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Introduction

Assume that the data (such as 3D shapes) lie on a closed
Riemannian manifold M⊂ Rd;

The general idea is to characterize these data by embedding
the manifold into a metric space;

There is no explicit description of the manifold. Instead we
have discrete data sampled from a continous surface, e.g., a
point cloud.

Embedding consists in two steps:
1 Build an undirected weighted graph and
2 Analyze the properties of the graph using the eigenvalues and

eigenvectors of various operators or graph matrices.

This will reveal the intrinsic geometry of the
point-cloud/graph.
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The discrete heat operator

We will base our analysis on the algebraic/spectral properties
of the discrete heat operator, i.e., yet another graph matrix.

This matrix can also be viewed as a Gramm matrix and hence
each matrix entry can be viewed as a kernel, the heat kernel
defining a dot product in the embedded space (or feature
space).

The heat kernel can be used in the framework of kernel
methods.

Manifold embedding in a metric space with reasonable
dimension may be viewed as data preprocessing for many
machine learning/vision tasks: clustering, dimensionality
reduction, segmentation, matching, recognition, classification,
etc.
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Segmentation

[Sharma et al 2009]
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Matching

[Mateus et al 2008], [Knossow et al 2009]
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Tracking

· · · · · ·

[Varanasi et al 2008]
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Recognition
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Classification
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Background

Algebraic/spectral graph theory studies the eigenvalues and
eigenvectors of the graph matrices (adjacency, Laplacian
operators).

Kernel methods study the data via the Gramm matrix, i.e.,
Gij =< φ(xi), φ(xj) >, without making explicit the feature
(embedded) space.

Spectral methods for dimensionality reduction (PCA, MDS,
LLE, Kernel PCA, Laplacian embedding, LTSA, etc.) search
for a low-dimensional structure in high-dimensional data.
However, we may end up in an embedded space with
dimensionality higher than the initial data.
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Outline of the tutorial

Graph matrices and their spectral properties

Random walks on undirected weighted graphs (not addressed)

Heat diffusion on a Riemannian manifold

The discrete heat operator and the heat kernel

Spectral properties

Principal component analysis and dimensionality reduction

Normalizing the embedding

Application to shape analysis: scale-space feature extraction,
segmentation, matching.
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Basic graph notations

We consider undirected weighted graphs:
G = {V, E} with a node set V = {v1, . . . , vn} and an edge set
E = {eij}.
Each edge eij is weighted by ωij .

We consider real-valued functions f : V −→ R.

f is a vector indexed by the graph’s vertices, hence f ∈ Rn
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Examples of graphs

Electric networks

Chemical structures

Social networks

Images

Image databases

Meshes (discretized surfaces)

Shapes

etc.
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The graph of a cloud of points
K-nearest neighbor graph

ε-radius graph

A fully connected clique around
each point [Weinberger & Saul
2006].

KNN may guarantee that the
graph is connected (depends on the
implementation)

ε-radius does not guarantee that
the graph has one connected
component

Xi,Xj ∈ Rd

w(i, j) > 0
Possible choice:
w(i, j) = exp(−d2(i, j)/σ2)
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The weighted adjacency matrix

A real symmetric matrix defined by:

Ω =


Ω(i, j) = ωij if there is en edge eij
Ω(i, j) = 0 if there is no edge
Ω(i, i) = 0

The degree matrix: D = Dii =
∑n

j=1 ωij .

The graph volume: vol(G) =
∑n

i=1Dii
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The Laplacian matrix of a graph

L = D−Ω.

Example: a binary-weighted graph and its Laplacian.

L =


2 −1 −1 0
−1 3 −1 −1
−1 −1 2 0
0 −1 0 1


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Other graph matrices

The normalized weighted adjacency matrix

ΩN = D−1/2ΩD−1/2

The transition matrix of the associated time-reversible Markov
chain:

ΩR = D−1Ω = D−1/2ΩND1/2
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Other Laplacian matrices

the normalized Laplacian:

LN = D−1/2LCD−1/2 = I−ΩN

the random-walk Laplacian also referred to as the discrete
Laplace operator :

LR = D−1LC = I−ΩR
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The Laplacian as an operator

Consider real-valued functions f : V −→ R.

f = (f1 . . . fn) is a vector indexed by the graph’s vertices,
hence f ∈ Rn.

