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Outline of Lecture 4

What is spectral clustering?

We will use the material of Lecture 3

We will discuss several spectral clustering algorithms

Link between spectral clustering and graph partitioning

Link between spectral clustering and random walks on graphs
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Material for this lecture

F. R. K. Chung. Spectral Graph Theory. 1997. (Chapter 1)

M. Belkin and P. Niyogi. Laplacian Eigenmaps for
Dimensionality Reduction and Data Representation. Neural
Computation, 15, 1373–1396 (2003).

U. von Luxburg. A Tutorial on Spectral Clustering. Statistics
and Computing, 17(4), 395–416 (2007). (An excellent paper)

Software:
http://open-specmatch.gforge.inria.fr/index.php.
Computes, among others, Laplacian embeddings of very large
graphs.
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Example
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Which Clustering Method to Use?

Techniques such as K-means or Gaussian mixtures will not
work well because the clusters are neither spherical nor
Gaussian.

One needs to apply a non-linear transformation of the data
such that “curved” clusters are transformed into “blobs”

The general idea of spectral clustering is to build an
undirected weigthed graph and to map the points (the graph’s
vertices) into the spectral space, spanned by the eigenvectors
of the Laplacian matrix.
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KD Trees

KD-tree (K-dimensional tree) is a data structure that allows
to organize a point cloud under the form of a binary tree.

The basic idea is to recursively and alternatively project the
points onto the x, y, z, x, y, z, etc., axes, to order the points
along each axis and to split the set into two halves.

This point-cloud organization facilitates and accelerates the
search of nearest neighbors (at the price of kd-tree
construction).

A more elaborate method (requiring more pre-processing
time) is to search for the principal direction and split the data
using a plane orthogonal to this direction, and apply this
strategy recursively.
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An Example of a 2D-tree (1)
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An Example of a 2D-tree (2)
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An Example of a 2D-tree (3)
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An Example of a 2D-tree (4)
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An Example of a 2D-tree (5)
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K-means Clustering

What is a cluster: a group of points whose inter-point distance
are small compared to distances to points outside the cluster.

Cluster centers: µ1, . . . ,µm.

Goal: find an assignment of points to clusters as well as a set
of mean-vectors µk.

Notations: For each point xj there is a binary indicator
variable rjk ∈ {0, 1}.
Objective: minimize the following distorsion measure:

J =
n∑

j=1

m∑
k=1

rjk‖xj − µk‖2
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The K-means Algorithm

1 Initialization: Choose m and initial values for µ1, . . . ,µm.

2 First step: Assign the j-th point to the closest cluster center:

rjk =
{

1 if k = arg minl ‖xj − µl‖2
0 otherwise

3 Second Step: Minimize J to estimate the cluster centers:

µk =

∑n
j=1 rjkxj∑n

j=1 rjk

4 Convergence: Repeat until no more change in the
assignments.
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How to Represent This Point Cloud?
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Spherical Clusters
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Building a Graph from a Point Cloud

K-nearest neighbor
(KNN) rule

ε-radius rule

Other more sophisticated
rules can be found in the
literature, i.e., Lee and
Verleysen. Nonlinear
Dimensionality Reduction
(Appendix E). Springer.
2007.

Remark: The KD-tree data structure can be used to facilitate
graph construction when the number of points is large.
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An Example of Graph Building
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The Graph Partitioning Problem

We want to find a partition of the graph such that the edges
between different groups have very low weight, while the
edges within a group have high weight.

The mincut problem:
1 Edges between groups have very low weight, and
2 Edges within a group have high weight.
3 Choose a partition of the graph into k groups that mimimizes

the following criterion:

mincut(A1, . . . , Ak) :=
1
2

k∑
i=1

W (Ai, Ai)

with
W (A,B) =

∑
i∈A,j∈B

wij
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RatioCut and NormalizedCut

Often, the mincut solution isolates a vertex from the rest of
the graph.

Request that the groups are reasonably large.

Ratio cut (Hagen & Kahng 1992) minimizes:

RatioCut(A1, . . . , Ak) :=
1
2

k∑
i=1

W (Ai, Ai)
|Ai|

Here |A| refers to the number of vertices in group A.

Normalized cut: (Shi & Malik 2000)

NCut(A1, . . . , Ak) :=
1
2

k∑
i=1

W (Ai, Ai)
vol(Ai)
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What is Spectral Clustering?

