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Outline of Lecture 3

@ What is spectral graph theory?

@ Some graph notation and definitions
@ The adjacency matrix

@ Laplacian matrices

@ Spectral graph embedding
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Material for this lecture

F. R. K. Chung. Spectral Graph Theory. 1997. (Chapter 1)

@ M. Belkin and P. Niyogi. Laplacian Eigenmaps for
Dimensionality Reduction and Data Representation. Neural
Computation, 15, 1373-1396 (2003).

U. von Luxburg. A Tutorial on Spectral Clustering. Statistics
and Computing, 17(4), 395-416 (2007). (An excellent paper)

Software:
http://open-specmatch.gforge.inria.fr/index.php.
Computes, among others, Laplacian embeddings of very large
graphs.
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Spectral graph theory at a glance

@ The spectral graph theory studies the properties of graphs via
the eigenvalues and eigenvectors of their associated graph
matrices: the adjacency matrix, the graph Laplacian and their
variants.

@ These matrices have been extremely well studied from an
algebraic point of view.

@ The Laplacian allows a natural link between discrete
representations (graphs), and continuous representations, such
as metric spaces and manifolds.

@ Laplacian embedding consists in representing the vertices of a
graph in the space spanned by the smallest eigenvectors of the
Laplacian — A geodesic distance on the graph becomes a
spectral distance in the embedded (metric) space.
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Spectral graph theory and manifold learning

o First we construct a graph from x1,...x, € RP

@ Then we compute the d smallest eigenvalue-eigenvector pairs
of the graph Laplacian

e Finally we represent the data in the R space spanned by the
correspodning orthonormal eigenvector basis. The choice of
the dimension d of the embedded space is not trivial.

@ Paradoxically, d may be larger than D in many cases!
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Basic graph notations and definitions

We consider simple graphs (no multiple edges or loops),
G={V, &}
@ V(G) ={v1,...,v,} is called the vertex set with n = |V|;
o £(G) = {e;;} is called the edge set with m = |£];
@ An edge ¢;; connects vertices v; and v; if they are adjacent or
neighbors. One possible notation for adjacency is v; ~ vj;

@ The number of neighbors of a node v is called the degree of v
and is denoted by d(v), d(v;) = Z”i"’”j eij. If all the nodes of
a graph have the same degree, the graph is regular; The
nodes of an Eulerian graph have even degree.

o A graph is complete if there is an edge between every pair of
vertices.
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The adjacency matrix of a graph

e For a graph with n vertices, the entries of the n x n adjacency
matrix are defined by:

Aij; =1 if there is an edge ¢;;

A:=¢ A;; =0 if there is no edge
A =0
01 1 0 Vi V2
1 01 1
A= 1 100
0100 V3 V4
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Eigenvalues and eigenvectors

@ A is a real-symmetric matrix: it has n real eigenvalues and its
n real eigenvectors form an orthonormal basis.

o Let {A1,...,\i,..., A} be the set of distinct eigenvalues.

@ The eigenspace S; contains the eigenvectors associated with
)\i:

S; ={x € R"|Ax = \xz}

@ For real-symmetric matrices, the algebraic multiplicity is equal
to the geometric multiplicity, for all the eigenvalues.

@ The dimension of S; (geometric multiplicity) is equal to the
multiplicity of A;.

o If \; # A\j then S; and S are mutually orthogonal.
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Real-valued functions on graphs

@ We consider real-valued functions on the set of the graph's
vertices, f : V — R. Such a function assigns a real number
to each graph node.

o f is a vector indexed by the graph's vertices, hence f € R".

o Notation: f = (f(v1),. .., f(vn)) = (fis- -+ fu) -

@ The eigenvectors of the adjacency matrix, Ax = Az, can be
viewed as eigenfunctions.

fvi)=2 f(v2)=3.5

J(v3)=4.1 f(ve)=5
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Matrix A as an operator and quadratic form

@ The adjacency matrix can be viewed as an operator

g=Af;g(i) =) f()

i~vj

@ It can also be viewed as a quadratic form:

FIAF =Y F@)fQ)

€ij
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The incidence matrix of a graph

@ Let each edge in the graph have an arbitrary but fixed
orientation;

@ The incidence matrix of a graph is a |£] x |V| (m x n) matrix
defined as follows:

Vevw = —1 if v is the initial vertex of edge e
V=< Ve =1 ifvisthe terminal vertex of edge e
Yew =0 ifvisnotine

-1 1 0 0 vi V2
10 -1 0
V=10 -1 1 o0
0 -1 0 +1 V3 V4
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The incidence matrix: A discrete differential operator

@ The mapping f — s/.f is known as the co-boundary
mapping of the graph.

o (Vf)(eis) = f(vj) — fluvi)

110 0/ F(2) - £(1)
1o -1 oo || || ) -re)
0o -1 1 0 || 3 F(3) - £(2)
0 -1 0 +1 ]\ f) F(4) - £(2)
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The Laplacian matrix of a graph

oL=v'vy
o (Lf)(vi) = 2y, (f(vi) = [(v5))

@ Connection between the Laplacian and the adjacency matrices:
L=D-A

@ The degree matrix: D := D;; = d(v;).

