Data Analysis and Manifold Learning Lecture 3: Graphs, Graph Matrices, and Graph Embeddings

Radu Horaud
INRIA Grenoble Rhone-Alpes, France
Radu.Horaud@inrialpes.fr
http://perception.inrialpes.fr/

Outline of Lecture 3

- What is spectral graph theory?
- Some graph notation and definitions
- The adjacency matrix
- Laplacian matrices
- Spectral graph embedding

Material for this lecture

- F. R. K. Chung. Spectral Graph Theory. 1997. (Chapter 1)
- M. Belkin and P. Niyogi. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computation, 15, 1373-1396 (2003).
- U. von Luxburg. A Tutorial on Spectral Clustering. Statistics and Computing, 17(4), 395-416 (2007). (An excellent paper)
- Software:
http://open-specmatch.gforge.inria.fr/index.php. Computes, among others, Laplacian embeddings of very large graphs.

Spectral graph theory at a glance

- The spectral graph theory studies the properties of graphs via the eigenvalues and eigenvectors of their associated graph matrices: the adjacency matrix, the graph Laplacian and their variants.
- These matrices have been extremely well studied from an algebraic point of view.
- The Laplacian allows a natural link between discrete representations (graphs), and continuous representations, such as metric spaces and manifolds.
- Laplacian embedding consists in representing the vertices of a graph in the space spanned by the smallest eigenvectors of the Laplacian - A geodesic distance on the graph becomes a spectral distance in the embedded (metric) space.

Spectral graph theory and manifold learning

- First we construct a graph from $\boldsymbol{x}_{1}, \ldots \boldsymbol{x}_{n} \in \mathbb{R}^{D}$
- Then we compute the d smallest eigenvalue-eigenvector pairs of the graph Laplacian
- Finally we represent the data in the \mathbb{R}^{d} space spanned by the correspodning orthonormal eigenvector basis. The choice of the dimension d of the embedded space is not trivial.
- Paradoxically, d may be larger than D in many cases!

Basic graph notations and definitions

We consider simple graphs (no multiple edges or loops),
$\mathcal{G}=\{\mathcal{V}, \mathcal{E}\}:$

- $\mathcal{V}(\mathcal{G})=\left\{v_{1}, \ldots, v_{n}\right\}$ is called the vertex set with $n=|\mathcal{V}|$;
- $\mathcal{E}(\mathcal{G})=\left\{e_{i j}\right\}$ is called the edge set with $m=|\mathcal{E}|$;
- An edge $e_{i j}$ connects vertices v_{i} and v_{j} if they are adjacent or neighbors. One possible notation for adjacency is $v_{i} \sim v_{j}$;
- The number of neighbors of a node v is called the degree of v and is denoted by $d(v), d\left(v_{i}\right)=\sum_{v_{i} \sim v_{j}} e_{i j}$. If all the nodes of a graph have the same degree, the graph is regular; The nodes of an Eulerian graph have even degree.
- A graph is complete if there is an edge between every pair of vertices.

The adjacency matrix of a graph

- For a graph with n vertices, the entries of the $n \times n$ adjacency matrix are defined by:

$$
\begin{gathered}
\mathbf{A}:= \begin{cases}A_{i j}=1 & \text { if there is an edge } e_{i j} \\
A_{i j}=0 & \text { if there is no edge } \\
A_{i i}=0\end{cases} \\
\mathbf{A}=\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Eigenvalues and eigenvectors

- \mathbf{A} is a real-symmetric matrix: it has n real eigenvalues and its n real eigenvectors form an orthonormal basis.
- Let $\left\{\lambda_{1}, \ldots, \lambda_{i}, \ldots, \lambda_{r}\right\}$ be the set of distinct eigenvalues.
- The eigenspace S_{i} contains the eigenvectors associated with λ_{i} :

$$
S_{i}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \mathbf{A} \boldsymbol{x}=\lambda_{i} \boldsymbol{x}\right\}
$$

- For real-symmetric matrices, the algebraic multiplicity is equal to the geometric multiplicity, for all the eigenvalues.
- The dimension of S_{i} (geometric multiplicity) is equal to the multiplicity of λ_{i}.
- If $\lambda_{i} \neq \lambda_{j}$ then S_{i} and S_{j} are mutually orthogonal.

