Intrinsic Analysis of Undirected Weighted Graphs Based on the Heat Kernel

Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/

Introduction

- Assume that the data (such as 3D shapes) lie on a closed Riemannian manifold $\mathcal{M} \subset \mathbb{R}^d$;
- The general idea is to characterize these data by embedding the manifold into a metric space;
- There is no *explicit* description of the manifold. Instead we have discrete data sampled from a continous surface, e.g., a *point cloud*.
- Embedding consists in two steps:
 - Build an undirected weighted graph and
 - Analyze the properties of the graph using the eigenvalues and eigenvectors of various operators or graph matrices.
- This will reveal the *intrinsic geometry* of the point-cloud/graph.

The discrete heat operator

- We will base our analysis on the algebraic/spectral properties of the *discrete heat operator*, i.e., yet another graph matrix.
- This matrix can also be viewed as a *Gramm matrix* and hence each matrix entry can be viewed as a kernel, the *heat kernel* defining a dot product in the embedded space (or feature space).
- The heat kernel can be used in the framework of kernel methods.
- Manifold embedding in a metric space with reasonable dimension may be viewed as data preprocessing for many machine learning/vision tasks: clustering, dimensionality reduction, segmentation, matching, recognition, classification, etc.

Segmentation

[Sharma et al 2009]

Matching

[Mateus et al 2008], [Knossow et al 2009]

Tracking

[Varanasi et al 2008]

Recognition

Classification

Background

- Algebraic/spectral graph theory studies the eigenvalues and eigenvectors of the graph matrices (adjacency, Laplacian operators).
- Kernel methods study the data via the Gramm matrix, i.e., $G_{ij} = \langle \phi(x_i), \phi(x_j) \rangle$, without making explicit the feature (embedded) space.
- Spectral methods for dimensionality reduction (PCA, MDS, LLE, Kernel PCA, Laplacian embedding, LTSA, etc.) search for a low-dimensional structure in high-dimensional data. However, we may end up in an embedded space with dimensionality **higher** than the initial data.

Outline of the tutorial

- Graph matrices and their spectral properties
- Random walks on undirected weighted graphs (not addressed)
- Heat diffusion on a Riemannian manifold
- The discrete heat operator and the heat kernel
- Spectral properties
- Principal component analysis and dimensionality reduction
- Normalizing the embedding
- Application to shape analysis: scale-space feature extraction, segmentation, matching.

Basic graph notations

- We consider *undirected weighted graphs*: $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$ with a node set $\mathcal{V} = \{v_1, \dots, v_n\}$ and an edge set $\mathcal{E} = \{e_{ij}\}.$
- Each edge e_{ij} is weighted by ω_{ij} .
- We consider real-valued functions $f: \mathcal{V} \longrightarrow \mathbb{R}$.
- $oldsymbol{f}$ is a vector indexed by the graph's vertices, hence $oldsymbol{f} \in \mathbb{R}^n$

Examples of graphs

- Electric networks
- Chemical structures
- Social networks
- Images
- Image databases
- Meshes (discretized surfaces)
- Shapes
- etc.

The graph of a cloud of points

- K-nearest neighbor graph
- ε -radius graph
- A fully connected clique around each point [Weinberger & Saul 2006].
- KNN may guarantee that the graph is connected (depends on the implementation)
- ε-radius does not guarantee that the graph has one connected component
- $oldsymbol{X}_i, oldsymbol{X}_j \in \mathbb{R}^d$
- w(i,j) > 0
- Possible choice:

 $w(i,j) = \exp(-d^2(i,j)/\sigma^2)$

The weighted adjacency matrix

• A real symmetric matrix defined by:

$$\mathbf{\Omega} = \left\{ \begin{array}{ll} \Omega(i,j) = \omega_{ij} & \text{ if there is en edge } e_{ij} \\ \Omega(i,j) = 0 & \text{ if there is no edge} \\ \Omega(i,i) = 0 \end{array} \right.$$

- The degree matrix: $\mathbf{D} = D_{ii} = \sum_{j=1}^{n} \omega_{ij}$.
- The graph volume: $\operatorname{vol}(\mathcal{G}) = \sum_{i=1}^n D_{ii}$

