Three-Dimensional Sensors
Lecture 4: Time of Flight Cameras
(Pulse Light Modulation)

Radu Horaud
INRIA Grenoble Rhone-Alpes, France
Radu.Horaud@inria.fr
http://perception.inrialpes.fr/
Lecture Outline

- Principles of pulsed-light TOF cameras
- 3D flash lidar cameras
- Space applications
- 2D and 3D scanners
Time of Flight with Pulsed Light

- A light pulse of a few nanoseconds is generated by a laser;
- Distance is determined directly from the time delay between emitted light pulse and its reflection;
- It can use very short pulses with high optical power: The pulse irradiance is much higher than the background irradiance;
- The emitted laser energy remains low (class 1);
- Does not suffer from the phase ambiguity problem;
- It is the technology of choice in a number of outdoor applications under adverse conditions: surveying (static and mobile), autonomous driving, cultural heritage, planetary missions.
Sensor Types

- Laser scanners use a rotating mirror;
- 2D (line) scanners (horizontal or vertical);
- 3D scanners (horizontal and vertical);
- Multiple-laser 2D line scanners (horizontal and vertical);
- 3D flash Lidar cameras (provide a depth image without any rotating mechanism).
The Principle of 3D Flash Cameras

The Double Short-Time Integration Principle

- The output voltage (V_F) is proportional to the amount of photons reaching the sensor in a time interval.
- V_F is dependent on the laser power, background illumination, and of the object reflectance.
- T_{pulse} is the constant width of the laser pulses emitted at regular intervals.
- The reflected pulses are shifted by T_{travel}.
- The shutter is perfectly synchronized with the emitted pulses. Two different shutter times are used:
 - The first voltage measurement is performed with a shutter time $T_1 = T_{\text{pulse}}$
 - The second voltage measurement is performed with a longer shutter time T_2 that exceeds T_{pulse}
During the first shutter time the output voltage is proportional to $\Delta T = T_{\text{pulse}} - T_{\text{travel}}$

$$V_{F1} \propto E_{\text{laser}} \Delta T$$

During the second shutter time the whole laser energy is located within the shutter window:

$$V_{F2} \propto E_{\text{laser}} T_{\text{pulse}}$$

Hence:

$$\Delta T = \frac{V_{F1}}{V_{F2}} T_{\text{pulse}}$$
Precise Depth Estimation

\[d = \frac{c}{2} T_{\text{travel}} = \frac{c}{2} (T_{\text{pulse}} - \Delta T) = \frac{c}{2} T_{\text{pulse}} \left(1 - \frac{V_{F1}}{V_{F2}} \right) \]

- This measurement cycle can be repeated \(n \) times and the resulting voltages are accumulated in an analog memory.
- This *multiple double short-time integration* increases the signal to noise ratio by \(n^{1/2} \).
- It also increases the range accuracy by the same factor.
Maximum and Minimum Depth Measurements

- The above method consists in measuring ΔT which is equal to 0 for $T_{\text{travel}} = T_{\text{pulse}}$
- Hence, the maximum range is:

\[d_{\text{max}} = \frac{c}{2} T_{\text{pulse}} \]

- With $T_{\text{pulse}} = 30\text{ns}$ the maximum depth is 4.5m.
- The maximum range can be increased in 2 ways:
 - Increasing the duration of the light pulse,
 - Introducing a delay between the firing of the laser pulse and the opening of the shutter – this results in a minimum depth $d_{\text{min}} > 0$.
Typical Results Using the Time-to-Amplitude Method

Number of pixels: 4×64
Pixel size: 130×300 μm²
Laser wavelength: 850 – 910 nm
Depth accuracy (1 pulse): < 5 cm
Depth accuracy (100 pulses): < 1 cm
Single Photon Image Sensors

- It enables 128×128 images using SPAD (single photon avalanche diodes) and TDC (time-to-digital converters).
- The measured voltage transition carries the arrival time of a photon which is digitally encoded with picosecond resolution by a 10 bit TDC.
- Minimum and maximum depth: 20cm to 375cm.
- Accuracy in depth: 5 – 9mm.
Example from Niclass et al. (2008)
3D Flash Lidar Cameras from Advanced Scientific Concepts Inc.

Tiger Eye
Portable 3D
Dragon Eye
TigerEye 3D Video Camera

- 128 x 128 pixels APD (avalanche photo diode); 30Hz
- 1570 nm eye-safe laser
- 3^0 field of view (actual full FOV = $3^0 \times 3^0$); Range up to 1100 meters
- 9^0 field of view (actual full FOV = $8.6^0 \times 8.6^0$); Range up to 450 meters
- $45^0 \times 22^0$ field of view; Range up to 150 meters
- 45^0 field of view; Range up to 60 meters
DragonEye 3D Flash LIDAR Space Camera

- 128 × 128 pixels; 10FPS; Range and intensity video Camera
- 45° × 45° field of view (17mm)
- Range up to 1.5km inclusive (greater depending on diffuser/lens choice)
- Tested and used by NASA
Use of Lidar Technology for Planetary Exploration