L is an operator, g = Lf , such that:

gj =
∑
vj∼vk

wkj(fj − fk)

The associated quadratic form:

f>Lf =
∑
eij

wij(fi − fj)2
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Laplacian embedding: mapping a graph on an eigenvector

Map a weighted graph onto a line such that connected nodes
stay as close as possible, i.e., minimize

∑n
i,j=1Wij(fi − fj)2,

or:
arg min

f
f>Lf with: f>f = 1 and f>1 = 0

The solution is the eigenvector associated with the smallest
nonzero eigenvalue of the eigenvalue problem: Lu = λu,
namely the Fiedler vector u2.
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Example of mapping a shape onto the Fiedler vector
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Laplacian embedding

Embed the graph in a k-dimensional Euclidean space. The
embedding is given by the n× k matrix F = [f1f2 . . .fk]
where the i-th row of this matrix – f i – corresponds to the
Euclidean coordinates of the i-th graph node vi.

We need to minimize [Belkin & Niyogi ’03]:

arg min
f 1...f k

n∑
i,j=1

Wij‖f i − f j‖2 with: F>F = I.

The solution is provided by the matrix of eigenvectors
corresponding to the k lowest nonzero eigenvalues of the
eigenvalue problem Lu = λu.
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Examples of one-dimensional mappings

u2 u3

u4 u8
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Heat diffusion on a graph

Diffusion on a Riemannian manifold:
(
∂
∂t + ∆M

)
f(x, t) = 0

∆M denotes the geometric Laplace-Beltrami operator.

f(x, t) is the distribution of heat at time t and at each
manifold location.

By extension, ∂
∂t + ∆M can be referred to as the heat

operator [Bérard et al. 1994].

This equation can also be written on a graph(
∂

∂t
+ L

)
f(t) = 0

where the vector f(t) = (f1(t) . . . fn(t)) is indexed by the
nodes of the graph.
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The fundamental solution

The fundamental solution of the (heat)-diffusion equation on
Riemannian manifolds holds in the discrete case, i.e., for
undirected weighted graphs, see [Chung 1997], [Chung & Yau
2000].

The solution in the discrete case is:

f(t) = H(t)f(0)

where H denotes the discrete heat operator :

H(t) = e−tL

f(0) corresponds to the initial heat distribution:

f(0) = (0 . . . fi = 1 . . . 0)

Starting with this distribution, the heat distribution at t, i.e.,
f(t) = (f1(t) . . . fn(t)) is given by the i-th column of the heat
operator.
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How to compute the heat matrix?

The exponential of a matrix:

eA =
∞∑
k=0

Ak

k!

Hence:

e−tL =
∞∑
k=0

(−t)k

k!
Lk

(More on this later)
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Spectral properties of L

We start by recalling some basic facts about the combinatorial
graph Laplacian:

Symmetric semi-definite positive matrix: L = UΛU>

Eigenvalues: 0 = λ1 < λ2 ≤ . . . ≤ λn
Eigenvectors: u1 = 1,u2, . . . ,un

λ2 and u2 are the Fiedler value and the Fiedler vector

u>i uj = δij

u>i>11 = 0∑n
i=1 uik = 0,∀k ∈ {2, . . . , n}

−1 < uik < 1, ∀i ∈ {1, . . . , n},∀k ∈ {2, . . . , n}

L =
n∑
k=2

λkuku
>
k
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The heat matrix

H(t) = e−tUΛU>
= Ue−tΛU>

with:
e−tΛ = Diag [e−tλ1 . . . e−tλn ]

Eigenvalues: 1 = e−t0 > e−tλ2 ≥ . . . ≥ e−tλn

Eigenvectors: same as the Laplacian matrix with their
properties (previous slide).

