Manifold Learning for Signal and Image Analysis Lecture 6: Graph and Diffusion Kernels

> Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inria.fr http://perception.inrialpes.fr/

Outline of Lecture 6

- Kernels on graphs
- The exponential diffusion kernel
- The heat kernel of discrete manifolds
- Properties of the heat kernel
- The auto-diffusion function
- Shape matching

Material for this lecture

- P. Bérard, G. Besson, & G. Gallot. Embedding Riemannian manifolds by their heat kernel. Geometric and Functional Analysis (1994): A rather theoretical paper.
- J. Shawe-Taylor & N. Cristianini. Kernel Methods in Pattern Analysis (chapter 10): A mild introduction to graph kernels.
- R. Kondor and J.-P. Vert: Diffusion Kernels in "Kernel Methods in Computational Biology" ed. B. Scholkopf, K. Tsuda and J.-P. Vert, (The MIT Press, 2004): An interesting paper to read.
- A. Sharma & R. Horaud. Shape matching based on diffusion embedding and on mutual isometric consistency. CVPR-NORDIA workshop (2010).

The Adjacency Matrix of a Graph (from Lecture #3)

• For a graph with n vertices and with binary edges, the entries of the $n \times n$ adjacency matrix are defined by:

$$\mathbf{A} := \left\{ \begin{array}{ll} A_{ij} = 1 & \text{if there is an edge } e_{ij} \\ A_{ij} = 0 & \text{if there is no edge} \\ A_{ii} = 0 \end{array} \right.$$

Powers and Exponential of a Symmetric Matrix

•
$$\mathbf{A}^2 = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^\top \mathbf{U} \mathbf{\Lambda} \mathbf{U}^\top = \mathbf{U} \mathbf{\Lambda}^2 \mathbf{U}^\top$$

- More generally: $\mathbf{A}^k = \mathbf{U} \mathbf{\Lambda}^k \mathbf{U}^ op$
- Matrices $\mathbf{A}, \mathbf{A}^2, \dots, \mathbf{A}^k$ have the same eigenvectors $\{ \boldsymbol{u}_i \}$;
- Their eigenvalues are $\lambda, \lambda^2, \ldots, \lambda^k$.
- Matrix exponential: $e^{\mathbf{A}} = \sum_{k=0}^{\infty} \frac{\mathbf{A}^k}{k!}$
- We have: $e^{\mathbf{A}} = \mathbf{U}\mathsf{Diag}[e^{\lambda_1} \dots e^{\lambda_i} \dots e^{\lambda_D}]\mathbf{U}^{\top}$
- Hence, matrix $e^{\mathbf{A}}$ has the same eigenvectors as \mathbf{A} and eigenvalues e^{λ} .

The Walks of Length 2

- Notation: $\mathbf{A}^k(i,j)$ is the (i,j) entry of \mathbf{A}^k .
- The number of walks of length 2 between two graph vertices:

$$N_2(v_i, v_j) = A^2(i, j)$$

• Examples:

The Number of Walks of Length \boldsymbol{k}

Theorem

The number of walks of length k joining any two nodes v_i and v_j of a binary graph is given by the (i, j) entry of the matrix \mathbf{A}^k :

$$N_k(v_i, v_j) = \mathbf{A}^k(i, j)$$

• A proof of this theorem is provided in: Godsil and Royle. (2001). Algebraic Graph Theory. Springer.

The Similarity Matrix of an Undirected Weighted Graph

• We consider *undirected weighted graphs*; Each edge e_{ij} is weighted with $\omega_{ij} > 0$. We obtain:

$$\boldsymbol{\Omega} := \left\{ \begin{array}{ll} \Omega(i,j) = \omega(v_i,v_j) = \omega_{ij} & \text{ if there is an edge } e_{ij} \\ \Omega(i,j) = 0 & \text{ if there is no edge} \\ \Omega(i,i) = 0 \end{array} \right.$$

