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We propose a novel method for constructing wavelet transforms of functions defined on
the vertices of an arbitrary finite weighted graph. Our approach is based on defining scaling
using the graph analogue of the Fourier domain, namely the spectral decomposition of the
discrete graph Laplacian L. Given a wavelet generating kernel g and a scale parameter t,
we define the scaled wavelet operator T t

g = g(tL). The spectral graph wavelets are then
formed by localizing this operator by applying it to an indicator function. Subject to an
admissibility condition on g, this procedure defines an invertible transform. We explore the
localization properties of the wavelets in the limit of fine scales. Additionally, we present
a fast Chebyshev polynomial approximation algorithm for computing the transform that
avoids the need for diagonalizing L. We highlight potential applications of the transform
through examples of wavelets on graphs corresponding to a variety of different problem
domains.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Many interesting scientific problems involve analyzing and manipulating structured data. Such data often consist of
sampled real-valued functions defined on domain sets themselves having some structure. The simplest such examples can
be described by scalar functions on regular Euclidean spaces, such as time series data, images or videos. However, many
interesting applications involve data defined on more topologically complicated domains. Examples include data defined on
network-like structures, data defined on manifolds or irregularly shaped domains, and data consisting of “point clouds”,
such as collections of feature vectors with associated labels. As many traditional methods for signal processing are designed
for data defined on regular Euclidean spaces, the development of methods that are able to accommodate complicated data
domains is an important problem.

Many signal processing techniques are based on transform methods, where the input data is represented in a new
basis before analysis or processing. One of the most successful types of transforms in use is wavelet analysis. Wavelets
have proved over the past 25 years to be an exceptionally useful tool for signal processing. Much of the power of wavelet
methods comes from their ability to simultaneously localize signal content in both space and frequency. For signals whose
primary information content lies in localized singularities, such as step discontinuities in time series signals or edges in
images, wavelets can provide a much more compact representation than either the original domain or a transform with
global basis elements such as the Fourier transform. An enormous body of literature exists for describing and exploiting this
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wavelet sparsity. We include a few representative references for applications to signal compression [1–5], denoising [6–10],
and inverse problems including deconvolution [11–15]. As the individual waveforms comprising the wavelet transform are
self-similar, wavelets are also useful for constructing scale invariant descriptions of signals. This property can be exploited
for pattern recognition problems where the signals to be recognized or classified may occur at different levels of zoom [16].
In a similar vein, wavelets can be used to characterize fractal self-similar processes [17].

The demonstrated effectiveness of wavelet transforms for signal processing problems on regular domains motivates the
study of extensions to irregular, non-Euclidean spaces. In this paper, we describe a flexible construction for defining wavelet
transforms for data defined on the vertices of a weighted graph. Our approach uses only the connectivity information
encoded in the edge weights, and does not rely on any other attributes of the vertices (such as their positions as embedded
in 3d space, for example). As such, the transform can be defined and calculated for any domain where the underlying
relations between data locations can be represented by a weighted graph. This is important as weighted graphs provide an
extremely flexible model for approximating the data domains of a large class of problems.

Some data sets can naturally be modeled as scalar functions defined on the vertices of graphs. For example, computer
networks, transportation (road, rail, airplane) networks or social networks can all be described by weighted graphs, with the
vertices corresponding to individual computers, cities or people respectively. The graph wavelet transform could be useful
for analyzing data defined on these vertices, where the data is expected to be influenced by the underlying topology of the
network. As a mock example problem, consider rates of infection of a particular disease among different population centers.
As the disease may be expected to spread by people traveling between different areas, the graph wavelet transform based
on a weighted graph representing the transportation network may be helpful for this type of data analysis.

Weighted graphs also provide a flexible generalization of regular grid domains. By identifying the grid points with ver-
tices and connecting adjacent grid points with edges with weights inversely proportional to the square of the distance
between neighbors, a regular lattice can be represented with weighted graph. A general weighted graph, however, has no
restriction on the regularity of vertices. For example points on the original lattice may be removed, yielding a “damaged
grid”, or placed at arbitrary locations corresponding to irregular sampling. In both of these cases, a weighted graph can
still be constructed that represents the local connectivity of the underlying data points. Wavelet transforms that rely upon
regular spaced samples will fail in these cases, however transforms based on weighted graphs may still be defined.

Similarly, weighted graphs can be inferred from mesh descriptions for geometrical domains. An enormous literature
exists on techniques for generating and manipulating meshes; such structures are widely used in applications for computer
graphics and numerical solution of partial differential equations. The transform methods we will describe thus allow the
definition of a wavelet transform for data defined on any geometrical shape that can be described by meshes.

Weighted graphs can also be used to describe the similarity relationships between “point clouds” of vectors. Many ap-
proaches for machine learning or pattern recognition problems involve associating each data instance with a collection of
feature vectors that hopefully encapsulate sufficient information about the data point to solve the problem at hand. For
example, for machine vision problems dealing with object recognition, a common preprocessing step involves extracting
keypoints and calculating the Scale Invariant Feature Transform (SIFT) features [18]. In many automated systems for clas-
sifying or retrieving text, word frequencies counts are used as feature vectors for each document [19]. After such feature
extraction, each data point may be associated to a feature vector vm ∈ R

N , where N may be very large depending on the
application. For many problems, the local distance relationships between data points are crucial for successful learning or
classification. These relationships can be encoded in a weighted graph by considering the data points as vertices and set-
ting the edge weights equal to a distance metric Am,n = d(vm, vn) for some function d : R

N × R
N → R. The spectral graph

wavelets in this setting could find a number of uses for analysis of data defined on such point clouds. They may be useful
for regularization of noisy or corrupted data on a point cloud, or could serve as a building blocks for building a hypothesis
function for learning problems.

Classical wavelets are constructed by translating and scaling a single “mother” wavelet. The transform coefficients are
then given by the inner products of the input function with these translated and scaled waveforms. Directly extending
this construction to arbitrary weighted graphs is problematic, as it is unclear how to define scaling and translation on an
irregular graph.

We approach this problem by working in the spectral graph domain, i.e. using the basis consisting of the eigenfunctions
of the graph Laplacian L. This tool from spectral graph theory [20], provides an analogue of the Fourier transform for
functions on weighted graphs. In our construction, the wavelet operator at unit scale is given as an operator-valued function
T g = g(L) for a generating kernel g . Scaling is then defined in the spectral domain, i.e. the operator T t

g at scale t is given
by g(t L). Applying this operator to an input signal f gives the wavelet coefficients of f at scale t . These coefficients
are equivalent to inner products of the signal f with the individual graph wavelets. These wavelets can be calculated by
applying this operator to a delta impulse at a single vertex, i.e. ψt,m = T t

gδm . We show that this construction is analogous to
the 1d wavelet transform for a symmetric wavelet, where the transform is viewed as a Fourier multiplier operator at each
wavelet scale.

In this paper we introduce this spectral graph wavelet transform and study several of its properties. We show that in
the fine scale limit, for sufficiently regular g , the wavelets exhibit good localization properties. With continuously defined
spatial scales, the transform is analogous to the continuous wavelet transform, and we show that it is formally invertible
subject to an admissibility condition on the kernel g . Sampling the spatial scales at a finite number of values yields a
redundant, invertible transform with overcompleteness equal to the number of spatial scales chosen. We show that in this
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case the transform defines a frame, and give a condition for computing the frame bounds depending on the selection of
spatial scales.

While we define our transform in the spectral graph domain, directly computing it via fully diagonalizing the Laplacian
operator is infeasible for problems with size exceeding a few thousand vertices. We introduce a method for approximately
computing the forward transform through operations performed directly in the vertex domain that avoids the need to
diagonalize the Laplacian. By approximating the kernel g with a low-dimensional Chebyshev polynomial, we may compute
an approximate forward transform in a manner which accesses the Laplacian only through matrix-vector multiplication.
This approach is computationally efficient if the Laplacian is sparse, as is the case for many practically relevant graphs.

We show that computation of the pseudoinverse of the overcomplete spectral graph wavelet transform is compatible
with the Chebyshev polynomial approximation scheme. Specifically, the pseudoinverse may be calculated by an iterative
conjugate gradient method that requires only application of the forward transform and its adjoint, both of which may be
computed using the Chebyshev polynomial approximation methods.

Our paper is structured as follows. Related work is discussed in Section 1.1. We review the classical wavelet transform in
Section 2, and highlight the interpretation of the wavelet acting as a Fourier multiplier operator. We then set our notation
for weighted graphs and introduce spectral graph theory in Section 4. The spectral graph wavelet transform is defined in
Section 4. In Section 5 we discuss and prove some properties of the transform. Section 6 is dedicated to the polynomial ap-
proximation and fast computation of the transform. The inverse transform is discussed in Section 7. Finally, several examples
of the transform on domains relevant for different problems are shown in Section 8.

