x n matrix Ue /2 can be viewed as the

coordinates of a graph vertex in a feature space, i.e., the
mapping F : V — R" !, z; = F(v;):

2 —Lex 2 T
€Tr; = e 22w ... e 2y .. e 2y,
T

@ The heat-kernel computes the inner product in feature space:

h(i,j;t) =< F(v;), F(v;) >
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Example: Shape embedding

£
AC
2é
{

< Al
),

\w

Radu Horaud — ECCV'10 Tutorial Graph Analysis with the Heat Kernel



The auto-diffusion function

@ Each diagonal term of the heat matrix corresponds to the
square Euclidean norm of a feature-space point:

h(i,i;t) = Ze P2 = || ||?

@ This is also known as the auto-diffusion function, or the
amount of heat that remains at a vertex at time ¢.

@ The local maxima/minima of this function have been used for
a feature-based scale-space representation of shapes.
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Shape description with the heat-kernel

>

Radu Horaud — ECCV'10 Tutorial Graph Analysis with the Heat Kernel



Spectral distances

@ The heat distance:

= 3 (e (g — ugp))?

k=2

@ The commute-time distance:

d¢rp(i,j) = / (e 2" (uyy, — ujp))dt
=03 2
2
_ Z <uzk jk)
- 1/2
k=2 >‘I<:/
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Principal component analysis

o With: -
X = (Ue_%m) =lzy...z... 2]

@ Remember that each column of U sums to zero.
1 1
0o —l<—e 3™ <y <e 2™ <1 V2<k<n
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Principal component analysis: the mean
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Radu Horaud — ECCV'10 Tutorial Graph Analysis with the Heat Kernel



Principal component analysis: the covariance
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Result I: The PCA of a graph/shape

@ The eigenvectors (Laplacian eigenvectors) are the principal
components of the heat-kernel embedding: hence we obtain a
maximum-variance embedding

@ The associated “hyper-ellipsoid” has eccentricities
ez /n, ... e n,

@ The embedded points are strictly contained in a
hyper-parallelepipedon with volume ]}, et
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Dimensionality reduction (1)

@ Dimensionality reduction consists in selecting the K largest
eigenvalues, K < n, conditioned by ¢, hence the criterion:
choose K such that (scree diagram)

SEE e
Yig e i/n

@ This is not practical because one needs to compute all the
eigenvalues.

a(K) =
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Dimensionality reduction (2)

@ An alternative possibility is to use the determinant of the
covariance matrix, and to choose the first K eigenvectors
such that (with o > 1):

K41 —tx
Hz’:; e t)"/”

K)=1
AL T
@ which yields:
K+1
a(K)=t (trace (L) — Z )\¢> +(n—K)lnn
=2

@ This allows to choose K for a scale t.
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Normalizing the embedding

Observe that the heat-kernels collapse to 0 at infinity:
limy_,o0 h(7,5;t) = 0. To prevent this problem, several
normalizations are possible:

@ Trace normalization
@ Unit hyper-sphere normalization

@ Time-invariant embedding
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Trace normalization

@ Observe that lim; o h(7,5;t) =0
@ Use the trace of the operator to normalize the embedding:

~ €T

with: Z(t) = S ptl et

@ the k-component of the i-coordinate writes:

()

Ti(t) =
() K+1 ¢y, 1/2
1=2 €
o At the limit:
, T
Bit—oo)=( 72 . ME 0 . 0)

where m is the multiplicity of the first non-null eigenvalue.
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Unit hyper-sphere normalization

@ The embedding lies on a unit hyper-sphere of dimension K:

~ Z;
T, = —7
R

@ The heat distance becomes a geodesic distance on a spherical
manifold:

h(i, j;t)
(h(i,ist)h(j, j;t))1/?

@ At the limit (m is the multiplicity of the largest non-null

ds(i,j;t) = arccos @T:ch = arccos

eigenvalue):
~ Y Q- N — e — A
xi(t - OO) - ( ( zn;gl “121)1/2 (Z?;gl “?1)1/2 )
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Time-invariant embedding

@ Integration over time:

LT = / H(t) = / > e Mg dt
0 0 k=2
= Z —upu, = UATU
5 Ak

o with: AT = Diag [\;', ..

o Matrix LT is called the discrete Green's function
[ChungYau2000], the Moore-Penrose pseudo-inverse of the
Laplacian.

T
@ Embedding: x; = ()\2_1/2%'2 )\[_(l_lfuiKJrl)

LAY

n

e Covariance: Sx = +Diag At S A1
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Examples of normalized embeddings

Moo

t =50 = 5000 = 500000
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Shape matching (1)

t =90, t' = 1005
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Shape matching (2)
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Shape matching (3)
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Sparse shape matching

@ Shape/graph matching is equivalent to matching the
embedded representations [Mateus et al. 2008]

@ Here we use the projection of the embeddings on a unit
hyper-sphere of dimension K and we apply rigid matching.

@ How to select ¢t and t/, i.e., the scales associated with the two
shapes to be matched?

@ How to implement a robust matching method?
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Scale selection

@ Let Sy and Sx/ be the covariance matrices of two different
embeddings X and X’ with respectively n and n’ points:

det(SX) = det(SX/)

@ det(Sx measures the volume in which the embedding X lies.
Hence, we impose that the two embeddings are contained in
the same volume.

@ From this constraint we derive:

t' trace (L) = t trace (L) + K logn/n’
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Robust matching

@ Build an association graph.

@ Search for the largest set of mutually compatible nodes
(maximal clique finding).

@ See [Sharma and Horaud 2010] (Nordia workshop) for more
details.
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Other uses of heat diffusion

e Graph partitioning / spectral clustering [Lafon and Coifman
2006], [Fouss et al. 2007]

e Constrained spectral clustering (using the time-invariant
embedding and the commute-time distance) [Sharma et al.
2010] (ECCV).

@ Supervised and semi-supervised kernel-based learning
[Shawe-Taylor and Christianini 2004].
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Segmentation and matching: (1) constrained spectral
clustering
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Segmentation and matching: (2) probabilistic label transfer
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Other examples
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Conclusions

@ A 3D shape can be viewed as a graph whose nodes are
sampled from a Riemannian manifold.

@ Laplacian embedding is the standard way of representing such
types of data in a metric (feature) space.

@ Diffusion embedding is a more general principle that allows an
elegant interpretation of the embedded space: heat kernel,
spectral distances, principal component analysis,
dimensionality reduction, data normalization, etc.

@ It also allows a scale-space representation of the graph/shape
based on the auto-diffusion function.

e It is an intrinsic representation/analysis that does not depend
on the dimensionality of the space in which the data are
observed.
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Thank you!

Radu.Horaud®@inrialpes.fr
(ask for the latest version of the slides.)

http://perception.inrialpes.fr/people/Horaud/Talks/
ECCV10-Tutorial4-Horaud.pdf
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