• We will refer to this matrix as the *base* similarity matrix

Walks of Length k

- Definition: The weight of a walk from node v_i to node v_j through node v_l is the product of the corresponding edge weights: ω(v_i, v_j) = ω_{il}ω_{lj}
- The (i, j) entry of the squared weighted adjacency matrix:

$$\mathbf{\Omega}^2(i,j) = \sum_{l=1}^n \omega_{il} \omega_{lj}$$

• This can be interpreted as the sum of the walks of length 2:

$$\omega_2(v_i, v_j) = \mathbf{\Omega}^2(i, j)$$

• More generally, the sum of the walks of length \boldsymbol{k} is:

$$\omega_k(v_i, v_j) = \mathbf{\Omega}^k(i, j)$$

Other "Adjacency" Matrices

• The normalized weighted adjacency matrix

$$\mathbf{\Omega}_N = \mathbf{D}^{-1/2} \mathbf{\Omega} \mathbf{D}^{-1/2}$$

• The *transition* matrix of the Markov process associated with the graph:

$$\mathbf{\Omega}_R = \mathbf{D}^{-1}\mathbf{\Omega} = \mathbf{D}^{-1/2}\mathbf{\Omega}_N \mathbf{D}^{1/2}$$

• Notice that it is a row-stochastic matrix, namely:

$$\sum_{j} \mathbf{\Omega}_{R}(i,j) = 1$$

Random Walks

• Starting from any node v, select at random one of its neighbors and move to this node, etc. The sequence of randomly selected nodes is a **random walk**.

• $p_{ij}^1 = \Omega_R(i, j) = \omega_{ij}/d_i$ is the probability of *transition in one* step from node v_i to node v_j .

Theorem

The entry $\Omega_R^k(i,j)$ gives the probability p_{ij}^k of transition from node v_i to node v_j in k steps.

Interpretation

- Powers of the adjacency matrices can serve as a similarity measure between any two nodes.
- The power of an adjacency matrix of a graph is the adjacency matrix of a *new* graph that incorporates the local structure of the initial graph in the node-similarity measure.
- The power k defines the *scale* at which the local structure is considered.

Back to Kernel Methods: Associated Feature Space

- Let $\Omega = U\Lambda U^{\top}$, i.e., the spectral decomposition of a real symmetric matrix.
- We have $\Omega^2 = U\Lambda^2 U^{\top}$ is symmetric semi-definite *positive*, hence it can be interpreted as a kernel matrix, with entries:

$$\omega_2(v_i, v_j) = \sum_{l=1}^n \omega_{il} \omega_{lj}$$

= $\langle (\omega_{il})_{l=1}^n, (\omega_{jl})_{l=1}^n \rangle = \kappa(v_i, v_j)$

• Associated feature space:

$$\phi: v_i \to \phi(v_i) = (\omega_{i1} \dots \omega_{il} \dots \omega_{in})^\top$$

• It is possible to "enhance" the base similarity matrix by linking vertices along walks of length 2.

Combining Powers of the Base Similarity Matrix

• More generally one can take powers of the base similarity matrix as well as linear combinations of these matrices:

$$\alpha_1 \mathbf{\Omega} + \ldots + \alpha_k \mathbf{\Omega}^k + \ldots + \alpha_K \mathbf{\Omega}^K$$

• The eigenvalues of such a matrix must be nonnegative to satisfy the kernel condition:

$$\alpha_1 \mathbf{\Lambda} + \ldots + \alpha_k \mathbf{\Lambda}^k + \ldots + \alpha_K \mathbf{\Lambda}^K \succeq 0$$

The Exponential Diffusion Kernel

• Consider the following combination of powers of the base similarity matrix:

$$\mathbf{K} = \sum_{k=0}^{\infty} rac{\mu^k}{k!} \mathbf{\Omega}^k$$

This corresponds to:

$$\mathbf{K} = e^{\mu \mathbf{\Omega}}$$

- where μ is a *decay factor* chosen such that the influence of longer walks decreases, since they are less reliable.
- Spectral decomposition:

$$\mathbf{K} = \mathbf{U} e^{\mu \mathbf{\Lambda}} \mathbf{U}^{\top}$$

• Hence **K** is a kernel matrix since its eigenvalues $e^{\mu\lambda_i} \ge 0$.