Real-valued functions on graphs

- We consider real-valued functions on the set of the graph's vertices, $\boldsymbol{f}: \mathcal{V} \longrightarrow \mathbb{R}$. Such a function assigns a real number to each graph node.
- f is a vector indexed by the graph's vertices, hence $f \in \mathbb{R}^{n}$.
- Notation: $\boldsymbol{f}=\left(f\left(v_{1}\right), \ldots, f\left(v_{n}\right)\right)=\left(f_{1}, \ldots, f_{n}\right)$.
- The eigenvectors of the adjacency matrix, $\mathbf{A} \boldsymbol{x}=\lambda \boldsymbol{x}$, can be viewed as eigenfunctions.

$$
f\left(v_{1}\right)=2
$$

Matrix A as an operator and quadratic form

- The adjacency matrix can be viewed as an operator

$$
\boldsymbol{g}=\mathbf{A} \boldsymbol{f} ; g(i)=\sum_{i \sim j} f(j)
$$

- It can also be viewed as a quadratic form:

$$
\boldsymbol{f}^{\top} \mathbf{A} \boldsymbol{f}=\sum_{e_{i j}} f(i) f(j)
$$

The incidence matrix of a graph

- Let each edge in the graph have an arbitrary but fixed orientation;
- The incidence matrix of a graph is a $|\mathcal{E}| \times|\mathcal{V}|(m \times n)$ matrix defined as follows:

$$
\begin{gathered}
\nabla:= \begin{cases}\nabla e v=-1 & \text { if } v \text { is the initial vertex of edge } e \\
\nabla e v=1 & \text { if } v \text { is the terminal vertex of edge } e \\
\nabla e v=0 & \text { if } v \text { is not in } e\end{cases} \\
\nabla=\left[\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
1 & 0 & -1 & 0 \\
0 & -1 & 1 & 0 \\
0 & -1 & 0 & +1
\end{array}\right]
\end{gathered}
$$

The incidence matrix: A discrete differential operator

- The mapping $\boldsymbol{f} \longrightarrow \nabla \boldsymbol{f}$ is known as the co-boundary mapping of the graph.
- $(\nabla \boldsymbol{f})\left(e_{i j}\right)=f\left(v_{j}\right)-f\left(v_{i}\right)$

$$
\left[\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
1 & 0 & -1 & 0 \\
0 & -1 & 1 & 0 \\
0 & -1 & 0 & +1
\end{array}\right]\left(\begin{array}{l}
f(1) \\
f(2) \\
f(3) \\
f(4)
\end{array}\right)=\left(\begin{array}{l}
f(2)-f(1) \\
f(1)-f(3) \\
f(3)-f(2) \\
f(4)-f(2)
\end{array}\right)
$$

The Laplacian matrix of a graph

- $\mathbf{L}=\nabla^{\top} \nabla$
- $(\mathbf{L} \boldsymbol{f})\left(v_{i}\right)=\sum_{v_{j} \sim v_{i}}\left(f\left(v_{i}\right)-f\left(v_{j}\right)\right)$
- Connection between the Laplacian and the adjacency matrices:

$$
\mathbf{L}=\mathbf{D}-\mathbf{A}
$$

- The degree matrix: $\mathbf{D}:=D_{i i}=d\left(v_{i}\right)$.

$$
\mathbf{L}=\left[\begin{array}{cccc}
2 & -1 & -1 & 0 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 2 & 0 \\
0 & -1 & 0 & 1
\end{array}\right]
$$

Example: A graph with 10 nodes

The adjacency matrix

$$
\mathbf{A}=\left[\begin{array}{llllllllll}
0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0
\end{array}\right]
$$

The Laplacian matrix

$$
\mathbf{L}=\left[\begin{array}{cccccccccc}
3 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 2 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 3 & 0 & 0 & -1 & -1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 3 & -1 & 0 & 0 & -1 & 0 & 0 \\
0 & -1 & 0 & -1 & 3 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & -1 & 0 & 0 & 4 & -1 & -1 & 0 & -1 \\
0 & 0 & -1 & 0 & 0 & -1 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & -1 & 0 & 4 & -1 & -1 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & -1 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 0 & 2
\end{array}\right]
$$

The Eigenvalues of this Laplacian

$$
\boldsymbol{\Lambda}=\left[\begin{array}{lllll}
0.0000 & 0.7006 & 1.1306 & 1.8151 & 2.4011 \\
3.0000 & 3.8327 & 4.1722 & 5.2014 & 5.7462
\end{array}\right]
$$