The Laplacian matrix of a graph

- $\mathbf{L} = \mathbf{D} \mathbf{\Omega}$.
- Example: a binary-weighted graph and its Laplacian.

$$\mathbf{L} = \begin{bmatrix} 2 & -1 & -1 & 0 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 2 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix} \qquad \qquad \begin{matrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\ \mathbf{v}_4 \end{matrix}$$

Other graph matrices

• The normalized weighted adjacency matrix

$$\mathbf{\Omega}_N = \mathbf{D}^{-1/2} \mathbf{\Omega} \mathbf{D}^{-1/2}$$

• The *transition* matrix of the associated time-reversible Markov chain:

$$\mathbf{\Omega}_R = \mathbf{D}^{-1}\mathbf{\Omega} = \mathbf{D}^{-1/2}\mathbf{\Omega}_N \mathbf{D}^{1/2}$$

Other Laplacian matrices

• the normalized Laplacian:

$$\mathbf{L}_N = \mathbf{D}^{-1/2} \mathbf{L}_C \mathbf{D}^{-1/2} = \mathbf{I} - \mathbf{\Omega}_N$$

• the *random-walk Laplacian* also referred to as the *discrete Laplace operator*:

$$\mathbf{L}_R = \mathbf{D}^{-1} \mathbf{L}_C = \mathbf{I} - \mathbf{\Omega}_R$$

The Laplacian as an operator

- Consider real-valued functions $f: \mathcal{V} \longrightarrow \mathbb{R}$.
- *f* = (*f*₁...*f_n*) is a vector indexed by the graph's vertices, hence *f* ∈ ℝⁿ.
- ${f L}$ is an operator, ${m g}={f L}{m f}$, such that:

$$g_j = \sum_{v_j \sim v_k} w_{kj} (f_j - f_k)$$

• The associated quadratic form:

$$oldsymbol{f}^{ op} \mathbf{L} oldsymbol{f} = \sum_{e_{ij}} w_{ij} (f_i - f_j)^2$$

Laplacian embedding: mapping a graph on an eigenvector

• Map a weighted graph onto a line such that connected nodes stay as close as possible, i.e., minimize $\sum_{i,j=1}^{n} W_{ij}(f_i - f_j)^2$, or:

$$\operatorname*{arg\,min}_{oldsymbol{f}} oldsymbol{f}^{ op} \mathbf{L} oldsymbol{f}$$
 with: $oldsymbol{f}^{ op} oldsymbol{f} = 1$ and $oldsymbol{f}^{ op} oldsymbol{1} = 0$

• The solution is the eigenvector associated with the smallest nonzero eigenvalue of the eigenvalue problem: $\mathbf{L}\boldsymbol{u} = \lambda \boldsymbol{u}$, namely the Fiedler vector \boldsymbol{u}_2 .

Example of mapping a shape onto the Fiedler vector

Laplacian embedding

- Embed the graph in a k-dimensional Euclidean space. The embedding is given by the $n \times k$ matrix $\mathbf{F} = [\boldsymbol{f}_1 \boldsymbol{f}_2 \dots \boldsymbol{f}_k]$ where the *i*-th row of this matrix $-\boldsymbol{f}^i$ corresponds to the Euclidean coordinates of the *i*-th graph node v_i .
- We need to minimize [Belkin & Niyogi '03]:

$$rgmin_{oldsymbol{f}_1\cdotsoldsymbol{f}_k} \sum_{i,j=1}^n W_{ij} \|oldsymbol{f}^i-oldsymbol{f}^j\|^2 ext{ with: } \mathbf{F}^ op \mathbf{F} = \mathbf{I}.$$

 The solution is provided by the matrix of eigenvectors corresponding to the k lowest nonzero eigenvalues of the eigenvalue problem Lu = λu.