Heat Diffusion on a Graph

- The heat-diffusion equation on a Riemannian manifold: $\left(\frac{\partial}{\partial t} + \Delta_{\mathcal{M}}\right) f(x;t) = 0$
- $\bullet \ \Delta_{\mathcal{M}}$ denotes the geometric Laplace-Beltrami operator.
- f(x;t) is the distribution of heat over the manifold at time t.
- By extension, $\frac{\partial}{\partial t} + \Delta_{\mathcal{M}}$ can be referred to as the *heat* operator [Bérard et al. 1994].
- This equation can also be written on a graph:

$$\left(\frac{\partial}{\partial t} + \mathbf{L}\right) \mathbf{F}(t) = 0$$

where the vector $\mathbf{F}(t) = (F_1(t) \dots F_n(t))^{\top}$ is indexed by the nodes of the graph.

The Fundamental Solution

- The fundamental solution of *the (heat)-diffusion equation on Riemannian manifolds* holds in the discrete case, i.e., for undirected weighted graphs.
- The solution in the discrete case is:

$$\boldsymbol{F}(t) = \mathbf{H}(t)\boldsymbol{f}$$

 ${\ensuremath{\bullet}}$ where ${\ensuremath{\mathbf{H}}}$ denotes the discrete heat operator:

$$\mathbf{H}(t) = e^{-t\mathbf{L}}$$

• *f* corresponds to the initial heat distribution:

$$\boldsymbol{F}(0) = \boldsymbol{f}$$

• Starting with a point-heat distribution at vertex v_i , e.g., $(0 \dots f_i = 1 \dots 0)^{\top}$, the distribution at t, i.e., $F(t) = (F_1(t) \dots F_n(t))$ is given by the *i*-th column of the heat operator.

How to Compute the Heat Matrix?

• The exponential of a matrix:

$$e^{\mathbf{A}} = \sum_{k=0}^{\infty} \frac{\mathbf{A}^k}{k!}$$

• Hence:

$$e^{-t\mathbf{L}} = \sum_{k=0}^{\infty} \frac{(-t)^k}{k!} \mathbf{L}^k$$

• It belongs to the "exponential diffusion" family of kernels just introduced with $\mu = -t, t > 0$.

Spectral Properties of L

We start by recalling some basic facts about the combinatorial graph Laplacian:

- Symmetric semi-definite positive matrix: $\mathbf{L} = \mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^\top$
- Eigenvalues: $0 = \lambda_1 < \lambda_2 \leq \ldots \leq \lambda_n$
- Eigenvectors: $oldsymbol{u}_1 = \mathbb{1}, oldsymbol{u}_2, \dots, oldsymbol{u}_n$
- λ_2 and $oldsymbol{u}_2$ are the Fiedler value and the Fiedler vector

•
$$u_i^{\top} u_j = \delta_{ij}$$

• $u_{i>1}^{\top} \mathbb{1} = 0$
• $\sum_{i=1}^n u_{ik} = 0, \forall k \in \{2, \dots, n\}$
• $-1 < u_{ik} < 1, \forall i \in \{1, \dots, n\}, \forall k \in \{2, \dots, n\}$

$$\mathbf{L} = \sum_{k=2}^n \lambda_k oldsymbol{u}_k oldsymbol{u}_k^ op$$

The Heat-kernel Matrix

$$\mathbf{H}(t) = e^{-t\mathbf{U}\mathbf{\Lambda}\mathbf{U}^{\top}} = \mathbf{U}e^{-t\mathbf{\Lambda}}\mathbf{U}^{\top} \succeq 0$$

with:

$$e^{-t\mathbf{\Lambda}} = \mathsf{Diag}[e^{-t\lambda_1}\dots e^{-t\lambda_n}]$$

- Eigenvalues: $1 = e^{-t0} > e^{-t\lambda_2} \ge \ldots \ge e^{-t\lambda_n}$
- Eigenvectors: same as the Laplacian matrix with their properties (previous slide).
- The heat trace (also referred to as the partition function):

$$Z(t) = \operatorname{tr}(\mathbf{H}) = \sum_{k=1}^{n} e^{-t\lambda_k}$$

• The determinant:

$$\det(\mathbf{H}) = \prod_{k=1}^{n} e^{-t\lambda_k} = e^{-t\mathsf{tr}(\mathbf{L})} = e^{-t\mathsf{vol}(\mathcal{G})}$$