Matrices of an undirected weighted graph

- We consider undirected weighted graphs; Each edge $e_{i j}$ is weighted by $w_{i j}>0$. We obtain:

$$
\boldsymbol{\Omega}:= \begin{cases}\Omega_{i j}=w_{i j} & \text { if there is an edge } e_{i j} \\ \Omega_{i j}=0 & \text { if there is no edge } \\ \Omega_{i i}=0 & \end{cases}
$$

- The degree matrix: $\mathbf{D}=\sum_{i \sim j} w_{i j}$

The Laplacian on an undirected weighted graph

- $\mathbf{L}=\mathbf{D}-\boldsymbol{\Omega}$
- The Laplacian as an operator:

$$
(\mathbf{L} \boldsymbol{f})\left(v_{i}\right)=\sum_{v_{j} \sim v_{i}} w_{i j}\left(f\left(v_{i}\right)-f\left(v_{j}\right)\right)
$$

- As a quadratic form:

$$
\boldsymbol{f}^{\top} \mathbf{L} \boldsymbol{f}=\frac{1}{2} \sum_{e_{i j}} w_{i j}\left(f\left(v_{i}\right)-f\left(v_{j}\right)\right)^{2}
$$

- \mathbf{L} is symmetric and positive semi-definite $\leftrightarrow w_{i j} \geq 0$.
- \mathbf{L} has n non-negative, real-valued eigenvalues: $0=\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$.

Other adjacency matrices

- The normalized weighted adjacency matrix

$$
\boldsymbol{\Omega}_{N}=\mathbf{D}^{-1 / 2} \boldsymbol{\Omega} \mathbf{D}^{-1 / 2}
$$

- The transition matrix of the Markov process associated with the graph:

$$
\boldsymbol{\Omega}_{R}=\mathbf{D}^{-1} \boldsymbol{\Omega}=\mathbf{D}^{-1 / 2} \boldsymbol{\Omega}_{N} \mathbf{D}^{1 / 2}
$$

Several Laplacian matrices

- The unnormalized Laplacian which is also referred to as the combinatorial Laplacian \mathbf{L}_{C},
- the normalized Laplacian \mathbf{L}_{N}, and
- the random-walk Laplacian \mathbf{L}_{R} also referred to as the discrete Laplace operator.

We have:

$$
\begin{aligned}
\mathbf{L}_{C} & =\mathbf{D}-\boldsymbol{\Omega} \\
\mathbf{L}_{N} & =\mathbf{D}^{-1 / 2} \mathbf{L}_{C} \mathbf{D}^{-1 / 2}=\mathbf{I}-\boldsymbol{\Omega}_{N} \\
\mathbf{L}_{R} & =\mathbf{D}^{-1} \mathbf{L}_{C}=\mathbf{I}-\boldsymbol{\Omega}_{R}
\end{aligned}
$$

Relationships between all these matrices

$$
\begin{aligned}
\mathbf{L}_{C} & =\mathbf{D}^{1 / 2} \mathbf{L}_{N} \mathbf{D}^{1 / 2}=\mathbf{D L}_{R} \\
\mathbf{L}_{N} & =\mathbf{D}^{-1 / 2} \mathbf{L}_{C} \mathbf{D}^{-1 / 2}=\mathbf{D}^{1 / 2} \mathbf{L}_{R} \mathbf{D}^{-1 / 2} \\
\mathbf{L}_{R} & =\mathbf{D}^{-1 / 2} \mathbf{L}_{N} \mathbf{D}^{1 / 2}=\mathbf{D}^{-1} \mathbf{L}_{C}
\end{aligned}
$$