The heat trace (also referred to as the partition function):

Z(t) = trace (H) =
n∑
k=1

e−tλk

The determinant:

det(H) =
n∏
k=1

e−tλk = e−ttrace (L) = e−tvol(G)
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The heat matrix/kernel

Computing the heat matrix:

H(t) =
n∑
k=2

e−tλkuku
>
k

where we applied a deflation to get rid of the constant
eigenvector: H −→ H− u1u

>
1

The heat kernel (en entry of the matrix above):

h(i, j; t) =
n∑
k=2

e−tλkuikujk
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Feature-space embedding using the heat kernel

H(t) =
(
Ue−

1
2
tΛ
)(

Ue−
1
2
tΛ
)>

Each row of the n× n matrix Ue−tΛ/2 can be viewed as the
coordinates of a graph vertex in a feature space, i.e., the
mapping F : V → R

n−1, xi = F (vi):

xi =
(
e−

1
2
tλ2ui2 . . . e−

1
2
tλkuik . . . e−

1
2
tλnuin

)>
= (xi2 . . . xik . . . xin)>

The heat-kernel computes the inner product in feature space:

h(i, j; t) =< F (vi), F (vj) >
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Example: Shape embedding
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The auto-diffusion function

Each diagonal term of the heat matrix corresponds to the
square Euclidean norm of a feature-space point:

h(i, i; t) =
n∑
k=2

e−tλku2
ik = ‖xi‖2

This is also known as the auto-diffusion function, or the
amount of heat that remains at a vertex at time t.

The local maxima/minima of this function have been used for
a feature-based scale-space representation of shapes.
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Shape description with the heat-kernel

t = 0 t = 50 t = 500000
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Spectral distances

The heat distance:

d2
t (i, j) = h(i, i, t) + h(j, j, t)− 2h(i, j; t)

=
n∑
k=2

(e−
1
2
tλk(uik − ujk))2

The commute-time distance:

d2
CTD(i, j) =

∫ ∞
t=0

n∑
k=2

(e−
1
2
tλk(uik − ujk))2dt

=
n∑
k=2

(
uik − ujk
λ

1/2
k

)2
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Principal component analysis

SX =
1
n

n∑
i=1

(xi − x)(xi − x)>

With:

X =
(
Ue−

1
2
tΛ
)>

= [x1 . . .xi . . .xn]

Remember that each column of U sums to zero.

−1 < −e−
1
2
tλk < xik < e−

1
2
tλk < 1,∀2 ≤ k ≤ n
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Principal component analysis: the mean

x =
1
n

n∑
i=1

xi

=
1
n
e−

1
2
tΛ


∑n

i=1 ui2
...∑n

i=1 uin


=

 0
...
0


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Principal component analysis: the covariance

SX =
1
n

n∑
i=1

xix
>
i

=
1
n

XX>

=
1
n

(
Ue−

1
2
tΛ
)> (

Ue−
1
2
tΛ
)

=
1
n
e−tΛ
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Result I: The PCA of a graph/shape

The eigenvectors (Laplacian eigenvectors) are the principal
components of the heat-kernel embedding: hence we obtain a
maximum-variance embedding

The associated “hyper-ellipsoid” has eccentricities
e−tλ2/n, . . . , e−tλn/n.

The embedded points are strictly contained in a
hyper-parallelepipedon with volume

∏n
i=2 e

−tλi .
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Dimensionality reduction (1)

Dimensionality reduction consists in selecting the K largest
eigenvalues, K < n, conditioned by t, hence the criterion:
choose K such that (scree diagram)

α(K) =
∑K+1

i=2 e−tλi/n∑n
i=2 e

−tλi/n

This is not practical because one needs to compute all the
eigenvalues.
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Dimensionality reduction (2)

An alternative possibility is to use the determinant of the
covariance matrix, and to choose the first K eigenvectors
such that (with α > 1):

α(K) = ln
∏K+1
i=2 e−tλi/n∏n
i=2 e

−tλi/n

which yields:

α(K) = t

(
trace (L)−

K+1∑
i=2

λi

)
+ (n−K) lnn

This allows to choose K for a scale t.
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Normalizing the embedding

Observe that the heat-kernels collapse to 0 at infinity:
limt→∞ h(i, j; t) = 0. To prevent this problem, several
normalizations are possible:

Trace normalization

Unit hyper-sphere normalization

Time-invariant embedding
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Trace normalization