2 -1 -1 0 Vi &
-1 3 -1 -1

L= -1 -1 2 0
0 -1 0 1 V3 V4
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Example: A graph with 10 nodes
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1000100100
01 0100O0O0T1FQO0
00100O01T1O0T1

01 1100000 07
100010O0O0O0GO
1000011000

0010O01O0O0TO0OO

0 00101O0O0T11

00001O0O01O00O0

000O0O0OT1TO0T1TUO0T® O

A=

The adjacency matrix

Manifold Learning for Signal and Visual Processing; Lecture 3

Radu Horaud



The Laplacian matrix

o O oo
o O O OO

OO oo oo
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The Eigenvalues of this Laplacian

A = [ 0.0000 0.7006 1.1306 1.8151 2.4011
3.0000 3.8327 4.1722 5.2014 5.7462 |
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Matrices of an Undirected Weighted Graph

e We consider undirected weighted graphs; Each edge e;; is
weighted by w;; > 0. We obtain:

Q;; = w;; if there is an edge e;;
Q=49 ;=0 if there is no edge
Qi =0

@ The degree matrix: D =),

ZNj
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The Laplacian on an undirected weighted graph

L=D-Q

The Laplacian as an operator:

(L)) = D wi(fvi) = f(v;))

vj g

As a quadratic form:

FTLE = 53w (wi) - f(2)?

€ij

L is symmetric and positive semi-definite < w;; > 0.

L has n non-negative, real-valued eigenvalues:
0= <A <... <\
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Other adjacency matrices

@ The normalized weighted adjacency matrix
Qy =D '/2QD /2
@ The transition matrix of the Markov process associated with

the graph:
Qr =D 'Q=D"2qyD"/?
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Several Laplacian matrices

@ The unnormalized Laplacian which is also referred to as the
combinatorial Laplacian L¢,

@ the normalized Laplacian Lj;, and

@ the random-walk Laplacian Ly also referred to as the discrete
Laplace operator.

We have:

Ly = D Y2L,DV2=1-Qy
Lrp = D'Lc=1-9Q3
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Relationships between all these matrices

Lc = DY2LyD'Y? =DLp
LN _ D71/2LCD71/2 — Dl/QLRDfl/Q
L = D Y2LyDY2 =D 'L
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Some spectral properties of the Laplacians

Laplacian | Null space Eigenvalues Eigenvectors
LC = ’LL1:1 0 = M < N < u;;ll:(),
U-]\U—r . < )\n < u;ruj = (5,7‘
Qmaxi(di)

Ly =|w=D"1]{0=1y < 1y <|w.,DY1=
WI'W' < <2 0,

'w;-r'wj = 5ij
Lp = |t=1 0=m < 7 <|t ;D1=0,
TrT! <9, <2 t! Dt; = 6;;
T =
D '/?W
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Spectral properties of adjacency matrices

From the relationship between the normalized Laplacian and
adjacency matrix: Ly = I — Qpx one can see that their eigenvalues

satisfy:
y=1-1
Adjacency matrix Eigenvalues Eigenvectors
Qv = WOIWT, | 1<¢, <...<n< | w w; =0
v=I-T P =1
Qp=TvT! —1< 4, <... <y < | t/Dt; =
P =1
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Eigenvalue and Eigenvectors of the Normalized and
Random Laplacians

e Eigenvalues of the normalized adjacent matrix:
L=t >y > .. > > —1

@ The largest eigenvalue-eigenvector pair:
(1 = 1,wy = DY/?1)

@ The estimation of the smallest non null eigenvalue-eigenvector
pairs of Ly involves the shifted inverse power method.

@ The second, third, etc., largest eigenvalue-eigenvector pair of
Qn can be obtained with the direct power method and
deflation:

QN = QN — 'wlwlT

@ Remark: Sparsity is lost by deflation!
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The Laplacian of a graph with one connected component

Lu = \u.
L1 =0, A\; = 0 is the smallest eigenvalue.

The one vector: 1 = (1...1)".

0=wu'Lu =37 wyu(i) —u(j))

If any two vertices are connected by a path, then

u = (u(l),...,u(n)) needs to be constant at all vertices such
that the quadratic form vanishes. Therefore, a graph with one
connected component has the constant vector u; = 1 as the
only eigenvector with eigenvalue 0.
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A graph with & > 1 connected components

@ Each connected component has an associated Laplacian.
Therefore, we can write matrix L as a block diagonal matrix:

L,

Ly

The spectrum of L is given by the union of the spectra of L;.