Some spectral properties of the Laplacians

Laplacian	Null space	Eigenvalues	Eigenvectors
$\begin{aligned} & \mathbf{L}_{C}= \\ & \mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\top} \end{aligned}$	$u_{1}=\mathbf{1}$	$\begin{array}{lll} 0=\lambda_{1}<\lambda_{2} & \leq \\ \ldots & \leq & \lambda_{n} \\ 2 \max _{i}\left(d_{i}\right) & \leq \\ \hline \end{array}$	$\begin{aligned} & \boldsymbol{u}_{i>1}^{\top} \mathbf{1}=0, \\ & \boldsymbol{u}_{i}^{\top} \boldsymbol{u}_{j}=\delta_{i j} \end{aligned}$
$\begin{aligned} & \mathbf{L}_{N}= \\ & \mathbf{W C W}^{\top} \end{aligned}$	$\boldsymbol{w}_{1}=\mathbf{D}^{1 / 2} \mathbf{1}$	$\begin{aligned} & 0=\gamma_{1}<\gamma_{2} \leq \\ & \ldots \leq \gamma_{n} \leq 2 \end{aligned}$	$\begin{aligned} & \boldsymbol{w}_{i>1}^{\top} \mathbf{D}^{1 / 2} \mathbf{1}= \\ & 0, \\ & \boldsymbol{w}_{i}^{\top} \boldsymbol{w}_{j}=\delta_{i j} \end{aligned}$
$\begin{aligned} & \mathbf{L}_{R}= \\ & \mathbf{T \Gamma T} \mathbf{T}^{-1}= \\ & \mathbf{T}= \\ & \mathbf{D}^{-1 / 2} \mathbf{W} \end{aligned}$	$t_{1}=\mathbf{1}$	$\begin{aligned} & 0=\gamma_{1}<\gamma_{2} \leq \\ & \ldots \leq \gamma_{n} \leq 2 \end{aligned}$	$\begin{aligned} & \boldsymbol{t}_{i \geq 1}^{\top} \mathbf{D} \mathbf{1}=0, \\ & \boldsymbol{t}_{i}^{\top} \mathbf{D} \boldsymbol{t}_{j}=\delta_{i j} \end{aligned}$

Spectral properties of adjacency matrices

From the relationship between the normalized Laplacian and adjacency matrix: $\mathbf{L}_{N}=\mathbf{I}-\boldsymbol{\Omega}_{N}$ one can see that their eigenvalues satisfy $\gamma=1-\delta$.

Adjacency matrix	Eigenvalues	Eigenvectors
$\boldsymbol{\Omega}_{N}=\mathbf{W} \boldsymbol{\Delta} \mathbf{W}^{\top}$,	$-1 \leq \delta_{n} \leq \ldots \leq \delta_{2}<$	$\boldsymbol{w}_{i}^{\top} \boldsymbol{w}_{j}=\delta_{i j}$
$\boldsymbol{\Delta}=\mathbf{I}-\boldsymbol{\Gamma}$	$\delta_{1}=1$	
$\boldsymbol{\Omega}_{R}=\mathbf{T} \boldsymbol{\Delta} \mathbf{T}^{-1}$	$-1 \leq \delta_{n} \leq \ldots \leq \delta_{2}<$	$\boldsymbol{t}_{i}^{\top} \mathbf{D} \boldsymbol{t}_{j}=\delta_{i j}$
	$\delta_{1}=1$	

The Laplacian of a graph with one connected component

- $\mathbf{L} \boldsymbol{u}=\lambda \boldsymbol{u}$.
- $\mathbf{L} 1=\mathbf{0}, \lambda_{1}=0$ is the smallest eigenvalue.
- The one vector: $\mathbf{1}=(1 \ldots 1)^{\top}$.
- $0=\boldsymbol{u}^{\top} \mathbf{L} \boldsymbol{u}=\sum_{i, j=1}^{n} w_{i j}(u(i)-u(j))^{2}$.
- If any two vertices are connected by a path, then
$\boldsymbol{u}=(u(1), \ldots, u(n))$ needs to be constant at all vertices such that the quadratic form vanishes. Therefore, a graph with one connected component has the constant vector $\boldsymbol{u}_{1}=\mathbf{1}$ as the only eigenvector with eigenvalue 0 .

A graph with $k>1$ connected components

- Each connected component has an associated Laplacian. Therefore, we can write matrix \mathbf{L} as a block diagonal matrix:

$$
\mathbf{L}=\left[\begin{array}{lll}
\mathbf{L}_{1} & & \\
& \ddots & \\
& & \mathbf{L}_{k}
\end{array}\right]
$$

- The spectrum of \mathbf{L} is given by the union of the spectra of \mathbf{L}_{i}.
- Each block corresponds to a connected component, hence each matrix \mathbf{L}_{i} has an eigenvalue 0 with multiplicity 1.
- The spectrum of \mathbf{L} is given by the union of the spectra of \mathbf{L}_{i}.
- The eigenvalue $\lambda_{1}=0$ has multiplicity k.