Observe that limt→∞ h(i, j; t) = 0
Use the trace of the operator to normalize the embedding:

x̂i =
xi√
Z(t)

with: Z(t) ≈
∑K+1

k=2 e−tλk

the k-component of the i-coordinate writes:

x̂ik(t) =

(
e−tλku2

ik

)1/2(∑K+1
l=2 e−tλl

)1/2

At the limit:

x̂i(t→∞) =
(

ui2√
m

. . . ui m+1√
m

0 . . . 0
)>

where m is the multiplicity of the first non-null eigenvalue.
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Unit hyper-sphere normalization

The embedding lies on a unit hyper-sphere of dimension K:

x̃i =
xi
‖xi‖

The heat distance becomes a geodesic distance on a spherical
manifold:

dS(i, j; t) = arccos x̃>i x̃j = arccos
h(i, j; t)

(h(i, i; t)h(j, j; t))1/2

At the limit (m is the multiplicity of the largest non-null
eigenvalue):

x̃i(t→∞) =
(

ui2

(
Pm+1

l=2 u2
il)

1/2 . . . ui m+1

(
Pm+1

l=2 u2
il)

1/2 0 . . . 0
)>
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Time-invariant embedding

Integration over time:

L† =
∫ ∞

0
H(t) =

∫ ∞
0

n∑
k=2

e−tλkuku
>
k dt

=
n∑
k=2

1
λk

uku
>
k = UΛ†U>

with: Λ† = Diag [λ−1
2 , . . . , λ−1

n ].
Matrix L† is called the discrete Green’s function
[ChungYau2000], the Moore-Penrose pseudo-inverse of the
Laplacian.

Embedding: xi =
(
λ
−1/2
2 ui2 . . . λ

−1/2
K+1ui K+1

)>
Covariance: SX = 1

nDiag [λ−1
2 , . . . , λ−1

K+1]
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Examples of normalized embeddings

t = 50 t = 5000 t = 500000
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Shape matching (1)

t = 200, t′ = 201.5 t = 90, t′ = 1005
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Shape matching (2)
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Shape matching (3)
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Sparse shape matching

Shape/graph matching is equivalent to matching the
embedded representations [Mateus et al. 2008]

Here we use the projection of the embeddings on a unit
hyper-sphere of dimension K and we apply rigid matching.

How to select t and t′, i.e., the scales associated with the two
shapes to be matched?

How to implement a robust matching method?
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Scale selection

Let SX and SX′ be the covariance matrices of two different
embeddings X and X′ with respectively n and n′ points:

det(SX) = det(SX′)

det(SX measures the volume in which the embedding X lies.
Hence, we impose that the two embeddings are contained in
the same volume.

From this constraint we derive:

t′ trace (L′) = t trace (L) +K log n/n′
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Robust matching

Build an association graph.

Search for the largest set of mutually compatible nodes
(maximal clique finding).

See [Sharma and Horaud 2010] (Nordia workshop) for more
details.

i, i’

i, j’ i, l’

j, j’

k, k’

l, l’

j, k’
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Other uses of heat diffusion

Graph partitioning / spectral clustering [Lafon and Coifman
2006], [Fouss et al. 2007]

Constrained spectral clustering (using the time-invariant
embedding and the commute-time distance) [Sharma et al.
2010] (ECCV).

Supervised and semi-supervised kernel-based learning
[Shawe-Taylor and Christianini 2004].

Radu Horaud – ECCV’10 Tutorial Graph Analysis with the Heat Kernel



Segmentation and matching: (1) constrained spectral
clustering
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Segmentation and matching: (2) probabilistic label transfer
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Other examples
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Conclusions

A 3D shape can be viewed as a graph whose nodes are
sampled from a Riemannian manifold.

Laplacian embedding is the standard way of representing such
types of data in a metric (feature) space.

Diffusion embedding is a more general principle that allows an
elegant interpretation of the embedded space: heat kernel,
spectral distances, principal component analysis,
dimensionality reduction, data normalization, etc.

It also allows a scale-space representation of the graph/shape
based on the auto-diffusion function.

It is an intrinsic representation/analysis that does not depend
on the dimensionality of the space in which the data are
observed.
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Thank you!

Radu.Horaud@inrialpes.fr
(ask for the latest version of the slides.)

http://perception.inrialpes.fr/people/Horaud/Talks/

ECCV10-Tutorial4-Horaud.pdf
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