Examples of one-dimensional mappings

Heat diffusion on a graph

- Diffusion on a Riemannian manifold: $\left(\frac{\partial}{\partial t} + \Delta_{\mathcal{M}}\right) f(x,t) = 0$
- $\Delta_{\mathcal{M}}$ denotes the geometric Laplace-Beltrami operator.
- f(x,t) is the distribution of heat at time t and at each manifold location.
- By extension, $\frac{\partial}{\partial t} + \Delta_M$ can be referred to as the *heat* operator [Bérard et al. 1994].
- This equation can also be written on a graph

$$\left(\frac{\partial}{\partial t} + \mathbf{L}\right) \boldsymbol{f}(t) = 0$$

where the vector $\mathbf{f}(t) = (f_1(t) \dots f_n(t))$ is indexed by the nodes of the graph.

The fundamental solution

- The fundamental solution of *the (heat)-diffusion equation on Riemannian manifolds* holds in the discrete case, i.e., for undirected weighted graphs, see [Chung 1997], [Chung & Yau 2000].
- The solution in the discrete case is:

 $\boldsymbol{f}(t) = \mathbf{H}(t)\boldsymbol{f}(0)$

 ${\ensuremath{\, \bullet }}$ where ${\ensuremath{\, H}}$ denotes the discrete heat operator :

$$\mathbf{H}(t) = e^{-t\mathbf{L}}$$

• f(0) corresponds to the initial heat distribution:

$$\boldsymbol{f}(0) = (0 \dots f_i = 1 \dots 0)$$

• Starting with this distribution, the heat distribution at t, i.e., $f(t) = (f_1(t) \dots f_n(t))$ is given by the *i*-th column of the heat operator.

How to compute the heat matrix?

• The exponential of a matrix:

$$e^{\mathbf{A}} = \sum_{k=0}^{\infty} \frac{\mathbf{A}^k}{k!}$$

• Hence:

$$e^{-t\mathbf{L}} = \sum_{k=0}^{\infty} \frac{(-t)^k}{k!} \mathbf{L}^k$$

(More on this later)

Spectral properties of L

We start by recalling some basic facts about the combinatorial graph Laplacian:

- Symmetric semi-definite positive matrix: $\mathbf{L} = \mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^\top$
- Eigenvalues: $0 = \lambda_1 < \lambda_2 \leq \ldots \leq \lambda_n$
- Eigenvectors: $oldsymbol{u}_1 = \mathbb{1}, oldsymbol{u}_2, \dots, oldsymbol{u}_n$
- λ_2 and $oldsymbol{u}_2$ are the Fiedler value and the Fiedler vector

•
$$u_i^{\top} u_j = \delta_{ij}$$

• $u_{i>1}^{\top} \mathbb{1} = 0$
• $\sum_{i=1}^n u_{ik} = 0, \forall k \in \{2, \dots, n\}$
• $-1 < u_{ik} < 1, \forall i \in \{1, \dots, n\}, \forall k \in \{2, \dots, n\}$

$$\mathbf{L} = \sum_{k=2}^n \lambda_k oldsymbol{u}_k oldsymbol{u}_k^ op$$

The heat matrix

$$\mathbf{H}(t) = e^{-t\mathbf{U}\mathbf{\Lambda}\mathbf{U}^{\top}} = \mathbf{U}e^{-t\mathbf{\Lambda}}\mathbf{U}^{\top}$$

with:

$$e^{-t\mathbf{\Lambda}} = \mathsf{Diag}\left[e^{-t\lambda_1}\dots e^{-t\lambda_n}\right]$$

- Eigenvalues: $1 = e^{-t0} > e^{-t\lambda_2} \ge \ldots \ge e^{-t\lambda_n}$
- Eigenvectors: same as the Laplacian matrix with their properties (previous slide).
- The heat trace (also referred to as the partition function):

$$Z(t) = \operatorname{trace}\left(\mathbf{H}\right) = \sum_{k=1}^{n} e^{-t\lambda_k}$$

• The determinant:

$$\det(\mathbf{H}) = \prod_{k=1}^{n} e^{-t\lambda_k} = e^{-t\mathsf{trace}\,(\mathbf{L})} = e^{-t\mathsf{vol}(\mathcal{G})}$$