The eigenspace of $\lambda_{1}=0$ with multiplicity k

- The eigenspace corresponding to $\lambda_{1}=\ldots=\lambda_{k}=0$ is spanned by the k mutually orthogonal vectors:

$$
\begin{gathered}
\boldsymbol{u}_{1}=\mathbf{1}_{L_{1}} \\
\\
\cdots \\
\boldsymbol{u}_{k}=\mathbf{1}_{L_{k}}
\end{gathered}
$$

- with $1_{L_{i}}=(0000111110000)^{\top} \in \mathbb{R}^{n}$
- These vectors are the indicator vectors of the graph's connected components.
- Notice that $\mathbf{1}_{L_{1}}+\ldots+\mathbf{1}_{L_{k}}=\mathbf{1}$

The Fiedler vector of the graph Laplacian

- The first non-null eigenvalue λ_{k+1} is called the Fiedler value.
- The corresponding eigenvector \boldsymbol{u}_{k+1} is called the Fiedler vector.
- The multiplicity of the Fiedler eigenvalue depends on the graph's structure and it is difficult to analyse.
- The Fiedler value is the algebraic connectivity of a graph, the further from 0 , the more connected.
- The Fiedler vector has been extensively used for spectral bi-partioning
- Theoretical results are summarized in Spielman \& Teng 2007: http://cs-www.cs.yale.edu/homes/spielman/

Eigenvectors of the Laplacian of connected graphs

- $\boldsymbol{u}_{1}=\mathbf{1}, \mathbf{L} \mathbf{1}=\mathbf{0}$.
- \boldsymbol{u}_{2} is the the Fiedler vector with multiplicity 1.
- The eigenvectors form an orthonormal basis: $\boldsymbol{u}_{i}^{\top} \boldsymbol{u}_{j}=\delta_{i j}$.
- For any eigenvector $\boldsymbol{u}_{i}=\left(\boldsymbol{u}_{i}\left(v_{1}\right) \ldots \boldsymbol{u}_{i}\left(v_{n}\right)\right)^{\top}, 2 \leq i \leq n$:

$$
\boldsymbol{u}_{i}^{\top} \mathbf{1}=0
$$

- Hence the components of $\boldsymbol{u}_{i}, 2 \leq i \leq n$ satisfy:

$$
\sum_{j=1}^{n} \boldsymbol{u}_{i}\left(v_{j}\right)=0
$$

- Each component is bounded by:

$$
-1<\boldsymbol{u}_{i}\left(v_{j}\right)<1
$$

Laplacian embedding: Mapping a graph on a line

- Map a weighted graph onto a line such that connected nodes stay as close as possible, i.e., minimize $\sum_{i, j=1}^{n} w_{i j}\left(f\left(v_{i}\right)-f\left(v_{j}\right)\right)^{2}$, or:

$$
\arg \min _{\boldsymbol{f}} \boldsymbol{f}^{\top} \mathbf{L} \boldsymbol{f} \text { with: } \boldsymbol{f}^{\top} \boldsymbol{f}=1 \text { and } \boldsymbol{f}^{\top} \mathbf{1}=0
$$

- The solution is the eigenvector associated with the smallest nonzero eigenvalue of the eigenvalue problem: $\mathrm{L} \boldsymbol{f}=\lambda \boldsymbol{f}$, namely the Fiedler vector \boldsymbol{u}_{2}.
- Practical computation of the eigenpair $\lambda_{2}, \boldsymbol{u}_{2}$): the shifted inverse power method (see lecture 2).

The shifted inverse power method (from Lecture 2)

- Let's consider the matrix $\mathbf{B}=\mathbf{A}-\alpha \mathbf{I}$ as well as an eigenpair $\mathbf{A} \boldsymbol{u}=\lambda \boldsymbol{u}$.
- ($\lambda-\alpha, \boldsymbol{u})$ becomes an eigenpair of \mathbf{B}, indeed:

$$
\mathbf{B} \boldsymbol{u}=(\mathbf{A}-\alpha \mathbf{I}) \boldsymbol{u}=(\lambda-\alpha) \boldsymbol{u}
$$

and hence \mathbf{B} is a real symmetric matrix with eigenpairs $\left(\lambda_{1}-\alpha, \boldsymbol{u}_{1}\right), \ldots\left(\lambda_{i}-\alpha, \boldsymbol{u}_{i}\right), \ldots\left(\lambda_{D}-\alpha, \boldsymbol{u}_{D}\right)$