1.1. Related work

Since the original introduction of wavelet theory for square integrable functions defined on the real line, numerous
authors have introduced extensions and related transforms for signals on the plane and higher-dimensional spaces. By
taking separable products of one-dimensional wavelets, one can construct orthogonal families of wavelets in any dimension
[21]. However, this yields wavelets with often undesirable bias for coordinate axis directions. Additionally, this approach
yields a number of wavelets that is exponential in the dimension of the space, and is unsuitable for data embedded in
spaces of large dimensionality. A large family of alternative multiscale transforms has been developed and used extensively
for image processing, including Laplacian pyramids [22], steerable wavelets [23], complex dual-tree wavelets [24], curvelets
[25], and bandlets [26]. Wavelet transforms have also been defined for certain non-Euclidean manifolds, most notably the
sphere [27,28] and other conic sections [29].

Previous authors have explored wavelet transforms on graphs, albeit via different approaches to those employed in
this paper. Crovella and Kolaczyk [30] defined wavelets on unweighted graphs for analyzing computer network traffic. Their
construction was based on the n-hop distance, such that the value of a wavelet centered at a vertex n on vertex m depended
only on the shortest-path distance between m and n. The wavelet values were such that the sum over each n-hop annulus
equaled the integral over an interval of a given zero-mean function, thus ensuring that the graph wavelets had zero mean.
Their results differ from ours in that their construction made no use of graph weights and no study of the invertibility or
frame properties of the transform was done. Smalter et al. [31] used the graph wavelets of Crovella and Kolaczyk as part of
a larger method for measuring structural differences between graphs representing chemical structures, for machine learning
of chemical activities for virtual drug screening.

Jansen et al. [32] develop a multiscale scheme for data on graphs based on lifting. Their scheme requires distances to be
assigned to each edge, which for their examples are inferred from Euclidean distances when the graph vertices correspond
to irregularly sampled points of Euclidean space. The lifting procedure is generated by using the weighted average of the
graph neighbors of each vertex for the lifting prediction step. The main difference with our method is that this lifting is
performed directly in the vertex domain, as opposed to our spectral domain approach for defining scaling.

Other authors have considered analogues of the wavelet transform for data defined on tree structures. Murtagh [33]
developed a Haar wavelet transform for rooted binary trees, known as dendrograms. This concept was expanded upon by Lee
et al. [34] who developed the treelet transform, incorporating automatic construction of hierarchical trees for multivariate
data.

Maggioni and Coifman [35] introduced “diffusion wavelets”, a general theory for wavelet decompositions based on com-
pressed representations of powers of a diffusion operator. The diffusion wavelets were described with a framework that
can apply on smooth manifolds as well as graphs. Their construction interacts with the underlying graph or manifold space
through repeated applications of a diffusion operator T , analogously to how our construction is parametrized by the choice
of the graph Laplacian L. The largest difference between their work and ours is that the diffusion wavelets are designed
to be orthonormal. This is achieved by running a localized orthogonalization procedure after applying dyadic powers of T
at each scale to yield nested approximation spaces, wavelets are then produced by locally orthogonalizing vectors spanning
the difference of these approximation spaces. While an orthogonal transform is desirable for many applications, notably
operator and signal compression, the use of the orthogonalization procedure complicates the construction of the transform,
and somewhat obscures the relation between the diffusion operator T and the resulting wavelets. In contrast our approach
is conceptually simpler, gives a highly redundant transform, and affords finer control over the selection of wavelet scales.

Maggioni and Mhaskar have developed a theory of “diffusion polynomial frames” [36] that is closely related to the
present work, in a more general quasi-metric measure space setting. While some of their localization results are similar
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to ours, they do not provide any algorithms for efficient computation of the frames. Geller and Mayeli [37] studied a con-
struction for wavelets on compact differentiable manifolds that is formally similar to our approach on weighted graphs. In
particular, they define scaling using a pseudodifferential operator tLe−tL , where L is the manifold Laplace–Beltrami operator
and t is a scale parameter, and obtain wavelets by applying this to a delta impulse. They also study the localization of the
resulting wavelets, however the methods and theoretical results in their paper are different as they are in the setting of
smooth manifolds.

2. Classical wavelet transform

We first give an overview of the classical Continuous Wavelet Transform (CWT) for L2(R), the set of square integrable
real-valued functions. We will describe the forward transform and its formal inverse, and then show how scaling may be
expressed in the Fourier domain. These expressions will provide an analogue that we will later use to define the spectral
graph wavelet transform.

In general, the CWT will be generated by the choice of a single “mother” wavelet ψ . Wavelets at different locations and
spatial scales are formed by translating and scaling the mother wavelet. We write this by

ψs,a(x) = 1

s
ψ

(
x − a

s

)
(1)

This scaling convention preserves the L1 norm of the wavelets. Other scaling conventions are common, especially those
preserving the L2 norm, however in our case the L1 convention will be more convenient. We restrict ourselves to positive
scales s > 0.

For a given signal f , the wavelet coefficient at scale s and location a is given by the inner product of f with the wavelet
ψs,a , i.e.

W f (s,a) =
∞∫

−∞

1

s
ψ∗

(
x − a

s

)
f (x)dx (2)

The CWT may be inverted provided that the wavelet ψ satisfies the admissibility condition

∞∫
0

|ψ̂(ω)|2
ω

dω = Cψ < ∞ (3)

This condition implies, for continuously differentiable ψ , that ψ̂(0) = ∫
ψ(x)dx = 0, so ψ must be zero mean.

Inversion of the CWT is given by the following relation [38]

f (x) = 1

Cψ

∞∫
0

∞∫
−∞

W f (s,a)ψs,a(x)
da ds

s
(4)

This method of constructing the wavelet transform proceeds by producing the wavelets directly in the signal domain,
through scaling and translation. However, applying this construction directly to graphs is problematic. For a given function
ψ(x) defined on the vertices of a weighted graph, it is not obvious how to define ψ(sx), as if x is a vertex of the graph
there is no interpretation of sx for a real scalar s. Our approach to this obstacle is to appeal to the Fourier domain. We will
first show that for the classical wavelet transform, scaling can be defined in the Fourier domain. The resulting expression
will give us a basis to define an analogous transform on graphs.

For the moment, we consider the case where the scale parameter is discretized while the translation parameter is left
continuous. While this type of transform is not widely used, it will provide us with the closest analogy to the spectral
graph wavelet transform. For a fixed scale s, the wavelet transform may be interpreted as an operator taking the function
f and returning the function T s f (a) = W f (s,a). In other words, we consider the translation parameter as the independent
variable of the function returned by the operator T s . Setting

ψ̄s(x) = 1

s
ψ∗

(−x

s

)
(5)

we see that this operator is given by convolution, i.e.

(
T s f

)
(a) =

∞∫
−∞

1

s
ψ∗

(
x − a

s

)
f (x)dx =

∞∫
−∞

ψ̄s(a − x) f (x)dx

= (ψ̄s � f )(a) (6)
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Taking the Fourier transform and applying the convolution theorem yields

T̂ s f (ω) = ˆ̄ψ s(ω) f̂ (ω) (7)

Using the scaling properties of the Fourier transform and the definition (5) gives

ˆ̄ψ s(ω) = ψ̂∗(sω) (8)

Combining these and inverting the transform we may write

(
T s f

)
(x) = 1

2π

∞∫
−∞

eiωxψ̂∗(sω) f̂ (ω)dω (9)

In the above expression, the scaling s appears only in the argument of ψ̂∗(sω), showing that the scaling operation can
be completely transferred to the Fourier domain. The above expression makes it clear that the wavelet transform at each
scale s can be viewed as a Fourier multiplier operator, determined by filters that are derived from scaling a single filter
ψ̂∗(ω). This can be understood as a band-pass filter, as ψ̂(0) = 0 for admissible wavelets. Expression (9) is the analogue
that we will use to later define the spectral graph wavelet transform.

Translation of the wavelets may be defined through “localizing” the wavelet operator by applying it to an impulse.
Writing δa(x) = δ(x − a), one has(

T sδa
)
(x) = 1

s
ψ∗

(
a − x

s

)
(10)

For real-valued and even ψ this reduces to (T sδa)(x) = ψa,s(x).

3. Weighted graphs and spectral graph theory

The previous section showed that the classical wavelet transform could be defined without the need to express scaling in
the original signal domain. This relied on expressing the wavelet operator in the Fourier domain. Our approach to defining
wavelets on graphs relies on generalizing this to graphs; doing so requires the analogue of the Fourier transform for signals
defined on the vertices of a weighted graph. This tool is provided by spectral graph theory. In this section we fix our
notation for weighted graphs, and motivate and define the graph Fourier transform.

3.1. Notation for weighted graphs

A weighted graph G = {E, V , w} consists of a set of vertices V , a set of edges E , and a weight function w : E → R
+

which assigns a positive weight to each edge. We consider here only finite graphs where |V | = N < ∞. The adjacency
matrix A for a weighted graph G is the N × N matrix with entries am,n where

am,n =
{

w(e) if e ∈ E connects vertices m and n

0 otherwise
(11)

In the present work we consider only undirected graphs, which correspond to symmetric adjacency matrices. We do not
consider the possibility of negative weights.

A graph is said to have loops if it contains edges that connect a single vertex to itself. Loops imply the presence of
nonzero diagonal entries in the adjacency matrix. As the existence of loops presents no significant problems for the theory
we describe in this paper, we do not specifically disallow them.

For a weighted graph, the degree of each vertex m, written as d(m), is defined as the sum of the weights of all the edges
incident to it. This implies d(m) = ∑

n am,n . We define the matrix D to have diagonal elements equal to the degrees, and
zeros elsewhere.