Radu Horaud [Manifold Learning for Signal and Image Analyss; Lecture 6

The Heat-kernel

• Computing the heat matrix:

$$\mathbf{H}(t) = \sum_{k=2}^{n} e^{-t\lambda_k} \boldsymbol{u}_k \boldsymbol{u}_k^\top$$

where we applied a *deflation* to get rid of the constant eigenvector: $\mathbf{H} \longrightarrow \mathbf{H} - \boldsymbol{u}_1 \boldsymbol{u}_1^\top$

• The heat kernel (en entry of the matrix above):

$$h(i,j;t) = \sum_{k=2}^{n} e^{-t\lambda_k} u_{ik} u_{jk}$$

Feature-space Embedding Using the Heat Kernel

$$\mathbf{H}(t) = \left(\mathbf{U}e^{-\frac{1}{2}t\mathbf{\Lambda}}\right) \left(\mathbf{U}e^{-\frac{1}{2}t\mathbf{\Lambda}}\right)^{\top}$$

Each row of the n × n matrix Ue^{-tΛ/2} can be viewed as the coordinates of a graph vertex in a feature space, i.e., the mapping φ : V → ℝⁿ⁻¹, x_i = φ(v_i):

$$\boldsymbol{x}_i = \begin{pmatrix} e^{-\frac{1}{2}t\lambda_2}u_{i2} & \dots & e^{-\frac{1}{2}t\lambda_k}u_{ik} & \dots & e^{-\frac{1}{2}t\lambda_n}u_{in} \end{pmatrix}^\top$$
$$= (x_{i2}\dots x_{ik}\dots x_{in})^\top$$

• The heat-kernel computes the inner product in feature space:

$$h(i,j;t) = \langle \boldsymbol{\phi}(v_i), \boldsymbol{\phi}(v_j) \rangle$$

The Auto-diffusion Function

• Each diagonal term of the heat matrix corresponds to the norm of a feature-space point:

$$h(i,i;t) = \sum_{k=2}^{n} e^{-t\lambda_k} u_{ik}^2 = \|\boldsymbol{x}_i\|^2$$

- This is also known as the *auto-diffusion function* (ADF), or the amount of heat that remains at a vertex at time t.
- The local maxima/minima of this function have been used for a feature-based scale-space representation of shapes.
- Associated shape descriptor: $v_i \rightarrow h(i,i;t)$ hence it is a scalar function defined over the graph.

The ADF as a Shape Descriptor

Spectral Distances

• The heat distance:

$$d_t^2(i,j) = h(i,i;t) + h(j,j;t) - 2h(i,j;t)$$
$$= \sum_{k=2}^n (e^{-\frac{1}{2}t\lambda_k}(u_{ik} - u_{jk}))^2$$

• The commute-time distance:

$$d_{\mathsf{CTD}}^{2}(i,j) = \int_{t=0}^{\infty} \sum_{k=2}^{n} (e^{-\frac{1}{2}t\lambda_{k}}(u_{ik} - u_{jk}))^{2} dt$$
$$= \sum_{k=2}^{n} \left(\lambda_{k}^{-1/2}(u_{ik} - u_{jk})\right)^{2}$$

Principal Component Analysis

• The covariance matrix in feature space:

$$\mathbf{C}_X = rac{1}{n} \sum_{i=1}^n (\boldsymbol{x}_i - \overline{\boldsymbol{x}}) (\boldsymbol{x}_i - \overline{\boldsymbol{x}})^{ op}$$