The heat matrix/kernel

Computing the heat matrix:

$$\mathbf{H}(t) = \sum_{k=2}^{n} e^{-t\lambda_k} \boldsymbol{u}_k \boldsymbol{u}_k^\top$$

where we applied a *deflation* to get rid of the constant eigenvector: $\mathbf{H} \longrightarrow \mathbf{H} - \boldsymbol{u}_1 \boldsymbol{u}_1^\top$

• The heat kernel (en entry of the matrix above):

$$h(i,j;t) = \sum_{k=2}^{n} e^{-t\lambda_k} u_{ik} u_{jk}$$

Feature-space embedding using the heat kernel

$$\mathbf{H}(t) = \left(\mathbf{U}e^{-\frac{1}{2}t\mathbf{\Lambda}}\right) \left(\mathbf{U}e^{-\frac{1}{2}t\mathbf{\Lambda}}\right)^{\top}$$

Each row of the n × n matrix Ue^{-tΛ/2} can be viewed as the coordinates of a graph vertex in a feature space, i.e., the mapping F : V → ℝⁿ⁻¹, x_i = F(v_i):

$$\boldsymbol{x}_i = \begin{pmatrix} e^{-\frac{1}{2}t\lambda_2}u_{i2} & \dots & e^{-\frac{1}{2}t\lambda_k}u_{ik} & \dots & e^{-\frac{1}{2}t\lambda_n}u_{in} \end{pmatrix}^\top$$
$$= (x_{i2}\dots x_{ik}\dots x_{in})^\top$$

• The heat-kernel computes the inner product in feature space:

$$h(i,j;t) = \langle F(v_i), F(v_j) \rangle$$

Example: Shape embedding

The auto-diffusion function

• Each diagonal term of the heat matrix corresponds to the square Euclidean norm of a feature-space point:

$$h(i,i;t) = \sum_{k=2}^{n} e^{-t\lambda_k} u_{ik}^2 = \|\boldsymbol{x}_i\|^2$$

- This is also known as the auto-diffusion function, or the amount of heat that remains at a vertex at time *t*.
- The local maxima/minima of this function have been used for a feature-based scale-space representation of shapes.

Shape description with the heat-kernel

Spectral distances

• The heat distance:

$$d_t^2(i,j) = h(i,i,t) + h(j,j,t) - 2h(i,j;t)$$
$$= \sum_{k=2}^n (e^{-\frac{1}{2}t\lambda_k}(u_{ik} - u_{jk}))^2$$

• The commute-time distance:

$$d_{\mathsf{CTD}}^{2}(i,j) = \int_{t=0}^{\infty} \sum_{k=2}^{n} (e^{-\frac{1}{2}t\lambda_{k}}(u_{ik} - u_{jk}))^{2} dt$$
$$= \sum_{k=2}^{n} \left(\frac{u_{ik} - u_{jk}}{\lambda_{k}^{1/2}}\right)^{2}$$

Principal component analysis

$$\mathbf{S}_X = \frac{1}{n} \sum_{i=1}^n (\boldsymbol{x}_i - \overline{\boldsymbol{x}}) (\boldsymbol{x}_i - \overline{\boldsymbol{x}})^\top$$

$$\mathbf{X} = \left(\mathbf{U}e^{-rac{1}{2}t\mathbf{\Lambda}}
ight)^ op = [oldsymbol{x}_1\dotsoldsymbol{x}_n]$$

• Remember that each column of U sums to zero. • $-1 < -e^{-\frac{1}{2}t\lambda_k} < x_{ik} < e^{-\frac{1}{2}t\lambda_k} < 1, \forall 2 \le k \le n$ Principal component analysis: the mean

$$\overline{\boldsymbol{x}} = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i}$$

$$= \frac{1}{n} e^{-\frac{1}{2}t\boldsymbol{\Lambda}} \begin{pmatrix} \sum_{i=1}^{n} u_{i2} \\ \vdots \\ \sum_{i=1}^{n} u_{in} \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

Principal component analysis: the covariance

$$\mathbf{S}_X = \frac{1}{n} \sum_{i=1}^n \boldsymbol{x}_i \boldsymbol{x}_i^\top$$