Every real-valued function f : V → R on the vertices of the graph G can be viewed as a vector in R
N , where the value of

f on each vertex defines each coordinate. This implies an implicit numbering of the vertices. We adopt this identification,
and will write f ∈ RN for functions on the vertices of the graph, and f (m) for the value on the mth vertex.

Of key importance for our theory is the graph Laplacian operator L. The non-normalized Laplacian is defined as L =
D − A. It can be verified that for any f ∈ R

N , L satisfies

(L f )(m) =
∑
m∼n

am,n · ( f (m) − f (n)
)

(12)

where the sum over m ∼ n indicates summation over all vertices n that are connected to the vertex m, and am,n denotes
the weight of the edge connecting m and n.

For a graph arising from a regular mesh, the graph Laplacian corresponds to the standard stencil approximation of
the continuous Laplacian (with a difference in sign). Consider the graph defined by taking vertices vm,n as points on a
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regular two-dimensional grid, with each point connected to its four neighbors with weight 1/(δx)2, where δx is the distance
between adjacent grid points. Abusing the index notation, for a function f = fm,n defined on the vertices, applying the graph
Laplacian to f yields

(L f )m,n = (4 fm,n − fm+1,n − fm−1,n − fm,n+1 − fm,n−1)/(δx)2 (13)

which is the standard 5-point stencil for approximating −∇2 f .
Some authors define and use an alternative, normalized form of the Laplacian, defined as

Lnorm = D−1/2 L D−1/2 = I − D−1/2 AD−1/2 (14)

It should be noted that L and Lnorm are not similar matrices, in particular their eigenvectors are different. As we shall see
in detail later, both operators may be used to define spectral graph wavelet transforms, however the resulting transforms
will not be equivalent. Unless noted otherwise we will use the non-normalized form of the Laplacian, however much of the
theory presented in this paper is identical for either choice. We consider that the selection of the appropriate Laplacian for
a particular problem should depend on the application at hand.

For completeness, we note the following. The graph Laplacian can be defined for graphs arising from sampling points on
a differentiable manifold. The regular mesh example described previously is a simple example of such a sampling process.
With increasing sampling density, by choosing the weights appropriately the normalized graph Laplacian operator will
converge to a differential operator on the manifold. In the case of sampling from a uniform distribution, the limit will be
the intrinsic Laplace–Beltrami operator; otherwise the limit will depend on the underlying distribution. Several authors have
studied this limiting process in detail, notably [39–41].

3.2. Graph Fourier transform

On the real line, the complex exponentials eiωx defining the Fourier transform are eigenfunctions of the one-dimensional
Laplacian operator d2

dx2 . The inverse Fourier transform

f (x) = 1

2π

∫
f̂ (ω)eiωx dω (15)

can thus be seen as the expansion of f in terms of the eigenfunctions of the Laplacian operator.
The graph Fourier transform is defined in precise analogy to the previous statement. As the graph Laplacian L is a real

symmetric matrix, it has a complete set of orthonormal eigenvectors. We denote these by χ� for � = 0, . . . , N − 1, with
associated eigenvalues λ�

Lχ� = λ�χ� (16)

As L is symmetric, each of the λ� ’s are real. For the graph Laplacian, it can be shown that the eigenvalues are all non-
negative, and that 0 appears as an eigenvalue with multiplicity equal to the number of connected components of the graph
[20]. Henceforth, we assume the graph G to be connected, we may thus order the eigenvalues such that

0 = λ0 < λ1 � λ2 � · · · � λN−1 (17)

For any function f ∈ R
N defined on the vertices of G , its graph Fourier transform f̂ is defined by

f̂ (�) = 〈χ�, f 〉 =
N∑

n=1

χ∗
� (n) f (n) (18)

where we adopt the convention that the inner product be conjugate-linear in the first argument. The inverse transform
reads as

f (n) =
N−1∑
�=0

f̂ (�)χ�(n) (19)

The Parseval relation holds for the graph Fourier transform, in particular for any f ,h ∈ R
N

〈 f ,h〉 = 〈 f̂ , ĥ〉 (20)

4. Spectral graph wavelet transform

Having defined the analogue of the Fourier transform for functions defined on the vertices of weighted graphs, we are
now ready to define the spectral graph wavelet transform (SGWT). The transform will be determined by the choice of a
kernel function g : R

+ → R
+ , which is analogous to Fourier domain wavelet ψ̂∗ in Eq. (9). This kernel g should behave as a

band-pass filter, i.e. it satisfies g(0) = 0 and limx→∞ g(x) = 0. We will defer the exact specification of the kernel g that we
use until later.
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4.1. Wavelets

The spectral graph wavelet transform is generated by wavelet operators that are operator-valued functions of the
Laplacian. One may define a measurable function of a bounded self-adjoint linear operator on a Hilbert space using the
continuous functional calculus [42]. This is achieved using the spectral representation of the operator, which in our setting
is equivalent to the graph Fourier transform defined in the previous section. In particular, for our spectral graph wavelet
kernel g , the wavelet operator T g = g(L) acts on a given function f by modulating each Fourier mode as

T̂ g f (�) = g(λ�) f̂ (�) (21)

Employing the inverse Fourier transform yields

(T g f )(m) =
N−1∑
�=0

g(λ�) f̂ (�)χ�(m) (22)

The wavelet operators at scale t is then defined by T t
g = g(t L). It should be emphasized that even though the “spatial

domain” for the graph is discrete, the domain of the kernel g is continuous and thus the scaling may be defined for any
positive real number t .

The spectral graph wavelets are then realized through localizing these operators by applying them to the impulse on a
single vertex, i.e.

ψt,n = T t
gδn (23)

Expanding this explicitly in the graph domain shows

ψt,n(m) =
N−1∑
�=0

g(tλ�)χ
∗
� (n)χ�(m) (24)

Formally, the wavelet coefficients of a given function f are produced by taking the inner product with these wavelets, as

W f (t,n) = 〈ψt,n, f 〉 (25)

Using the orthonormality of the {χ�}, it can be seen that the wavelet coefficients can also be achieved directly from the
wavelet operators, as

W f (t,n) = (
T t

g f
)
(n) =

N−1∑
�=0

g(tλ�) f̂ (�)χ�(n) (26)

Note that from Eq. (24), it can be seen that the wavelets ψt,n depend on the values of g(tx) only for x in the spectrum
of L. This implies that selection of scales appropriate for a particular problem requires some knowledge of the spectrum.
As we shall see later in Section 8.1, this will be done using an upper bound on the largest eigenvalue of L.

4.2. Scaling functions

By construction, the spectral graph wavelets ψt,n are all orthogonal to the null eigenvector χ0, and nearly orthogonal to
χ� for λ� near zero. In order to stably represent the low frequency content of f defined on the vertices of the graph, it
is convenient to introduce a second class of waveforms, analogous to the low-pass residual scaling functions from classical
wavelet analysis. These spectral graph scaling functions have an analogous construction to the spectral graph wavelets. They
will be determined by a single real-valued function h : R

+ → R, which acts as a low-pass filter, and satisfies h(0) > 0 and
h(x) → 0 as x → ∞. The scaling functions are then given by φn = Thδn = h(L)δn , and the coefficients by S f (n) = 〈φn, f 〉.

Introducing the scaling functions helps ensure stable recovery of the original signal f from the wavelet coefficients when
the scale parameter t is sampled at a discrete number of values t j , i.e. so that small perturbations in the wavelet coefficients
cannot lead to large changes in recovered f . As we shall see in detail in Section 5.3, stable recovery will be assured if the
quantity G(λ) = h(λ)2 + ∑ J

j=1 g(t jλ)2 is bounded away from zero on the spectrum of L. Representative choices for h and g
are shown in Fig. 1; the exact specification of h and g is deferred to Section 8.1.

Note that the scaling functions defined in this way are present merely to smoothly represent the low frequency content
on the graph. They do not generate the wavelets ψ through the two-scale relation as for traditional orthogonal wavelets.
The design of the scaling function generator h is thus uncoupled from the choice of wavelet kernel g , provided reasonable
tiling for G is achieved.

5. Transform properties

In this section we detail several properties of the spectral graph wavelet transform. We first show an inverse formula for
the transform analogous to that for the continuous wavelet transform. We examine the small-scale and large-scale limits,
and show that the wavelets are localized in the limit of small scales. Finally we discuss discretization of the scale parameter
and the resulting wavelet frames.
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Fig. 1. Scaling function h(λ) (blue curve), wavelet generating kernels g(t jλ), and sum of squares G (black curve), for J = 5 scales, λmax = 10, K = 20. Details
in Section 8.1. (For interpretation of colors in this figure, the reader is referred to the web version of this article.)

5.1. Continuous SGWT inverse

In order for a particular transform to be useful for signal processing, and not simply signal analysis, it must be possible
to reconstruct a signal corresponding to a given set of transform coefficients. We will show that the spectral graph wavelet
transform admits an inverse formula analogous to (4) for the continuous wavelet transform.