• With:

$$\mathbf{X} = \left(\mathbf{U}e^{-rac{1}{2}t\mathbf{\Lambda}}
ight)^ op = [oldsymbol{x}_1\dotsoldsymbol{x}_n]$$

• Remember that each column of U sums to zero. • $-1 < -e^{-\frac{1}{2}t\lambda_k} < x_{ik} < e^{-\frac{1}{2}t\lambda_k} < 1, \forall 2 \le k \le n$

Principal Component Analysis: The Mean

$$\overline{\boldsymbol{x}} = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i}$$

$$= \frac{1}{n} e^{-\frac{1}{2}t\boldsymbol{\Lambda}} \begin{pmatrix} \sum_{i=1}^{n} u_{i2} \\ \vdots \\ \sum_{i=1}^{n} u_{in} \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

Radu Horaud [Manifold Learning for Signal and Image Analyss; Lecture 6

Principal Component Analysis: The Covariance

$$\mathbf{C}_X = \frac{1}{n} \sum_{i=1}^n \boldsymbol{x}_i \boldsymbol{x}_i^\top$$

= $\frac{1}{n} \mathbf{X} \mathbf{X}^\top$
= $\frac{1}{n} \left(\mathbf{U} e^{-\frac{1}{2}t\mathbf{\Lambda}} \right)^\top \left(\mathbf{U} e^{-\frac{1}{2}t\mathbf{\Lambda}} \right)^\top$
= $\frac{1}{n} e^{-t\mathbf{\Lambda}}$

Result I: The PCA of a Graph

- The eigenvectors (of the combinatorial Laplacian) are the principal components of the heat-kernel embedding: hence we obtain a maximum-variance embedding
- The associated variances are $e^{-t\lambda_2}/n, \ldots, e^{-t\lambda_n}/n$.
- The embedded points are strictly contained in a hyper-parallelepipedon with volume ∏ⁿ_{i=2} e^{-tλ_i}.

Dimensionality Reduction (1)

• Dimensionality reduction consists in selecting the K largest eigenvalues, K < n, conditioned by t, hence the criterion: choose K and t, such that (scree diagram):

$$\alpha(K) = \frac{\sum_{i=2}^{K+1} e^{-t\lambda_i}/n}{\sum_{i=2}^{n} e^{-t\lambda_i}/n} \approx 0.95$$

 This is not practical because one needs to compute all the eigenvalues.

Dimensionality Reduction (2)

 An alternative possibility is to use the determinant of the covariance matrix, and to choose the first K eigenvectors such that (with α > 1):

$$\alpha(K) = \ln \frac{\prod_{i=2}^{K+1} e^{-t\lambda_i}/n}{\prod_{i=2}^n e^{-t\lambda_i}/n}$$

which yields:

$$\alpha(K) = t\left(\operatorname{tr}(\mathbf{L}) - \sum_{i=2}^{K+1} \lambda_i\right) + (n-K)\ln n$$

• This allows to choose K for a scale t.

Normalizing the Feature-space

Observe that the heat-kernels collapse to 0 at infinity: $\lim_{t\to\infty} h(i, j; t) = 0$. To prevent this problem, several normalizations are possible:

- Trace normalization
- Unit hyper-sphere normalization
- Time-invariant embedding

Trace Normalization

- Observe that $\lim_{t\to\infty} h(i,j;t) = 0$
- Use the trace of the operator to normalize the embedding:

$$\widehat{\boldsymbol{x}}_i = rac{\boldsymbol{x}_i}{\sqrt{Z(t)}}$$

with:
$$Z(t) \approx \sum_{k=2}^{K+1} e^{-t\lambda_k}$$

• the k-component of the i-coordinate writes:

$$\hat{x}_{ik}(t) = \frac{\left(e^{-t\lambda_k}u_{ik}^2\right)^{1/2}}{\left(\sum_{l=2}^{K+1}e^{-t\lambda_l}\right)^{1/2}}$$

• At the limit:

$$\widehat{\boldsymbol{x}}_i(t \to \infty) = \left(\begin{array}{ccc} \frac{u_{i2}}{\sqrt{m}} & \dots & \frac{u_{i\,m+1}}{\sqrt{m}} & 0 & \dots & 0 \end{array} \right)^\top$$

where m is the multiplicity of the first non-null eigenvalue.

