Three-Dimensional Sensors Lecture 2: Projected-Light Depth Cameras

Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inria.fr http://perception.inrialpes.fr/

Outline

- The geometry of active stereo.
- Surface reflectivity.
- Camera-projector calibration
- Active stereo matching and reconstruction

Generalities

- The basic principle is to associate a light projector with a standard camera.
- The projector and the camera share the same geometric model.
- Optical (non-linear distorsions) are present with both devices. They will be treated separately.
- 3D reconstruction is based on the same principle as stereo: sensor calibration and matching.
- Instead of matching two images, we match a pattern with "itself" after being backscattered by scene objects.

The Geometry of Active Stereo

- Perspective effects (foreshortening).
- Surface discontinuities.
- Cluttered scenes.

Foreshortening

Discontinuities

Clutter

Surface Reflectivity and External Illumination

- This is a scientific topic in its own right.
- Reflectance (or absorption) depends on the material properties and of the wavelength of the incident light.
- A rough way to think of surface reflectivity is to divide surfaces into **diffuse** (matte) and **specular** (mirror).
- In general a surface is a combination of these effects plus other ones: metal, glossy, rough, transparent, translucent, etc. cause problems in practice.
- External illumination (daylight, artificial light, etc.) acts as *noise* added to the infra-red light emitted by the projector.

Reflectivity

Artifacts with the Kinect Camera

Back to Geometry

- Consider an IR camera and a projector in general positions (before rectification).
- Parameters to be estimated:
 - The internal parameters of the IR camera
 - The external parameters of the IR camera
 - The projection matrix of the light projector

IR-Camera and Projector Geometry and Calibration

External IR-Camera Calibration

• The basic equation is $m \approx \begin{bmatrix} R & t \end{bmatrix} M'$ where M' lies on the plane Z' = 0, hence we obtain:

$$\left(\begin{array}{c} sx\\ sy\\ s\end{array}\right) = \left[\begin{array}{cc} \boldsymbol{r}_1 & \boldsymbol{r}_2 & \boldsymbol{t}\end{array}\right] \left(\begin{array}{c} X'\\ Y'\\ 1\end{array}\right)$$

• Each correspondence between an image point m_i and a calibration point M'_i yields two homogeneous linear equations in the unknown extrinsics:

$$\begin{cases} x_i(X'_ir_{13} + Y'_ir_{23} + t_3) &= X'_ir_{11} + Y'_ir_{12} + t_1 \\ y_i(X'_ir_{13} + Y'_ir_{23} + t_3) &= X'_ir_{21} + Y'_ir_{22} + t_2 \end{cases}$$

In practice it is useful to constrain the parameters of the rotation matrix, i.e., ||r₁|| = ||r₂|| = 1, r₁[⊤]r₂ = 0. Various optimization methods can be used in practice.

External IR-Camera Parameters

• The external camera matrix is:

• The coordinates of the planar set of points in the IR-camera frame:

$$\left(\begin{array}{c}X\\Y\\Z\end{array}\right) = \left[\begin{array}{cc}r_1 & r_2 & t\end{array}\right] \left(\begin{array}{c}X'\\Y'\\1\end{array}\right)$$

• Recall the simple relationship between m and M when the latter is in camera frame:

$$\left(\begin{array}{c} X\\Y\\Z\end{array}\right) = Z \left(\begin{array}{c} x\\y\\1\end{array}\right)$$

Point/Plane Duality in Projective Space

• The point M belongs to the plane μ :

$$\alpha X + \beta Y + \gamma Z + \delta H = 0$$
 or $\boldsymbol{\mu}^{\top} \tilde{\boldsymbol{M}} = 0$

with the notation $\tilde{M}=\left(egin{array}{ccc} X & Y & Z & H \end{array}
ight)$ and H=1.

The 4 × 4 point-transformation D (a rotation followed by a translation) maps the coordinates of a point from the calibration frame to the camera frame: *M* = D*M*[']
Let µ['][⊤]*M*['] = 0 with µ['] = (0 0 1 0) be the plane of the calibration pattern. Substituting *M*['] we obtain (D^{-⊤}µ['])[⊤]*M* = 0 with:

$$\mathbf{D}^{- op} = \left[egin{array}{cc} \mathbf{R} & \mathbf{0} \ -m{t}^ op \mathbf{R} & 1 \end{array}
ight]$$
 and $m{\mu} = \mathbf{D}^{- op} m{\mu}'$

• The latter is the plane-transformation or the dual of the point-transformation.

Projector Calibration

- We assume that the planar calibration pattern is in the same position as before. A ray of light through the projector image-point $\boldsymbol{p} = (u \; v \; 1)^{\top}$ is $\boldsymbol{p} \approx \mathbf{P} \tilde{\boldsymbol{M}}$.
- This ray of light is observed in the IR-camera image at m. Recall that M = Zm and that $\mu^{\top} \tilde{M} = 0$. Hence the depth Z is:

$$Z = -\frac{\delta}{\alpha x + \beta y + \gamma}$$

- For each camera-projector point correspondence $oldsymbol{m}_i \leftrightarrow oldsymbol{p}_i$ we obtain two equations:
- $\begin{cases} u_i[Z_i(x_ip_{31} + y_ip_{32} + p_{33}) + p_{34}] &= Z_i(x_ip_{11} + y_ip_{12} + p_{13}) + p_{14} \\ v_i[Z_i(x_ip_{31} + y_ip_{32} + p_{33}) + p_{34}] &= Z_i(x_ip_{21} + y_ip_{22} + p_{23}) + p_{24} \end{cases}$
 - This requires several such correspondences and several parallel planes.