Intuitively, the wavelet coefficient W f (t,n) provides a measure of “how much of” the wavelet ψt,n is present in the
signal f . This suggests that the original signal may be recovered by summing the wavelets ψt,n multiplied by each wavelet
coefficient W f (t,n). The reconstruction formula below shows that this is indeed the case, subject to a non-constant weight
dt/t .

Lemma 5.1. If the SGWT kernel g satisfies the admissibility condition

∞∫
0

g2(x)

x
dx = C g < ∞ (27)

and g(0) = 0, then

1

C g

N∑
n=1

∞∫
0

W f (t,n)ψt,n(m)
dt

t
= f #(m) (28)

where f # = f − 〈χ0, f 〉χ0 . In particular, the complete reconstruction is then given by f = f # + f̂ (0)χ0 .

Proof. Using (24) and (26) to express ψt,n and W f (t,n) in the graph Fourier basis, the l.h.s. of the above becomes

1

C g

∞∫
0

1

t

∑
n

(∑
�

g(tλ�)χ�(n) f̂ (�)
∑
�′

g(tλ�′)χ∗
�′(n)χ�′(m)

)
dt

= 1

C g

∞∫
0

1

t

(∑
�,�′

g(tλ�′)g(tλ�) f̂ (�)χ�′(m)
∑

n

χ∗
�′(n)χ�(n)

)
dt (29)

The orthonormality of the χ� implies
∑

n χ∗
�′ (n)χ�(n) = δ�,�′ , inserting this above and summing over �′ gives

= 1

C g

∑
�

( ∞∫
0

g2(tλ�)

t
dt

)
f̂ (�)χ�(m) (30)

If g satisfies the admissibility condition, then the substitution u = tλ� shows that
∫ g2(tλ�)

t dt = C g independent of �, except
for when λ� = 0 at � = 0 when the integral is zero. The expression (30) can be seen as the inverse Fourier transform
evaluated at vertex m, where the � = 0 term is omitted. This omitted term is exactly equal to 〈χ0, f 〉χ0 = f̂ (0)χ0, which
proves the desired result. �

Note that for the non-normalized Laplacian, χ0 is constant on every vertex and f # above corresponds to removing the
mean of f . Formula (28) shows that the mean of f may not be recovered from the zero-mean wavelets. The situation is
different from the analogous reconstruction formula (4) for the CWT, which shows the somewhat counterintuitive result
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that it is possible to recover a nonzero-mean function by summing zero-mean wavelets. This is possible on the real line as
the Fourier frequencies are continuous; the fact that it is not possible for the SGWT should be considered a consequence of
the discrete nature of the graph domain.

While it is of theoretical interest, we note that this continuous scale reconstruction formula may not provide a practical
reconstruction in the case when the wavelet coefficients may only be computed at a discrete number of scales, as is the case
for finite computation on a digital computer. We shall revisit this and discuss other reconstruction methods in Sections 5.3
and 7.

5.2. Localization in small-scale limit

One of the primary motivations for the use of wavelets is that they provide simultaneous localization in both frequency
and time (or space). It is clear by construction that if the kernel g is localized in the spectral domain, as is loosely implied
by our use of the term band-pass filter to describe it, then the associated spectral graph wavelets will all be localized in
frequency. In order to be able to claim that the spectral graph wavelets can yield localization in both frequency and space,
however, we must analyze their behavior in the space domain more carefully.

For the classical wavelets on the real line, the space localization is readily apparent: if the mother wavelet ψ(x) is well
localized in the interval [−ε, ε], then the wavelet ψt,a(x) will be well localized within [a − εt,a + εt]. In particular, in the
limit as t → 0, ψt,a(x) → 0 for x �= a. The situation for the spectral graph wavelets is less straightforward to analyze because
the scaling is defined implicitly in the Fourier domain. We will nonetheless show that, for g sufficiently regular near 0, the
normalized spectral graph wavelet ψt, j/‖ψt, j‖ will vanish on vertices sufficiently far from j in the limit of fine scales, i.e.
as t → 0. This result will provide a quantitative statement of the localization properties of the spectral graph wavelets.

One simple notion of localization for ψt,n is given by its value on a distant vertex m, e.g. we should expect ψt,n(m) to
be small if n and m are separated, and t is small. Note that ψt,n(m) = 〈ψt,n, δm〉 = 〈T t

gδn, δm〉. The operator T t
g = g(t L) is

self-adjoint as L is self-adjoint. This shows that ψt,n(m) = 〈δn, T t
gδm〉, i.e. a matrix element of the operator T t

g .
Our approach is based on approximating g(t L) by a low order polynomial in L as t → 0. As is readily apparent by

inspecting Eq. (22), the operator T t
g depends only on the values of gt(λ) restricted to the spectrum {λ�}N−1

�=0 of L. In
particular, it is insensitive to the values of gt(λ) for λ > λN−1. If g(λ) is smooth in a neighborhood of the origin, then as
t approaches 0 the zoomed in gt(λ) can be approximated over the entire interval [0, λN−1] by the Taylor polynomial of g
at the origin. In order to transfer the study of the localization property from g to an approximating polynomial, we will
need to examine the stability of the wavelets under perturbations of the generating kernel. This, together with the Taylor
approximation will allow us to examine the localization properties for integer powers of the Laplacian L.

In order to formulate the desired localization result, we must specify a notion of distance between points m and n on
a weighted graph. We will use the shortest-path distance, i.e. the minimum number of edges for any paths connecting m
and n:

dG(m,n) = argmin
s

{k1,k2, . . . ,ks}
s.t. m = k1, n = ks, and akr ,kr+1 > 0 for 1 � r < s (31)

Note that as we have defined it, dG disregards the values of the edge weights. In particular it defines the same distance
function on G as on the binarized graph where all of the nonzero edge weights are set to unit weight.

We now state the localization result for integer powers of the Laplacian.

Lemma 5.2. Let G be a weighted graph, L the graph Laplacian (normalized or non-normalized) and s > 0 an integer. For any two
vertices m and n, if dG(m,n) > s then (Ls)m,n = 0.

Proof. First note that Li, j = 0 if i and j are distinct vertices that are not connected by a nonzero edge. By repeatedly
expressing matrix multiplication with explicit sums, we have(

Ls)
m,n =

∑
Lm,k1 Lk1,k2 . . . Lks−1,n (32)

where the sum is taken over all s − 1 length sequences k1,k2, . . . ,ks−1 with 1 � kr � N . Assume for contradiction that
(Ls)m,n �= 0. This is only possible if at least one of the terms in the above sum is nonzero, i.e. there exist k1,k2, . . . ,ks−1
such that Lm,k1 �= 0, Lk1,k2 �= 0, . . . , Lks−1 �= 0. After removing possibly repeated values of the kr ’s, this implies the existence
of a path of length less than or equal to s from m to n, so that d(m,n) � s, which contradicts the hypothesis. �

We now proceed to examining how perturbations in the kernel g affect the wavelets in the vertex domain. If two kernels
g and g̃ are close to each other in some sense, then the resulting wavelets should be close to each other. More precisely,
we have

Lemma 5.3. Let ψt,n = T t
gδn and ψ̃t,n = T t

g̃δn be the wavelets at scale t generated by the kernels g and g̃. If |g(tλ) − g̃(tλ)| � M(t)

for all λ ∈ [0, λN−1], then |ψt,n(m) − ψ̃t,n(m)| � M(t) for each vertex m. Additionally, ‖ψt,n − ψ̃t,n‖2 �
√

N M(t).
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Proof. First recall that ψt,n(m) = 〈δm, g(t L)δn〉. Thus,∣∣ψt,n(m) − ψ̃t,n(m)
∣∣ = ∣∣〈δm,

(
g(t L) − g̃(t L)

)
δn

〉∣∣
=

∣∣∣∣∑
�

χ�(m)
(

g(tλ�) − g̃(tλ�)
)
χ∗

� (n)

∣∣∣∣
� M(t)

∑
�

∣∣χ�(m)χ�(n)∗
∣∣ (33)

where we have used the Parseval relation (20) on the second line. By Cauchy–Schwartz, the above sum over � is bounded
by 1 as∑

�

∣∣χ�(m)χ∗
� (n)

∣∣ �
(∑

�

∣∣χ�(m)
∣∣2

)1/2(∑
�

∣∣χ∗
� (n)

∣∣2
)1/2

(34)

and
∑

� |χ�(m)|2 = 1 for all m, as the χ� form a complete orthonormal basis.3 Using this bound in (33) proves the first
statement.

The second statement follows immediately as

‖ψt,n − ψ̃t,n‖2
2 =

∑
m

(
ψt,n(m) − ψ̃t,n(m)

)2 �
∑

m

M(t)2 = N M(t)2 � (35)

We will prove the final localization result for kernels g which have a zero of integer multiplicity at the origin. Such
kernels can be approximated by a single monomial for small scales.

Lemma 5.4. Let g be K + 1 times continuously differentiable, satisfying g(0) = 0, g(r)(0) = 0 for all r < K , and g(K )(0) = C �= 0.
Assume that there is some t′ > 0 such that |g(K+1)(λ)| � B for all λ ∈ [0, t′λN−1]. Then, for g̃(tλ) = (C/K !)(tλ)K we have

M(t) = sup
λ∈[0,λN−1]

∣∣g(tλ) − g̃(tλ)
∣∣ � t K+1 λK+1

N−1

(K + 1)! B (36)

for all t < t′ .