Both ratio-cut and normalized-cut minimizations are NP-hard
problems

Spectral clustering is a way to solve relaxed versions of these
problems:

1 The smallest non-null eigenvectors of the unnormalized
Laplacian approximate the RatioCut minimization criterion,
and

2 The smallest non-null eigenvectors of the random-walk
Laplacian approximate the NormalizedCut criterion.
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The Laplacian matrix of a graph

f : V −→ R, i.e., f(v1), . . . , f(vn).

(Lf)(vi) =
∑

vj∼vi
(f(vi)− f(vj))

Connection between the Laplacian and the adjacency matrices:

L = D−A

The degree matrix: D := Dii = d(vi).

L =


2 −1 −1 0
−1 3 −1 −1
−1 −1 2 0
0 −1 0 1
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Matrices of an undirected weighted graph

We consider undirected weighted graphs; Each edge eij is
weighted by wij > 0. We obtain:

Ω :=


Ωij = wij if there is an edge eij
Ωij = 0 if there is no edge
Ωii = 0

The degree matrix: D =
∑

i∼j wij
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The Laplacian on an undirected weighted graph

L = D−Ω

The Laplacian as an operator:

(Lf)(vi) =
∑

vj∼vi

wij(f(vi)− f(vj))

As a quadratic form:

f>Lf =
1
2

∑
eij

wij(f(vi)− f(vj))2

L is symmetric and positive semi-definite ↔ wij ≥ 0.

L has n non-negative, real-valued eigenvalues:
0 = λ1 ≤ λ2 ≤ . . . ≤ λn.
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The Laplacian in Practice

A graph vertex vi is associated with a point xi ∈ RD.

The weight wij of an edge eij is defined by the Gaussian
kernel:

wij = exp
(
−‖xi − xj‖2/σ2

)
This defines a similarity function between two nearby points.

Radu Horaud Manifold Learning for Signal and Image Analyss; Lecture 4



Other adjacency matrices

The normalized weighted adjacency matrix

ΩN = D−1/2ΩD−1/2

The transition matrix of the Markov process associated with
the graph:

ΩR = D−1Ω = D−1/2ΩND1/2
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Several Laplacian matrices

The unnormalized Laplacian which is also referred to as the
combinatorial Laplacian LC ,

the normalized Laplacian LN , and

the random-walk Laplacian LR also referred to as the discrete
Laplace operator.

We have:

LC = D−Ω

LN = D−1/2LCD−1/2 = I−ΩN

LR = D−1LC = I−ΩR
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Some spectral properties of the Laplacians

Laplacian Null space Eigenvalues Eigenvectors

LC =
UΛU>

u1 = 1 0 = λ1 < λ2 ≤
. . . ≤ λn ≤
2 maxi(di)

u>i>11 = 0,
u>i uj = δij

LN =
WΓW>

w1 = D1/21 0 = γ1 < γ2 ≤
. . . ≤ γn ≤ 2

w>i>1D
1/21 =

0,
w>i wj = δij

LR =
TΓT−1

T =
D−1/2W

t1 = 1 0 = γ1 < γ2 ≤
. . . ≤ γn ≤ 2

t>i>1D1 = 0,
t>i Dtj = δij
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Spectral properties of adjacency matrices

From the relationship between the normalized Laplacian and
adjacency matrix: LN = I−ΩN one can see that their eigenvalues
satisfy γ = 1− δ.

Adjacency matrix Eigenvalues Eigenvectors

ΩN = W∆W>,
∆ = I− Γ

−1 ≤ δn ≤ . . . ≤ δ2 <
δ1 = 1

w>i wj = δij

ΩR = T∆T−1 −1 ≤ δn ≤ . . . ≤ δ2 <
δ1 = 1

t>i Dtj = δij
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The Laplacian of a graph with one connected component

Lu = λu.

L1 = 0, λ1 = 0 is the smallest eigenvalue.

The one vector: 1 = (1 . . . 1)>.

0 = u>Lu =
∑n

i,j=1wij(u(vi)− u(vj))2.

If any two vertices are connected by a path, then
u = (u(v1), . . . , u(vn)) needs to be constant at all vertices
such that the quadratic form vanishes. Therefore, a graph
with one connected component has the constant vector
u1 = 1 as the only eigenvector with eigenvalue 0.
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A graph with k > 1 connected components

Each connected component has an associated Laplacian.
Therefore, we can write matrix L as a block diagonal matrix :

L =

 L1

. . .

Lk


The spectrum of L is given by the union of the spectra of Li.

Each block corresponds to a connected component, hence
each matrix Li has an eigenvalue 0 with multiplicity 1.

The spectrum of L is given by the union of the spectra of Li.