- If $\alpha>0$ is choosen such that $\left|\lambda_{j}-\alpha\right| \ll\left|\lambda_{i}-\alpha\right| \forall i \neq j$ then $\lambda_{j}-\alpha$ becomes the smallest (in magnitude) eivenvalue.
- The inverse power method (in conjuction with the LU decomposition of \mathbf{B}) can be used to estimate the eigenpair $\left(\lambda_{j}-\alpha, \boldsymbol{u}_{j}\right)$.

Example of mapping a graph on the Fiedler vector

Laplacian embedding

- Embed the graph in a k-dimensional Euclidean space. The embedding is given by the $n \times k$ matrix $\mathbf{F}=\left[\boldsymbol{f}_{1} \boldsymbol{f}_{2} \ldots \boldsymbol{f}_{k}\right]$ where the i-th row of this matrix $-\boldsymbol{f}^{(i)}$ - corresponds to the Euclidean coordinates of the i-th graph node v_{i}.
- We need to minimize (Belkin \& Niyogi '03):

$$
\arg \min _{\boldsymbol{f}_{1} \ldots \boldsymbol{f}_{k i, j=1}} \sum_{i j}^{n} w_{i j}\left\|\boldsymbol{f}^{(i)}-\boldsymbol{f}^{(j)}\right\|^{2} \text { with: } \mathbf{F}^{\top} \mathbf{F}=\mathbf{I} .
$$

- The solution is provided by the matrix of eigenvectors corresponding to the k lowest nonzero eigenvalues of the eigenvalue problem $\mathrm{L} \boldsymbol{f}=\lambda \boldsymbol{f}$.

Spectral embedding using the unnormalized Laplacian

- Compute the eigendecomposition $\mathbf{L}=\mathbf{D}-\boldsymbol{\Omega}$.
- Select the k smallest non-null eigenvalues $\lambda_{2} \leq \ldots \leq \lambda_{k+1}$
- $\lambda_{k+2}-\lambda_{k+1}=$ eigengap.
- We obtain the $n \times k$ matrix $\mathbf{U}=\left[\boldsymbol{u}_{2} \ldots \boldsymbol{u}_{k+1}\right]$:

$$
\mathbf{U}=\left[\begin{array}{ccc}
\boldsymbol{u}_{2}\left(v_{1}\right) & \ldots & \boldsymbol{u}_{k+1}\left(v_{1}\right) \\
\vdots & & \vdots \\
\boldsymbol{u}_{2}\left(v_{n}\right) & \ldots & \boldsymbol{u}_{k+1}\left(v_{n}\right)
\end{array}\right]
$$

- $\boldsymbol{u}_{i}^{\top} \boldsymbol{u}_{j}=\delta_{i j}$ (orthonormal vectors), hence $\mathbf{U}^{\top} \mathbf{U}=\mathbf{I}_{k}$.
- Column $i(2 \leq i \leq k+1)$ of this matrix is a mapping on the eigenvector \boldsymbol{u}_{i}.

Examples of one-dimensional mappings

Euclidean L-embedding of the graph's vertices

- (Euclidean) L-embedding of a graph:

$$
\mathbf{X}=\boldsymbol{\Lambda}_{k}^{-\frac{1}{2}} \mathbf{U}^{\top}=\left[\begin{array}{lllll}
\boldsymbol{x}_{1} & \ldots & \boldsymbol{x}_{j} & \ldots & \boldsymbol{x}_{n}
\end{array}\right]
$$

The coordinates of a vertex v_{j} are:

$$
\boldsymbol{x}_{j}=\left(\begin{array}{c}
\frac{\boldsymbol{u}_{2}\left(v_{j}\right)}{\sqrt{\lambda_{2}}} \\
\vdots \\
\frac{\boldsymbol{u}_{k+1}\left(v_{j}\right)}{\sqrt{\lambda_{k+1}}}
\end{array}\right)
$$

- A formal justification of using this will be provided later.

The Laplacian of a mesh

A mesh may be viewed as a graph: $n=10,000$ vertices, $m=35,000$ edges. ARPACK finds the smallest 100 eigenpairs in 46 seconds.

Example: Shape embedding