Proof. As the first K − 1 derivatives of g are zero, Taylor’s formula with remainder shows, for any values of t and λ,

g(tλ) = C
(tλ)K

K ! + g(K+1)
(
x∗) (tλ)K+1

(K + 1)! (37)

for some x∗ ∈ [0, tλ]. Now fix t < t′ . For any λ ∈ [0, λN−1], we have tλ < t′λN−1, and so the corresponding x∗ ∈ [0, t′λN−1],
and so |g(K+1)(x∗) � B . This implies

∣∣g(tλ) − g̃(tλ)
∣∣ � B

t K+1λK+1

(K + 1)! � B
t K+1λK+1

N−1

(K + 1)! (38)

As this holds for all λ ∈ [0, λN−1], taking the sup over λ gives the desired result. �
We are now ready to state the complete localization result. Note that due to the normalization chosen for the wavelets, in

general ψt,n(m) → 0 as t → 0 for all m and n. Thus a non-vacuous statement of localization must include a renormalization
factor in the limit of small scales.

Theorem 5.5. Let G be a weighted graph with Laplacian L. Let g be a kernel satisfying the hypothesis of Lemma 5.4, with constants t′
and B. Let m and n be vertices of G such that dG(m,n) > K . Then there exist constants D and t′′ , such that

ψt,n(m)

‖ψt,n‖ � Dt (39)

for all t < min(t′, t′′).

3 Orthonormality typically reads as
∑

m χ∗
� (m)χ�′ (m) = δ�,�′ . To see the desired statement with the sum over �, set the matrix Ui, j = χ j(i). Orthonor-

mality implies U ∗U = I . As matrices commute with their inverses, also U U ∗ = I which implies
∑

� χl(m)χ∗
l (n) = δm,n .
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Proof. Set g̃(λ) = g(K )(0)
K ! λK and ψ̃t,n = T t

g̃δn . We have

ψ̃t,n(m) = g(K )(0)

K ! t K 〈
δm, L K δn

〉 = 0 (40)

by Lemma 5.2, as dG(m,n) > K . By the results of Lemmas 5.3 and 5.4, we have∣∣ψt,n(m) − ψ̃t,n(m)
∣∣ = ∣∣ψt,n(m)

∣∣ � t K+1C ′ (41)

for C ′ = λK+1
N−1

(K+1)! B . Writing ψt,n = ψ̃t,n + (ψt,n − ψ̃t,n) and applying the triangle inequality shows

‖ψ̃t,n‖ − ‖ψt,n − ψ̃t,n‖ � ‖ψt,n‖ (42)

We may directly calculate ‖ψ̃t,n‖ = t K g(K )(0)
K ! ‖L K δn‖, and we have ‖ψt,n − ψ̃t,n‖ �

√
Nt K+1 λK+1

N−1
(K+1)! B from Lemma 5.4. These

imply together that the l.h.s. of (42) is greater than or equal to t K (
g(K )(0)

K ! ‖L K δn‖ − t
√

N
λK+1

N−1
(K+1)! B). Together with (41), this

shows

ψt,n(m)

‖ψt,n‖ � tC ′

a − tb
(43)

with a = g(K )(0)
K ! ‖L K δn‖ and b = √

N
λK+1

N−1
(K+1)! B . An elementary calculation shows C ′t

a−tb � 2C ′
a t if t � a

2b . This implies the desired

result with D = 2C ′ K !
g(K )(0)‖L K δn‖ and t′′ = g(K )(0)‖L K δn‖(K+1)

2
√

NλK+1
N−1 B

. �
Remark. As this localization result uses the shortest-path distance defined without using the edge weights, it is only directly
useful for sparse weighted graphs where a significant number of edge weights are exactly zero. Many large-scale graphs
which arise in practice are sparse, however, so the class of sparse weighted graphs is of practical significance.

5.3. Spectral graph wavelet frames

The spectral graph wavelets depend on the continuous scale parameter t . For any practical computation, t must be
sampled to a finite number of scales. Choosing J scales {t j} J

j=1 will yield a collection of N J wavelets ψt j ,n , along with the
N scaling functions φn .

It is a natural question to ask how well behaved this set of vectors will be for representing functions on the vertices of
the graph. We will address this by considering the wavelets at discretized scales as a frame, and examining the resulting
frame bounds.

We will review the basic definition of a frame. A more complete discussion of frame theory may be found in [43] and
[44]. Given a Hilbert space H, a set of vectors Γk ∈ H form a frame with frame bounds A and B if the inequality

A‖ f ‖2 �
∑

k

∣∣〈 f ,Γk〉
∣∣2 � B‖ f ‖2 (44)

holds for all f ∈ H.
The frame bounds A and B provide information about the numerical stability of recovering the vector f from inner prod-

uct measurements 〈 f ,Γk〉. These correspond to the scaling function coefficients S f (n) and wavelet coefficients W f (t j,n) for
the frame consisting of the scaling functions and the spectral graph wavelets with sampled scales. As we shall see later in
Section 7, the speed of convergence of algorithms used to invert the spectral graph wavelet transform will depend on the
frame bounds.

Theorem 5.6. Given a set of scales {t j} J
j=1 , the set F = {φn}N

n=1 ∪ {ψt j ,n} J
j=1

N
n=1 forms a frame with bounds A, B given by

A = min
λ∈[0,λN−1] G(λ)

B = max
λ∈[0,λN−1] G(λ) (45)

where G(λ) = h2(λ) + ∑
j g(t jλ)2 .

Proof. Fix f . Using expression (26), we see∑
n

∣∣W f (t,n)
∣∣2 =

∑
n

∑
�

g(tλ�)χ�(n) f̂ (�)
∑
�′

(
g(tλ�′)χ�′(n) f̂

(
�′))∗

=
∑∣∣g(tλ�)

∣∣2∣∣ f̂ (�)
∣∣2

(46)

�
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upon rearrangement and using
∑

n χ�(n)χ∗
�′ (n) = δ�,�′ . Similarly,∑

n

∣∣S f (n)
∣∣2 =

∑
�

∣∣h(λ�)
∣∣2∣∣ f̂ (�)

∣∣2
(47)

Denote by Q the sum of squares of inner products of f with vectors in the collection F . Using (46) and (47), we have

Q =
∑

�

(∣∣h(λ�)
∣∣2 +

J∑
j=1

∣∣g(t jλ�)
∣∣2

)∣∣ f̂ (�)
∣∣2 =

∑
�

G(λ�)
∣∣ f̂ (λ�)

∣∣2
(48)

Then by the definition of A and B , we have

A
N−1∑
�=0

∣∣ f̂ (�)
∣∣2 � Q � B

N−1∑
�=0

∣∣ f̂ (�)
∣∣2

(49)

Using the Parseval relation ‖ f ‖2 = ∑
� | f̂ (�)|2 then gives the desired result. �

6. Polynomial approximation and fast SGWT

We have defined the SGWT explicitly in the space of eigenfunctions of the graph Laplacian. The naive way of computing
the transform, by directly using Eq. (26), requires explicit computation of the entire set of eigenvectors and eigenvalues
of L. This approach scales poorly for large graphs. General purpose eigenvalue routines such as the QR algorithm have
computational complexity of O (N3) and require O (N2) memory [45]. Direct computation of the SGWT through diagonalizing
L is feasible only for graphs with fewer than a few thousand vertices. In contrast, problems in signal and image processing
routinely involve data with hundreds of thousands or millions of dimensions. Clearly, a fast transform that avoids the need
for computing the complete spectrum of L is needed for the SGWT to be a useful tool for practical computational problems.

We present a fast algorithm for computing the SGWT that is based on approximating the scaled generating kernels
g by low order polynomials. Given this approximation, the wavelet coefficients at each scale can then be computed as a
polynomial of L applied to the input data. These can be calculated in a way that accesses L only through repeated matrix-
vector multiplication. This results in an efficient algorithm in the important case when the graph is sparse, i.e. contains a
small number of edges.

We first show that the polynomial approximation may be taken over a finite range containing the spectrum of L.

Lemma 6.1. Let λmax � λN−1 be any upper bound on the spectrum of L. For fixed t > 0, let p(x) be a polynomial approximant of g(tx)
with L∞ error B = supx∈[0,λmax] |g(tx) − p(x)|. Then the approximate wavelet coefficients W̃ f (t,n) = (p(L) f )n satisfy∣∣W f (t,n) − W̃ f (t,n)

∣∣ � B‖ f ‖ (50)

Proof. Using Eq. (26) we have∣∣W f (t,n) − W̃ f (t,n)
∣∣ =

∣∣∣∣∑
�

g(tλ�) f̂ (�)χ�(n) −
∑

�

p(λ�) f̂ (�)χ�(n)

∣∣∣∣
�

∑
l

∣∣g(tλ�) − p(λ�)
∣∣∣∣ f̂ (�)χ�(n)

∣∣
� B‖ f ‖ (51)

The last step follows from using Cauchy–Schwartz and the orthonormality of the χ� ’s. �
Remark. The results of the lemma hold for any λmax � λN−1. Computing extremal eigenvalues of a self-adjoint operator
is a well-studied problem, and efficient algorithms exist that access L only through matrix-vector multiplication, notably
Arnoldi iteration or the Jacobi–Davidson method [45,46]. In particular, good estimates for λN−1 may be computed at far
smaller cost than that of computing the entire spectrum of L.