The eigenvalue λ1 = 0 has multiplicity k.
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The eigenspace of λ1 = 0 with multiplicity k

The eigenspace corresponding to λ1 = . . . = λk = 0 is
spanned by the k mutually orthogonal vectors:

u1 = 1L1

. . .
uk = 1Lk

with 1Li = (0000111110000)> ∈ Rn

These vectors are the indicator vectors of the graph’s
connected components.

Notice that 1L1 + . . .+ 1Lk
= 1
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The Fiedler vector of the graph Laplacian

The first non-null eigenvalue λk+1 is called the Fiedler value.

The corresponding eigenvector uk+1 is called the Fiedler
vector.

The multiplicity of the Fiedler eigenvalue depends on the
graph’s structure and it is difficult to analyse.

The Fiedler value is the algebraic connectivity of a graph, the
further from 0, the more connected.

The Fiedler vector has been extensively used for spectral
bi-partioning

Theoretical results are summarized in Spielman & Teng 2007:
http://cs-www.cs.yale.edu/homes/spielman/
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Eigenvectors of the Laplacian of connected graphs

u1 = 1,L1 = 0.

u2 is the the Fiedler vector generally assumed with
multiplicity 1.

The eigenvectors form an orthonormal basis: u>i uj = δij .

For any eigenvector ui = (ui(v1) . . .ui(vn))>, 2 ≤ i ≤ n:

u>i 1 = 0

Hence the components of ui, 2 ≤ i ≤ n satisfy:

n∑
j=1

ui(vj) = 0

Each component is bounded by:

−1 < ui(vj) < 1
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Spectral embedding using the unnormalized Laplacian

Compute the eigendecomposition LC = D−Ω = UΛU>.

Select the k smallest non-null eigenvalues λ2 ≤ . . . ≤ λk+1

λk+2 − λk+1 = eigengap.

We obtain the n× k column-orthogonal matrix
Ũ = [u2 . . .uk+1]:

Ũ =

 u2(v1) . . . uk+1(v1)
...

...
u2(vn) . . . uk+1(vn)


Embedding: The i-row of this matrix correspond to the
representation of vertex vI in the Rk basis spanned by the
orthonormal vector basis u2, . . . ,uk+1.

Therefore: Y = [y1 . . .yi . . .yn] = Ũ>
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Spectral embedding using the random-walk Laplacian

The n× k matrix contains the first k eigenvectors of LR:

W̃ =
[
w2 . . . wk+1

]
It is straightforward to obtain the following expressions, where
d and D are the degree-vector and the degree-matrix:

w>i d = 0, ∀i, 2 ≤ i ≤ n

W̃>DW̃ = Ik

Hence, vectors w2, . . . ,wk+1 do not form an orthonormal
basis.

The embedding using the random-walk Laplacian:

Y = [y1 . . .yi . . .yn] = W̃>
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Spectral clustering using the random-walk Laplacian

For details see (von Luxburg ’07)

Input: Laplacian Lr and the number k of clusters to compute.

Output: Cluster C1, . . . , Ck.

1 Compute W formed with the first k eigenvectors of the
random-walk Laplacian.

2 Determine the spectral embedding Y = W>

3 Cluster the columns yj , j = 1, . . . , n into k clusters using the
K-means algorithm.
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Spectral Clustering Analysis : The Ideal Case

λ1 = λ2 = λ3 = 0
w1,w2,w3 form an
orthonormal basis.

The connected components
collapse to
(100), (010), (001).

Clustering is trivial in this
case.

W =



1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1



Y =

 1 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 1
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Spectral Clustering Analysis : The Perturbed Case

See (von Luxburg ’07) for a
detailed analysis.

The connected components
are no longer disconnected,
but they are only connected
by few edges with low
weight.

The Laplacian is a perturbed
version of the ideal case.

Choosing the first k nonzero
eigenvalues is easier the
larger the eigengap between
λk+1 and λk+2.

The fact that the first k
eigenvectors of the
perturbed case are
approximately piecewise
constant depends on
|λk+2 − λk+1|.
Choosing k is a crucial issue.
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Mesh segmentation using spectral clustering

K=6 K=6 K=9 K=6

Radu Horaud Manifold Learning for Signal and Image Analyss; Lecture 4



Conclusions

Spectral graph embedding based on the graph Laplacian is a
very powerful tool;

Allows links between graphs and Riemannian manifolds

There are strong links with Markov chains and random walks

It allows clustering (or segmentation) under some conditions

The PERCEPTION group uses it for shape matching, shape
segmentation, shape recognition, etc.
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