Each block corresponds to a connected component, hence
each matrix L; has an eigenvalue 0 with multiplicity 1.

The spectrum of L is given by the union of the spectra of L;.

The eigenvalue A1 = 0 has multiplicity k.
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The eigenspace of \; = 0 with multiplicity &

@ The eigenspace correspondingto \; = ... =X\, =0is
spanned by the & mutually orthogonal vectors:

uy = 1L1
U — 1Lk

e with 17, = (0000111110000)" € R"

@ These vectors are the indicator vectors of the graph’s
connected components.

e Notice that 17, +...+17, =1
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The Fiedler vector of the graph Laplacian

@ The first non-null eigenvalue Agy1 is called the Fiedler value.

@ The corresponding eigenvector w1 is called the Fiedler
vector.

@ The multiplicity of the Fiedler eigenvalue depends on the
graph’s structure and it is difficult to analyse.

@ The Fiedler value is the algebraic connectivity of a graph, the
further from 0, the more connected.

@ The Fiedler vector has been extensively used for spectral
bi-partioning

@ Theoretical results are summarized in Spielman & Teng 2007:
http://cs-www.cs.yale.edu/homes/spielman/
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Eigenvectors of the Laplacian of connected graphs

u; =1,L1=0.
ug is the the Fiedler vector with multiplicity 1.

The eigenvectors form an orthonormal basis: w, uj = d;;.

For any eigenvector u; = (u;(v1) ... u;(vy)) ", 2 <i < n:

u]1=0

Hence the components of u;, 2 <7 < n satisfy:

Zui(vj) =0
7j=1

Each component is bounded by:

—-1< ui(vj) <1
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Laplacian embedding: Mapping a graph on a line

@ Map a weighted graph onto a line such that connected nodes
stay as close as possible, i.e., minimize

Zijl wi; (f(vi) = f(v;))?, or:

argm}n FILf with: f'f=1and fT1=0

@ The solution is the eigenvector associated with the smallest
nonzero eigenvalue of the eigenvalue problem: Lf = Af,
namely the Fiedler vector us.

@ Practical computation of the eigenpair A2, u3): the shifted
inverse power method (see lecture 2).
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The shifted inverse power method (from Lecture 2)

@ Let's consider the matrix B = A — al as well as an eigenpair
Au = )u.

@ (A — «,u) becomes an eigenpair of B, indeed:
Bu=(A-al)u=(\—-a)u

and hence B is a real symmetric matrix with eigenpairs
(M —a,uy1),... (N —a,uy),...(Ap — a,up)

o If o> 0 is choosen such that |\; — o < |A\; — a| Vi # j then
Aj — o becomes the smallest (in magnitude) eivenvalue.

@ The inverse power method (in conjuction with the LU
decomposition of B) can be used to estimate the eigenpair
(Aj — a,uyj).
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Example of mapping a graph on the Fiedler vector
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Laplacian embedding

@ Embed the graph in a k-dimensional Euclidean space. The
embedding is given by the n x k matrix F = [f{fo ... fi]
where the i-th row of this matrix — f(i) — corresponds to the
Euclidean coordinates of the i-th graph node v;.

@ We need to minimize (Belkin & Niyogi '03):
n . .
arg min Z wij||fD = £9)? with: FTF =1.
1Jd kg5=1

@ The solution is provided by the matrix of eigenvectors
corresponding to the k lowest nonzero eigenvalues of the
eigenvalue problem Lf = \f.
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Spectral embedding using the unnormalized Laplacian

Compute the eigendecomposition L = D — €.

Select the k smallest non-null eigenvalues A2 < ... < Apyq
Ak42 — Ag41 = eigengap.

We obtain the n x k matrix U = [ug ... up41]:

’LLQ(’Ul) v uk+1(vl)
U= . .

U9 (vn) . uk+1' (vn)

T

7

u;j = &;; (orthonormal vectors), hence UTU = I;.

u

Column i (2 <4 < k + 1) of this matrix is a mapping on the
eigenvector u;.
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Examples of one-dimensional mappings
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Euclidean L-embedding of the graph's vertices

e (Euclidean) L-embedding of a graph:

1
51T
X=A°U =[x ...z ... =,
The coordinates of a vertex v; are:

U2 (vy)

V2

€Tj = .
Up11(v;)
Ak+1

@ A formal justification of using this will be provided later.
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The Laplacian of a mesh

A mesh may be viewed as a graph: n = 10,000 vertices,
m = 35,000 edges. ARPACK finds the smallest 100 eigenpairs in
46 seconds.
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Example: Shape embedding
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