For fixed polynomial degree M , the upper bound on the approximation error from Lemma 6.1 will be minimized if p is
the minimax polynomial of degree M on the interval [0, λmax]. Minimax polynomial approximations are well known, in par-
ticular it has been shown that they exist and are unique [47]. Several algorithms exist for computing minimax polynomials,
most notably the Remez exchange algorithm [48].

In this work, however, we will instead use a polynomial approximation given by the truncated Chebyshev polynomial
expansion of g(tx). It has been shown that for analytic functions in an ellipse containing the approximation interval, the
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Fig. 2. (a) Wavelet kernel g(λ) (black), truncated Chebyshev expansion (blue) and minimax polynomial approximation (red) for degree m = 20. Approxima-
tion errors shown in (b), truncated Chebyshev expansion has maximum error 0.206, minimax polynomial has maximum error 0.107. (For interpretation of
colors in this figure, the reader is referred to the web version of this article.)

truncated Chebyshev expansion gives an approximate minimax polynomial [49]. Minimax polynomials of order m are dis-
tinguished by having their approximation error reach the same extremal value at m + 2 points in their domain. As such,
they distribute their approximation error across the entire interval. We have observed that for the wavelet kernels we use
in this work, truncated Chebyshev expansions result in a maximum error only slightly higher than the true minimax poly-
nomials, and have a much lower approximation error where the wavelet kernel to be approximated is smoothly varying.
A representative example of this is shown in Fig. 2. We have observed that for small weighted graphs where the wavelets
may be computed directly in the spectral domain, the truncated Chebyshev expansion approximations give slightly lower
approximation error than the minimax polynomial approximations computed with the Remez algorithm.

For these reasons, we use approximating polynomials given by truncated Chebyshev expansions. In addition, we will
exploit the recurrence properties of the Chebyshev polynomials for efficient evaluation of the approximate wavelet coeffi-
cients. An overview of Chebyshev polynomial approximation may be found in [50], we recall here briefly a few of their key
properties.

The Chebyshev polynomials Tk(y) may be generated by the stable recurrence relation Tk(y) = 2yTk−1(y) − Tk−2(y),
with T0 = 1 and T1 = y. For y ∈ [−1,1], they satisfy the trigonometric expression Tk(y) = cos(k arccos(y)), which shows
that each Tk(y) is bounded between −1 and 1 for y ∈ [−1,1]. The Chebyshev polynomials form an orthogonal basis for
L2([−1,1], dy√

1−y2
), the Hilbert space of square integrable functions with respect to the measure dy/

√
1 − y2. In particular

they satisfy

1∫
−1

Tl(y)Tm(y)√
1 − y2

dy =
{

δl,mπ/2 if m, l > 0

π if m = l = 0
(52)

Every h ∈ L2([−1,1], dy√
1−y2

) has a convergent (in L2 norm) Chebyshev series

h(y) = 1

2
c0 +

∞∑
k=1

ck Tk(y) (53)

with Chebyshev coefficients

ck = 2

π

1∫
−1

Tk(y)h(y)√
1 − y2

dy = 2

π

π∫
0

cos(kθ)h
(
cos(θ)

)
dθ (54)

We now assume a fixed set of wavelet scales tn . For each n, approximating g(tnx) for x ∈ [0, λmax] can be done by shifting
the domain using the transformation x = a(y + 1), with a = λmax/2. Denote the shifted Chebyshev polynomials T k(x) =
Tk(

x−a
a ). We may then write

g(tnx) = 1

2
cn,0 +

∞∑
cn,k T k(x) (55)
k=1
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valid for x ∈ [0, λmax], with

cn,k = 2

π

π∫
0

cos(kθ)g
(
tn

(
a
(
cos(θ) + 1

)))
dθ (56)

For each scale t j , the approximating polynomial p j is achieved by truncating the Chebyshev expansion (55) to M j terms.
We may use exactly the same scheme to approximate the scaling function kernel h by the polynomial p0.

Selection of the values of M j may be considered a design problem, posing a trade-off between accuracy and computa-
tional cost. The fast SGWT approximate wavelet and scaling function coefficients are then given by

W̃ f (t j,n) =
(

1

2
c j,0 f +

M j∑
k=1

c j,k T k(L) f

)
n

S̃ f (n) =
(

1

2
c0,0 f +

M0∑
k=1

c0,k T k(L) f

)
n

(57)

The utility of this approach relies on the efficient computation of T k(L) f . Crucially, we may use the Chebyshev recur-
rence to compute this for each k < M j accessing L only through matrix-vector multiplication. As the shifted Chebyshev
polynomials satisfy T k(x) = 2

a (x − 1)T k−1(x) − T k−2(x), we have for any f ∈ R
N ,

T k(L) f = 2

a
(L − I)

(
T k−1(L) f

) − T k−2(L) f (58)

Treating each vector T k(L) f as a single symbol, this relation shows that the vector T k(L) f can be computed from the
vectors T k−1(L) f and T k−2(L) f with computational cost dominated by a single matrix-vector multiplication by L.

Many weighted graphs of interest are sparse, i.e. they have a small number of nonzero edges. Using a sparse matrix
representation, the computational cost of applying L to a vector is proportional to |E|, the number of nonzero edges in the
graph. The computational complexity of computing all of the Chebyshev polynomials Tk(L) f for k � M is thus O (M|E|).
The scaling function and wavelet coefficients at different scales are formed from the same set of Tk(L) f , but by combining
them with different coefficients c j,k . The computation of the Chebyshev polynomials thus need not be repeated, instead the
coefficients for each scale may be computed by accumulating each term of the form c j,k Tk(L) f as Tk(L) f is computed for
each k � M . This requires O (N) operations at scale j for each k � M j , giving an overall computational complexity for the

fast SGWT of O (M|E| + N
∑ J

j=0 M j), where J is the number of wavelet scales. In particular, for classes of graphs where
|E| scales linearly with N , such as graphs of bounded maximal degree, the fast SGWT has computational complexity O (N).
Note that if the complexity is dominated by the computation of the Tk(L) f , there is little benefit to choosing M j to vary
with j.

Applying the recurrence (58) requires memory of size 3N . The total memory requirement for a straightforward imple-
mentation of the fast SGWT would then be N( J + 1) + 3N .

6.1. Fast computation of adjoint

Given a fixed set of wavelet scales {t j} J
j=1, and including the scaling functions φn , one may consider the over-

all wavelet transform as a linear map W : R
N → R

N( J+1) defined by W f = ((Th f )T , (T t1
g f )T , . . . , (T

t J
g f )T )T . Let W̃

be the corresponding approximate wavelet transform defined by using the fast SGWT approximation, i.e. W̃ f =
((p0(L) f )T , (p1(L) f )T , . . . , (p J (L) f )T )T . We show that both the adjoint W̃ ∗ : R

N( J+1) → R
N and the composition

W ∗W : RN → RN can be computed efficiently using Chebyshev polynomial approximation. This is important as several
methods for inverting the wavelet transform or using the spectral graph wavelets for regularization can be formulated using
the adjoint operator, as we shall see in detail later in Section 7.

For any η ∈ R
N( J+1) , we consider η as the concatenation η = (ηT

0 , ηT
1 , . . . , ηT

J )
T with each η j ∈ R

N for 0 � j � J . Each
η j for j � 1 may be thought of as a subband corresponding to the scale t j , with η0 representing the scaling function
coefficients. We then have

〈η, W f 〉N( J+1) = 〈η0, Th f 〉 +
J∑

j=1

〈
η j, T

t j
g f

〉
N

= 〈
T ∗

h η0, f
〉 + 〈 J∑(

T
t j
g
)∗

η j, f

〉
=

〈
Thη0 +

J∑
T

t j
g η j, f

〉
(59)
j=1 N j=1 N
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as Th and each T
t j
g are self-adjoint. As (59) holds for all f ∈ R

N , it follows that W ∗η = Thη0 +∑ J
j=1 T

t j
g ηn , i.e. the adjoint is

given by re-applying the corresponding wavelet or scaling function operator on each subband, and summing over all scales.
This can be computed using the same fast Chebyshev polynomial approximation scheme in Eq. (57) as for the forward

transform, e.g. as W̃ ∗η = ∑ J
j=0 p j(L)η j . Note that this scheme computes the exact adjoint of the approximate forward

transform, as may be verified by replacing Th by p0(L) and T
t j
g by p j(L) in (59).

We may also develop a polynomial scheme for computing W̃ ∗W̃ . Naively computing this by first applying W̃ , then W̃ ∗
by the fast SGWT would involve computing 2 J Chebyshev polynomial expansions. By precomputing the addition of squares
of the approximating polynomials, this may be reduced to application of a single Chebyshev polynomial with twice the
degree, reducing the computational cost by a factor J . Note first that

W̃ ∗W̃ f =
J∑

j=0

p j(L)
(

p j(L) f
) =

( J∑
j=0

(
p j(L)

)2

)
f (60)

Set P (x) = ∑ J
j=0(p j(x))2, which has degree M∗ = 2 max{M j}. We seek to express P in the shifted Chebyshev basis as

P (x) = 1
2 d0 + ∑M∗

k=1 dk T k(x). The Chebyshev polynomials satisfy the product formula

Tk(x)Tl(x) = 1

2

(
Tk+l(x) + T |k−l|(x)

)
(61)

which we will use to compute the Chebyshev coefficients dk in terms of the Chebyshev coefficients c j,k for the individual
p j ’s.