= $\frac{1}{n} \mathbf{X} \mathbf{X}^\top$
= $\frac{1}{n} \left(\mathbf{U} e^{-\frac{1}{2}t\mathbf{\Lambda}} \right)^\top \left(\mathbf{U} e^{-\frac{1}{2}t\mathbf{\Lambda}} \right)^\top$
= $\frac{1}{n} e^{-t\mathbf{\Lambda}}$

Result I: The PCA of a graph/shape

- The eigenvectors (Laplacian eigenvectors) are the principal components of the heat-kernel embedding: hence we obtain a maximum-variance embedding
- The associated "hyper-ellipsoid" has eccentricities $e^{-t\lambda_2}/n,\ldots,e^{-t\lambda_n}/n.$
- The embedded points are strictly contained in a hyper-parallelepipedon with volume ∏ⁿ_{i=2} e^{-tλ_i}.

Dimensionality reduction (1)

• Dimensionality reduction consists in selecting the K largest eigenvalues, K < n, conditioned by t, hence the criterion: choose K such that (scree diagram)

$$\alpha(K) = \frac{\sum_{i=2}^{K+1} e^{-t\lambda_i}/n}{\sum_{i=2}^{n} e^{-t\lambda_i}/n}$$

 This is not practical because one needs to compute all the eigenvalues.

Dimensionality reduction (2)

 An alternative possibility is to use the determinant of the covariance matrix, and to choose the first K eigenvectors such that (with α > 1):

$$\alpha(K) = \ln \frac{\prod_{i=2}^{K+1} e^{-t\lambda_i}/n}{\prod_{i=2}^n e^{-t\lambda_i}/n}$$

which yields:

$$\alpha(K) = t\left(\mathsf{trace}\left(\mathbf{L}\right) - \sum_{i=2}^{K+1} \lambda_i\right) + (n-K)\ln n$$

• This allows to choose K for a scale t.

Normalizing the embedding

Observe that the heat-kernels collapse to 0 at infinity: $\lim_{t\to\infty} h(i, j; t) = 0$. To prevent this problem, several normalizations are possible:

- Trace normalization
- Unit hyper-sphere normalization
- Time-invariant embedding

Trace normalization

- Observe that $\lim_{t\to\infty} h(i,j;t) = 0$
- Use the trace of the operator to normalize the embedding:

$$\widehat{\boldsymbol{x}}_i = rac{\boldsymbol{x}_i}{\sqrt{Z(t)}}$$

with:
$$Z(t) \approx \sum_{k=2}^{K+1} e^{-t\lambda_k}$$

• the k-component of the *i*-coordinate writes:

$$\hat{x}_{ik}(t) = \frac{\left(e^{-t\lambda_k}u_{ik}^2\right)^{1/2}}{\left(\sum_{l=2}^{K+1}e^{-t\lambda_l}\right)^{1/2}}$$

• At the limit:

$$\widehat{\boldsymbol{x}}_i(t \to \infty) = \left(\begin{array}{ccc} \frac{u_{i2}}{\sqrt{m}} & \dots & \frac{u_{i\,m+1}}{\sqrt{m}} & 0 & \dots & 0 \end{array}
ight)^\top$$

where m is the multiplicity of the first non-null eigenvalue.

Unit hyper-sphere normalization

• The embedding lies on a unit hyper-sphere of dimension K:

$$\widetilde{oldsymbol{x}}_i = rac{oldsymbol{x}_i}{\|oldsymbol{x}_i\|}$$

 The heat distance becomes a geodesic distance on a spherical manifold:

$$d_{\mathcal{S}}(i,j;t) = \arccos \widetilde{\boldsymbol{x}}_i^{\top} \widetilde{\boldsymbol{x}}_j = \arccos \frac{h(i,j;t)}{(h(i,i;t)h(j,j;t))^{1/2}}$$