- Flash Lidar (TRN Mode): Acquire low-resolution 3-D terrain images to identify known features (Terrain Relative Navigation)
- Doppler Lidar: Acquire precision velocity and altitude data
- Flash Lidar (HDA/HRN Mode): Acquire elevation maps to perform Hazard Detection and Avoidance (HDA) and Hazard Relative Navigation (HRN)

Laser Altimeter: Updating IMU and reducing position errors

Distances:
- 20 km
- 15 km
- 5 km
- 2.5 km
- 1 km
- 100 m

Touch down
Landing on Moon and Mars

- NASA’s Autonomous Landing and Hazard Avoidance (ALHAT)
- Lidar sensors: 3-D Imaging Flash Lidar, Doppler Lidar, and Laser Altimeter
- Five sensor functions: Altimetry, Velocimetry, Terrain Relative Navigation (TRN), Hazard Detection and Avoidance (HDA) and Hazard Relative Navigation (HRN)
- The Inertial Measurement Units (IMU) suffer from drastic drift over the travel time from the Earth. The IMU drift error can be over 1 km for a Moon-bound vehicle and over 10 km for Mars
ALHAT Sensors Performance Requirements

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Function</th>
<th>Operational Altitude Range</th>
<th>Precision/Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash Lidar</td>
<td>HDA/HRN</td>
<td>1000 m – 100 m</td>
<td>5 cm/40 cm</td>
</tr>
<tr>
<td></td>
<td>TRN</td>
<td>15 km – 5 km</td>
<td>20 cm/6 m</td>
</tr>
<tr>
<td></td>
<td>Altimetry(^1)</td>
<td>20 km – 100 m</td>
<td>20 cm</td>
</tr>
<tr>
<td>Doppler Lidar</td>
<td>Velocimetry</td>
<td>2500 m – 10 m</td>
<td>1 cm/sec</td>
</tr>
<tr>
<td></td>
<td>Altimetry</td>
<td>2500 m – 10 m</td>
<td>10 cm</td>
</tr>
<tr>
<td>Laser Altimeter</td>
<td>Altimetry</td>
<td>20 km – 100 m</td>
<td>20 cm</td>
</tr>
<tr>
<td></td>
<td>TRN(^1)</td>
<td>15 km – 5 km</td>
<td>20 cm</td>
</tr>
</tbody>
</table>
3D Flash Lidar Technology Advancement

<table>
<thead>
<tr>
<th>Component Technology</th>
<th>Description</th>
<th>Lead Organization</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmitter laser</td>
<td>High pulse energy optimized for Flash Lidar, compact and rugged design suitable for space</td>
<td>Fibertek</td>
<td>Complete</td>
</tr>
<tr>
<td>Detector Array</td>
<td>Low noise InGaAs Avalanche Photodiode Detector array</td>
<td>Optogration</td>
<td>Complete</td>
</tr>
<tr>
<td>Image reconstruction and enhancement processor</td>
<td>3-D Super-resolution algorithm, real-time implementation in high-speed HDW</td>
<td>NASA LaRC</td>
<td>2012</td>
</tr>
<tr>
<td>Fiber optic delivery unit</td>
<td>High pulse energy fiber cable for transmitter beam, rugged designed for space</td>
<td>NASA GSFC</td>
<td>2012</td>
</tr>
<tr>
<td>256X256 Sensor Engine</td>
<td>Low noise HgCdTe APD detector with advanced ROIC including control/interface electronics</td>
<td>Raytheon</td>
<td>2012</td>
</tr>
<tr>
<td>256X256 Sensor Engine</td>
<td>Advanced high sensitivity ROIC hybridized with Optogration APD array including control/interface electronics</td>
<td>ASC</td>
<td>2013</td>
</tr>
<tr>
<td>Receive/Transmit Optics</td>
<td>Variable Field of View</td>
<td>NASA LaRC</td>
<td>2013</td>
</tr>
</tbody>
</table>
Examples of 2D and 3D Scanners

- Optech Mobile Mappers: http://www.optech.ca/lynx.htm
- Zoller-Frohlich laser scanners (based on CW modulation): http://www.zf-laser.com/Home.91.0.html?&L=1
Multiple-Laser 3D Scanner: Velodyne

- 32/64 fixed-mounted lasers, each mechanically mounted to a specific vertical angle, with the entire unit spinning
- 1.3 million points per second
- More details: http://velodynelidar.com/lidar/hdlproducts/hdl64e.aspx
The geometry of 3D flash lidar cameras is similar to lock-in TOF cameras

Amplitude image not available but it is possible to get the image of the background light (intensity)

3D Flash cameras have no moving parts and hence they are not sensitive to vibrations, they can provide 3D videos.

2D and 3D laser scanners (equipped with mirrors and motors) provide 360° views. They can be used in combination with standard cameras to yield RGB-D data.