Expressing this explicitly is slightly complicated by the convention that the k = 0 Chebyshev coefficient is divided by
2 in the Chebyshev expansion (55). For convenience in the following, set c′

j,k = c j,k for k � 1 and c′
j,0 = 1

2 c j,0, so that

p j(x) = ∑Mn
k=0 c′

j,k T k(x). Writing (p j(x))2 = ∑2∗Mn
k=0 d′

j,k T k(x), and applying (61), we compute

d′
j,k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2 (c′

j,0
2 + ∑Mn

i=0 c′
j,i

2
) if k = 0

1
2 (

∑k
i=0 c′

j,ic
′
j,k−i + ∑M j−k

i=0 c′
j,ic

′
j,k+i + ∑M j

i=k c′
j,ic

′
j,i−k) if 0 < k � M j

1
2 (

∑M j

i=k−M j
c′

j,ic
′
j,k−i) if M j < k � 2M j

(62)

Finally, setting dn,0 = 2d′
j,0 and d j,k = d′

j,k for k � 1, and setting dk = ∑ J
j=0 d j,k gives the Chebyshev coefficients for P (x).

We may then compute

W̃ ∗W̃ f = P (L) f = 1

2
d0 f +

M∗∑
k=1

dk T k(L) f (63)

following (57).

7. Reconstruction

For most interesting signal processing applications, merely calculating the wavelet coefficients is not sufficient. A wide
class of signal processing applications are based on manipulating the coefficients of a signal in a certain transform, and
later inverting the transform. For the SGWT to be useful for more than simply signal analysis, it is important to be able to
recover a signal corresponding to a given set of coefficients.

The SGWT is an overcomplete transform as there are more wavelets ψt j ,n than original vertices of the graph. Including
the scaling functions φn in the wavelet frame, the SGWT maps an input vector f of size N to the N( J + 1) coefficients
c = W f . As is well known, this means that W will have an infinite number of left-inverses M s.t. MW f = f . A nat-
ural choice among the possible inverses is to use the pseudoinverse L = (W ∗W )−1W ∗ . The pseudoinverse satisfies the
minimum-norm property

Lc = argmin
f ∈RN

‖c − W f ‖2 (64)

For applications which involve manipulation of the wavelet coefficients, it is very likely to need to apply the inverse to
a set of coefficients which no longer lie directly in the image of W . The above property indicates that, in this case, the
pseudoinverse corresponds to orthogonal projection onto the image of W , followed by inversion on the image of W .

Given a set of coefficients c, the pseudoinverse will be given by solving the square matrix equation (W ∗W ) f = W ∗c. This
system is too large to invert directly. Solving it may be performed using any of a number of iterative methods, including the
classical frame algorithm [43], and the faster conjugate gradients method [51]. These methods have the property that each
step of the computation is dominated by application of W ∗W to a single vector. We use the conjugate gradients method,
employing the fast polynomial approximation (63) for computing application of W̃ ∗W̃ .
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8. Implementation and examples

In this section we first give the explicit details of the wavelet and scaling function kernels used, and how we select the
scales. We then show examples of the spectral graph wavelets on several different real and synthetic data sets.

8.1. SGWT design details

Our choice for the wavelet generating kernel g is motivated by the desire to achieve localization in the limit of fine
scales. According to Theorem 5.5, localization can be ensured if g behaves as a monic power of x near the origin. We
choose g to be exactly a monic power near the origin, and to have power-law decay for large x. In between, we set g to be
a cubic spline such that g and g′ are continuous. Our g is parametrized by the integers α and β , and x1 and x2 determining
the transition regions:

g(x;α,β, x1, x2) =

⎧⎪⎨⎪⎩
x−α

1 xα for x < x1

s(x) for x1 � x � x2

xβ

2 x−β for x > x2

(65)

Note that g is normalized such that g(x1) = g(x2) = 1. The coefficients of the cubic polynomial s(x) are determined by the
continuity constraints s(x1) = s(x2) = 1, s′(x1) = α/x1 and s′(x2) = −β/x2. All of the examples in this paper were produced
using α = β = 2, x1 = 1 and x2 = 2; in this case s(x) = −5 + 11x − 6x2 + x3.

The wavelet scales t j are selected to be logarithmically equispaced between the minimum and maximum scales t J and
t1. These are themselves adapted to the upper bound λmax of the spectrum of L. The placement of the maximum scale t1 as
well as the scaling function kernel h will be determined by the selection of λmin = λmax/K , where K is a design parameter
of the transform. We then set t1 so that g(t1x) has power-law decay for x > λmin , and set t J so that g(t J x) has monic
polynomial behavior for x < λmax . This is achieved by t1 = x2/λmin and t J = x2/λmax .

For the scaling function kernel we take h(x) = γ exp(−( x
0.6λmin

)4), where γ is set such that h(0) has the same value as
the maximum value of g .

This set of scaling function and wavelet generating kernels, for parameters λmax = 10, K = 20, α = β = 2, x1 = 1, x2 = 2,
and J = 4, are shown in Fig. 1.

8.2. Illustrative examples: spectral graph wavelet gallery

As a first example of building wavelets in a point cloud domain, we consider the spectral graph wavelets constructed on
the “Swiss roll”. This example data set consists of points randomly sampled on a 2d manifold that is embedded in R

3. The
manifold is described parametrically by �x(s, t) = (t cos(t)/4π, s, t sin(t)/4π) for −1 � s � 1, π � t � 4π . For our example
we take 500 points sampled uniformly on the manifold.

Given a collection xi of points, we build a weighted graph by setting edge weights ai, j = exp(−‖x j − x j‖2/2σ 2). For
larger data sets this graph could be sparsified by thresholding the edge weights, however we do not perform this here.
In Fig. 3 we show the Swiss roll data set, and the spectral graph wavelets at four different scales localized at the same
location. We used σ = 0.1 for computing the underlying weighted graph, and J = 4 scales with K = 20 for computing the
spectral graph wavelets. In many examples relevant for machine learning, data are given in a high-dimensional space that
intrinsically lie on some underlying lower-dimensional manifold. This figure shows how the spectral graph wavelets can
implicitly adapt to the underlying manifold structure of the data, in particular notice that the support of the coarse scale
wavelets diffuses locally along the manifold and does not “jump” to the upper portion of the roll.

A second example is provided by a transportation network. In Fig. 4 we consider a graph describing the road network
for Minnesota. In this dataset, edges represent major roads and vertices their intersection points, which often but not
always correspond to towns or cities. For this example the graph is unweighted, i.e. the edge weights are all equal to unity
independent of the physical length of the road segment represented. In particular, the spatial coordinates of each vertex are
used only for displaying the graph and the corresponding wavelets, but do not affect the edge weights. We show wavelets
constructed with K = 100 and J = 4 scales.

Graph wavelets on transportation networks could prove useful for analyzing data measured at geographical locations
where one would expect the underlying phenomena to be influenced by movement of people or goods along the trans-
portation infrastructure. Possible example applications of this type include analysis of epidemiological data describing the
spread of disease, analysis of inventory of trade goods (e.g. gasoline or grain stocks) relevant for logistics problems, or
analysis of census data describing human migration patterns.

Another promising potential application of the spectral graph wavelet transform is for use in data analysis for brain
imaging. Many brain imaging modalities, notably functional MRI, produce static or time series maps of activity on the
cortical surface. Functional MRI imaging attempts to measure the difference between “resting” and “active” cortical states,
typically by measuring MRI signal correlated with changes in cortical blood flow. Due to both constraints on imaging time
and the very indirect nature of the measurement, functional MRI images typically have a low signal-to-noise ratio. There is
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Fig. 3. Spectral graph wavelets on Swiss roll data cloud, with J = 4 wavelet scales. (a) Vertex at which wavelets are centered, (b) scaling function, (c)–
(f) wavelets, scales 1–4.

thus a need for techniques for dealing with high levels of noise in functional MRI images, either through direct denoising
in the image domain or at the level of statistical hypothesis testing for defining active regions.

Classical wavelet methods have been studied for use in fMRI processing, both for denoising in the image domain [52] and
for constructing statistical hypothesis testing [53,54]. The power of these methods relies on the assumption that the under-
lying cortical activity signal is spatially localized, and thus can be efficiently represented with localized wavelet waveforms.
However, such use of wavelets ignores the anatomical connectivity of the cortex.

A common view of the cerebral cortex is that it is organized into distinct functional regions which are interconnected
by tracts of axonal fibers. Recent advances in diffusion MRI imaging, notable diffusion tensor imaging (DTI) and diffusion
spectrum imaging (DSI), have enabled measuring the directionality of fiber tracts in the brain. By tracing the fiber tracts,
it is possible to non-invasively infer the anatomical connectivity of cortical regions. This raises an interesting question of
whether knowledge of anatomical connectivity can be exploited for processing of image data on the cortical surface.