Unit Hyper-sphere Normalization

• The embedding lies on a unit hyper-sphere of dimension K:

$$\widetilde{oldsymbol{x}}_i = rac{oldsymbol{x}_i}{\|oldsymbol{x}_i\|}$$

 The heat distance becomes a geodesic distance on a spherical manifold:

$$d_{\mathcal{S}}(i,j;t) = \arccos \widetilde{\boldsymbol{x}}_i^{\top} \widetilde{\boldsymbol{x}}_j = \arccos \frac{h(i,j;t)}{(h(i,i;t)h(j,j;t))^{1/2}}$$

• At the limit (*m* is the multiplicity of the largest non-null eigenvalue):

$$\widetilde{\boldsymbol{x}}_{i}(t \to \infty) = \left(\begin{array}{ccc} \frac{u_{i2}}{\left(\sum_{l=2}^{m+1} u_{il}^{2}\right)^{1/2}} & \cdots & \frac{u_{i\,m+1}}{\left(\sum_{l=2}^{m+1} u_{il}^{2}\right)^{1/2}} & 0 & \cdots & 0\end{array}\right)^{\top}$$

Time-invariant Embedding

• Integration over time:

$$\begin{aligned} \mathbf{L}^{\dagger} &= \int_{0}^{\infty} \mathbf{H}(t) = \int_{0}^{\infty} \sum_{k=2}^{n} e^{-t\lambda_{k}} \boldsymbol{u}_{k} \boldsymbol{u}_{k}^{\top} dt \\ &= \sum_{k=2}^{n} \frac{1}{\lambda_{k}} \boldsymbol{u}_{k} \boldsymbol{u}_{k}^{\top} = \mathbf{U} \mathbf{\Lambda}^{\dagger} \mathbf{U}^{\top} \end{aligned}$$

• with:
$$\mathbf{\Lambda}^{\dagger} = \mathsf{Diag}[\lambda_2^{-1}, \dots, \lambda_n^{-1}].$$

- Matrix L[†] is called the *discrete Green's function* [ChungYau2000], the Moore-Penrose pseudo-inverse of the Laplacian.
- Embedding: $\boldsymbol{x}_i = \left(\lambda_2^{-1/2} u_{i2} \ \dots \ \lambda_{K+1}^{-1/2} u_{iK+1}\right)^{\top}$
- Covariance: $\mathbf{C}_X = \frac{1}{n} \mathsf{Diag}[\lambda_2^{-1}, \dots, \lambda_{K+1}^{-1}]$

Examples of Normalized Embeddings

Shape Matching (1)

Shape Matching (2)

Shape Matching (3)

Sparse Shape Matching

- Shape/graph matching is equivalent to matching the embedded representations [Mateus et al. 2008]
- Here we use the projection of the embeddings on a unit hyper-sphere of dimension K and we apply rigid matching.
- How to select t and t', i.e., the scales associated with the two shapes to be matched?
- How to implement a robust matching method?

Scale Selection

• Let C_X and $C_{X'}$ be the covariance matrices of two different embeddings X and X' with respectively n and n' points:

$$\det(\mathbf{C}_X) = \det(\mathbf{C}_{X'})$$

- det(**C**_X measures the volume in which the embedding X lies. Hence, we impose that the two embeddings are contained in the same volume.
- From this constraint we derive:

$$t'\operatorname{tr}(\mathbf{L}') = t\operatorname{tr}(\mathbf{L}) + K\log n/n'$$

Robust Matching

- Build an association graph.
- Search for the largest set of mutually compatible nodes (maximal clique finding).
- See [Sharma and Horaud 2010] (Nordia workshop) for more details.