Projector's Intrinsics and Extrinsics

- If enough correspondences are available, one can estimate the projection matrix **P** either linearly or with the help of a non-linear optimization method (bundle adjustment).
- Intrinsic and extrinsic parameter can be made explicit by identification:

$$\mathsf{P} pprox \mathsf{K} \begin{bmatrix} \mathsf{R} & t \end{bmatrix}$$

or

$$\left[egin{array}{ccc} {\bf P}_{3 imes 3} & {p_4} \end{array}
ight] pprox \left[egin{array}{ccc} {\sf KR} & {\sf Kt} \end{array}
ight]$$

 Making use of **R**R[⊤] = **I** one can easily extract the intrinsic and extrinsic parameters from **P**.

Camera-Projector Calibration Step-by-Step

- Calibrate the internal parameters of the IR camera (OpenCV).
- Calibrate the external parameters with respect to a single planar calibration pattern (OpenCV).
- Transform the calibration plane in the camera coordinate frame.
- Sing the same position of the calibration pattern to obtain $m_i \leftrightarrow p_i$ correspondences.
- Move the calibration pattern in several parallel positions.
- Estimate the calibration parameters of the projector in the camera frame.
- Rectify the camera-projector setup to align the camera image with the projector image.

Active Stereo Reconstruction

• With a calibrated & rectified camera-projector setup, the relationship between the depth Z and the disparity d is:

$$Z = rac{b}{d}$$
 with $d = x_p - x_c$

where b is the baseline, x_p and x_c are the horizontal coordinates of a projector image-point and a camera image-point.

• The coordinates of a point are:

$$\left(\begin{array}{c} X\\Y\\Z\end{array}\right) = Z \left(\begin{array}{c} x_c\\y_c\\1\end{array}\right)$$

Active Stereo Matching

- The problem is to find $x_c \leftrightarrow x_p$ correspondences along epipolar lines (along the rows).
- Each pixel of the projector image must be **signed** such that it can be easily **recognized** in the IR-camera image:
 - Temporal signature;
 - Spatial signature, or
 - a combination of both
- Define a $K \times K \times T$ window around each pixel.
- Arrange the pixels in a vector of size $N=K\times K\times T$

Cross-Correlation

- Let the entries of two N-dimensional vectors v and w correspond to N realizations of two random variables v and w.
- Expectation: $E[v] = \frac{1}{N} \sum_{n=1}^{N} p_n v_n$ with $\sum_{n=1}^{N} p_n = 1$.

• Variance:
$$var[v] = E[v^2] - E[v]^2$$

- Standard deviation: $\sigma_v = \sqrt{var[v]}$
- Standardization: $\hat{v} = \frac{v E[v]}{\sigma_v}$

• Cross-correlation:
$$\rho_{vw} = corr[\hat{v}, \hat{w}] = E\left[\frac{v - E[v]}{\sigma_v} \frac{w - E[w]}{\sigma_w}\right]$$

$$\rho_{vw} = \sum_{n=1}^{N} p_n \frac{(v_n - E[v])(w_n - E[w])}{\sigma_v \sigma_w}$$

Matching Two Pixels

- Vector v contains pixel information associated with the projected light: $v = (L(n))_{n=1}^{N}$.
- Vector w contains pixel information associated with the IR image: $w = (I(n))_{n=1}^N$.
- The entries of these two vectors are non-null, hence:

•
$$0 \le \rho_{vw} \le 1.$$

•
$$\rho_{vw} = 1 \Leftrightarrow \boldsymbol{v} = \boldsymbol{w}$$
.

- $\rho_{vw} = 0$ if v and w are uncorrelated.
- v is associated with IR image pixel (x_c, y)
- ${m w}$ is associated with projector image pixel (x_p,y)
- A match is accepted if $\rho_{vw} > t$.

Matching Two Images

- Based on the cross-correlation coefficient it is possible to implement various global image-matching techniques.
- Because of the epipolar geometry holds and if the images are rectified, the matching can be done row-wise.
- The most straightforward way to match two corresponding row is to use a sequence-alignment algorithm.
- Sequence-alignment algorithms are generally based on dynamic programming (DP).

Conclusions

- To calibrate a Kinect-like camera, it is necessary to have access to the projector image, but this is not the case with Kinect because the manufacturer (Primesense) does not provide this access.
- The principles behind calibration allow to understand the weaknesses and the current limitations of this type of cameras: limited range, limited to indoor lighting, **extremely sensitive to saturated light**, glossy surfaces, occlusions, transparent and translucent objects, scattering effects (wool, hair, etc.).
- Projected-light depth cameras have good resolution and good depth accuracy, both are better than time-of-flight cameras.