We4 have begun to address this issue by implementing the spectral graph wavelets on a weighted graph which captures
the connectivity of the cortex. Details of measuring the cortical connection matrix are described in [55]. Very briefly, the
cortical surface is first subdivided into 998 Regions of Interest (ROI’s). A large number of fiber tracts are traced, then the
connectivity of each pair of ROI’s is proportional to the number of fiber tracts connecting them, with a correction term
depending on the measured fiber length. The resulting symmetric matrix can be viewed as a weighted graph where the
vertices are the ROI’s. Fig. 5 shows example spectral graph wavelets computed on the cortical connection graph, visualized
by mapping the ROI’s back onto a 3d model of the cortex. Only the right hemisphere is shown, although the wavelets are

4 In collaboration with Dr Leila Cammoun and Prof. Jean-Philippe Thiran, EPFL, Lausanne, Dr Patric Hagmann and Prof. Reto Meuli, CHUV, Lausanne.
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Fig. 4. Spectral graph wavelets on Minnesota road graph, with K = 100, J = 4 scales. (a) Vertex at which wavelets are centered, (b) scaling function,
(c)–(f) wavelets, scales 1–4.

defined on both hemispheres. For future work we plan to investigate the use of these cortical graph wavelets for use in
regularization and denoising of functional MRI data.

A final interesting application for the spectral graph wavelet transform is the construction of wavelets on irregularly
shaped domains. As a representative example, consider that for some problems in physical oceanography one may need to
manipulate scalar data, such as water temperature or salinity, that is only defined on the surface of a given body of water.
In order to apply wavelet analysis for such data, one must adapt the transform to the potentially very complicated boundary
between land and water. The spectral wavelets handle the boundary implicitly and gracefully. As an illustration we examine
the spectral graph wavelets where the domain is determined by the surface of a lake.

For this example the lake domain is given as a mask defined on a regular grid. We construct the corresponding weighted
graph having vertices that are grid points inside the lake, and retaining only edges connecting neighboring grid points inside
the lake. We set all edge weights to unity. The corresponding graph Laplacian is thus exactly the 5-point stencil (13) for
approximating the continuous operator −∇2 on the interior of the domain; while at boundary points the graph Laplacian
is modified by the deletion of edges leaving the domain. We show an example wavelet on lake Geneva in Fig. 6. Shoreline
data was taken from the GSHHS database [56] and the lake mask was created on a 256 × 153 pixel grid using an azimuthal
equidistant projection, with a scale of 232 meters/pixel. The wavelet displayed is from the coarsest wavelet scale, using the
generating kernel described in Section 8.1 with parameters K = 100 and J = 5 scales.

For this type of domain derived by masking a regular grid, one may compare the wavelets with those obtained by simply
truncating the wavelets derived from a large regular grid. As the wavelets have compact support, the true and truncated
wavelets will coincide for wavelets located far from the irregular boundary. As can be seen in Fig. 6, however, they are
quite different for wavelets located near the irregular boundary. This comparison gives direct evidence for the ability of the
spectral graph wavelets to adapt gracefully and automatically to the arbitrarily shaped domain.

We remark that the regular sampling of data within the domain may be unrealistic for problems where data are collected
at irregularly placed sensor locations. The spectral graph wavelet transform could also be used in this case by constructing
a graph with vertices at the sensor locations, however we have not considered such an example here.
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Fig. 5. Spectral graph wavelets on cerebral cortex, with K = 50, J = 4 scales. (a) ROI at which wavelets are centered, (b) scaling function, (c)–(f) wavelets,
scales 1–4.

Fig. 6. Spectral graph wavelets on lake Geneva domain (spatial map (a), contour plot (c)); compared with truncated wavelets from graph corresponding to
complete mesh (spatial map (b), contour plot (d)). Note that the graph wavelets adapt to the geometry of the domain.
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9. Conclusions and future work

We have presented a framework for constructing wavelets on arbitrary weighted graphs. By analogy with classical
wavelet operators in the Fourier domain, we have shown that scaling may be implemented in the spectral domain of
the graph Laplacian. We have shown that the resulting spectral graph wavelets are localized in the small-scale limit, and
form a frame with easily calculable frame bounds. We have detailed an algorithm for computing the wavelets based on
Chebyshev polynomial approximation that avoids the need for explicit diagonalization of the graph Laplacian, and allows
the application of the transform to large graphs. Finally we have shown examples of the wavelets on graphs arising from
several different potential application domains.

There are many possible directions for future research for improving or extending the SGWT. One property of the trans-
form presented here is that, unlike classical orthogonal wavelet transforms, we do not subsample the transform at coarser
spatial scales. As a result the SGWT is overcomplete by a factor of J + 1 where J is the number of wavelet scales. Sub-
sampling of the SGWT can be determined by selecting a mask of vertices at each scale corresponding to the centers of the
wavelets to preserve. This is a more difficult problem on an arbitrary weighted graph than on a regular mesh, where one
may exploit the regular geometry of the mesh to perform dyadic subsampling at each scale. An interesting question for
future research would be to investigate an appropriate criterion for determining a good selection of wavelets to preserve
after subsampling. As an example, one may consider preserving the frame bounds as much as possible under the constraint
that the overall overcompleteness should not exceed a specified factor.

A related question is to consider how the SGWT would interact with graph contraction. A weighted graph may be
contracted by partitioning its vertices into disjoint sets; the resulting contracted graph has vertices equal to the number of
partitions and edge weights determined by summing the weights of the edges connecting any two partitions. Repeatedly
contracting a given weighted graph could define a multiscale representation of the weighted graph. Calculating a single
scale of the spectral graph wavelet transform for each of these contracted graphs would then yield a multiscale wavelet
analysis. This proposed scheme is inspired conceptually by the fast wavelet transform for classical orthogonal wavelets,
based on recursive filtering and subsampling. The question of how to automatically define the contraction at each scale on
an arbitrary irregular graph is itself a difficult research problem.

The spectral graph wavelets presented here are not directional. In particular when constructed on regular meshes they
yield radially symmetric waveforms. This can be understood as in this case the graph Laplacian is the discretization of the
isotropic continuous Laplacian. In the field of image processing, however, it has long been recognized that directionally
selective filters are more efficient at representing image structure. This raises the interesting question of how, and when,
graph wavelets can be constructed which have some directionality. Intuitively, this will require some notion of local direc-
tionality, i.e. some way of defining directions of all of the neighbors of a given vertex. As this would require the definition
of additional structure beyond the raw connectivity information, it may not be appropriate for completely arbitrary graphs.
For graphs which arise from sampling a known orientable manifold, such as the meshes with irregular boundary used in
Fig. 6, one may infer such local directionality from the original manifold.

For some problems it may be useful to construct graphs that mix both local and nonlocal connectivity information. As
a concrete example consider the cortical graph wavelets shown in Fig. 5. As the vertices of the graph correspond to sets of
MRI voxels grouped into ROI’s, the wavelets are defined on the ROI’s and thus cannot be used to analyze data defined on
the scale of individual voxels. Analyzing voxel scale data with the SGWT would require constructing a graph with vertices
corresponding to individual voxels. However, the nonlocal connectivity is defined only on the scale of the ROI’s. One way
of defining the connectivity for the finer graph would be as a sum Anonlocal + Alocal , where Anonlocal

m,n is the weight of the

connection between the ROI containing vertex m and the ROI containing vertex n, and Alocal
m,n indexes whether m and n are

spatial neighbors. Under this scheme we consider Alocal as implementing a “default” local connectivity not arising from any
particular measurement. Considering this raises interesting questions of how to balance the relative contributions of the
local and nonlocal connectivities, as well as how the special structure of the hybrid connectivity matrix could be exploited
for efficient computation.

The particular form of the wavelet generating kernel g used in the examples illustrating this work was chosen in a
somewhat ad hoc manner. Aside from localization in the small-scale limit which required polynomial behavior of g at the
origin, we have avoided detailed analysis of how the choice of g affects the wavelets. In particular, we have not chosen g
and the choice of spatial scales to optimize the resulting frame bounds. More detailed investigation is called for regarding
optimizing the design of g for different applications.

The fast Chebyshev polynomial approximation scheme we describe here could itself be useful independent of its applica-
tion for computing the wavelet transform. One application could be for filtering of data on irregularly shaped domains, such
as described in Fig. 6. For example, smoothing data on such a domain by convolving with a Gaussian kernel is confounded
by the problem that near the edges the kernel would extend off of the domain. As an alternative, one could express the
convolution as multiplication by a function in the Fourier domain, approximate this function with a Chebyshev polynomial,
and then apply the algorithm described in this paper. This could also be used for band-pass or high-pass filtering of data
on irregular domains, by designing appropriate filters in the spectral domain induced by the graph Laplacian.

The Chebyshev approximation scheme may also be useful for machine learning problems on graphs. Some recent work
has studied using the “diffusion kernel” Kt = e−tL for use with kernel-based machine learning algorithms [57]. The Cheby-
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shev polynomial scheme provides a fast way to approximate this exponential that may be useful for large problems on
unstructured yet sparse graphs.

Software

A MATLAB implementation of the SGWT is available online at wiki.epfl.ch/sgwt.
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