• At the limit (*m* is the multiplicity of the largest non-null eigenvalue):

$$\widetilde{\boldsymbol{x}}_{i}(t \to \infty) = \left(\begin{array}{ccc} \frac{u_{i2}}{\left(\sum_{l=2}^{m+1} u_{il}^{2}\right)^{1/2}} & \cdots & \frac{u_{i\,m+1}}{\left(\sum_{l=2}^{m+1} u_{il}^{2}\right)^{1/2}} & 0 & \cdots & 0\end{array}\right)$$

Time-invariant embedding

• Integration over time:

$$\begin{aligned} \mathbf{L}^{\dagger} &= \int_{0}^{\infty} \mathbf{H}(t) = \int_{0}^{\infty} \sum_{k=2}^{n} e^{-t\lambda_{k}} \boldsymbol{u}_{k} \boldsymbol{u}_{k}^{\top} dt \\ &= \sum_{k=2}^{n} \frac{1}{\lambda_{k}} \boldsymbol{u}_{k} \boldsymbol{u}_{k}^{\top} = \mathbf{U} \mathbf{\Lambda}^{\dagger} \mathbf{U}^{\top} \end{aligned}$$

• with:
$$\mathbf{\Lambda}^{\dagger} = \mathsf{Diag} \left[\lambda_2^{-1}, \dots, \lambda_n^{-1} \right].$$

- Matrix L[†] is called the *discrete Green's function* [ChungYau2000], the Moore-Penrose pseudo-inverse of the Laplacian.
- Embedding: $\boldsymbol{x}_i = \left(\lambda_2^{-1/2} u_{i2} \ \dots \ \lambda_{K+1}^{-1/2} u_{iK+1}\right)^{\top}$
- Covariance: $\mathbf{S}_X = \frac{1}{n} \text{Diag} \left[\lambda_2^{-1}, \dots, \lambda_{K+1}^{-1} \right]$

Examples of normalized embeddings

Shape matching (1)

Shape matching (2)

Shape matching (3)

Sparse shape matching

- Shape/graph matching is equivalent to matching the embedded representations [Mateus et al. 2008]
- Here we use the projection of the embeddings on a unit hyper-sphere of dimension K and we apply rigid matching.
- How to select t and t', i.e., the scales associated with the two shapes to be matched?
- How to implement a robust matching method?

Scale selection

• Let S_X and $S_{X'}$ be the covariance matrices of two different embeddings X and X' with respectively n and n' points:

$$\det(\mathbf{S}_X) = \det(\mathbf{S}_{X'})$$

- $det(S_X)$ measures the volume in which the embedding X lies. Hence, we impose that the two embeddings are contained in the same volume.
- From this constraint we derive:

$$t' \operatorname{trace} (\mathbf{L}') = t \operatorname{trace} (\mathbf{L}) + K \log n / n'$$

Robust matching

- Build an association graph.
- Search for the largest set of mutually compatible nodes (maximal clique finding).
- See [Sharma and Horaud 2010] (Nordia workshop) for more details.

Other uses of heat diffusion

- Graph partitioning / spectral clustering [Lafon and Coifman 2006], [Fouss et al. 2007]
- Constrained spectral clustering (using the time-invariant embedding and the commute-time distance) [Sharma et al. 2010] (ECCV).
- Supervised and semi-supervised kernel-based learning [Shawe-Taylor and Christianini 2004].

Segmentation and matching: (1) constrained spectral clustering

Segmentation and matching: (2) probabilistic label transfer

Other examples

Conclusions

- A 3D shape can be viewed as a graph whose nodes are sampled from a Riemannian manifold.
- Laplacian embedding is the standard way of representing such types of data in a metric (feature) space.
- Diffusion embedding is a more general principle that allows an elegant interpretation of the embedded space: heat kernel, spectral distances, principal component analysis, dimensionality reduction, data normalization, etc.
- It also allows a scale-space representation of the graph/shape based on the auto-diffusion function.
- It is an *intrinsic* representation/analysis that does not depend on the dimensionality of the space in which the data are observed.

Thank you!

Radu.Horaud@inrialpes.fr (ask for the latest version of the slides.)

http://perception.inrialpes.fr/people/Horaud/Talks/ ECCV10-Tutorial4-Horaud.pdf