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What is spectral graph theory?

Some graph notation and definitions

The adjacency matrix

Laplacian matrices

Spectral graph embedding
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Material for this lecture

F. R. K. Chung. Spectral Graph Theory. 1997. (Chapter 1)

M. Belkin and P. Niyogi. Laplacian Eigenmaps for
Dimensionality Reduction and Data Representation. Neural
Computation, 15, 1373–1396 (2003).

U. von Luxburg. A Tutorial on Spectral Clustering. Statistics
and Computing, 17(4), 395–416 (2007). (An excellent paper)

Software:
http://open-specmatch.gforge.inria.fr/index.php.
Computes, among others, Laplacian embeddings of very large
graphs.
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Spectral graph theory at a glance

The spectral graph theory studies the properties of graphs via
the eigenvalues and eigenvectors of their associated graph
matrices: the adjacency matrix, the graph Laplacian and their
variants.

These matrices have been extremely well studied from an
algebraic point of view.

The Laplacian allows a natural link between discrete
representations (graphs), and continuous representations, such
as metric spaces and manifolds.

Laplacian embedding consists in representing the vertices of a
graph in the space spanned by the smallest eigenvectors of the
Laplacian – A geodesic distance on the graph becomes a
spectral distance in the embedded (metric) space.
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Spectral graph theory and manifold learning

First we construct a graph from x1, . . .xn ∈ RD

Then we compute the d smallest eigenvalue-eigenvector pairs
of the graph Laplacian

Finally we represent the data in the Rd space spanned by the
correspodning orthonormal eigenvector basis. The choice of
the dimension d of the embedded space is not trivial.

Paradoxically, d may be larger than D in many cases!
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Basic graph notations and definitions

We consider simple graphs (no multiple edges or loops),
G = {V, E}:

V(G) = {v1, . . . , vn} is called the vertex set with n = |V|;
E(G) = {eij} is called the edge set with m = |E|;
An edge eij connects vertices vi and vj if they are adjacent or
neighbors. One possible notation for adjacency is vi ∼ vj ;
The number of neighbors of a node v is called the degree of v
and is denoted by d(v), d(vi) =

∑
vi∼vj

eij . If all the nodes of
a graph have the same degree, the graph is regular ; The
nodes of an Eulerian graph have even degree.

A graph is complete if there is an edge between every pair of
vertices.
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The adjacency matrix of a graph

For a graph with n vertices, the entries of the n× n adjacency
matrix are defined by:

A :=


Aij = 1 if there is an edge eij
Aij = 0 if there is no edge
Aii = 0

A =


0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0
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Eigenvalues and eigenvectors

A is a real-symmetric matrix: it has n real eigenvalues and its
n real eigenvectors form an orthonormal basis.

Let {λ1, . . . , λi, . . . , λr} be the set of distinct eigenvalues.

The eigenspace Si contains the eigenvectors associated with
λi:

Si = {x ∈ Rn|Ax = λix}

For real-symmetric matrices, the algebraic multiplicity is equal
to the geometric multiplicity, for all the eigenvalues.

The dimension of Si (geometric multiplicity) is equal to the
multiplicity of λi.

If λi 6= λj then Si and Sj are mutually orthogonal.
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Real-valued functions on graphs

We consider real-valued functions on the set of the graph’s
vertices, f : V −→ R. Such a function assigns a real number
to each graph node.

f is a vector indexed by the graph’s vertices, hence f ∈ Rn.

Notation: f = (f(v1), . . . , f(vn)) = (f1, . . . , fn) .

The eigenvectors of the adjacency matrix, Ax = λx, can be
viewed as eigenfunctions.
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Matrix A as an operator and quadratic form

The adjacency matrix can be viewed as an operator

g = Af ; g(i) =
∑
i∼j

f(j)

It can also be viewed as a quadratic form:

f>Af =
∑
eij

f(i)f(j)
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The incidence matrix of a graph

Let each edge in the graph have an arbitrary but fixed
orientation;

The incidence matrix of a graph is a |E| × |V| (m× n) matrix
defined as follows:

5 :=


5ev = −1 if v is the initial vertex of edge e
5ev = 1 if v is the terminal vertex of edge e
5ev = 0 if v is not in e

5 =


−1 1 0 0
1 0 −1 0
0 −1 1 0
0 −1 0 +1
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The incidence matrix: A discrete differential operator

The mapping f −→ 5f is known as the co-boundary
mapping of the graph.

(5f)(eij) = f(vj)− f(vi)
−1 1 0 0
1 0 −1 0
0 −1 1 0
0 −1 0 +1




f(1)
f(2)
f(3)
f(4)

 =


f(2)− f(1)
f(1)− f(3)
f(3)− f(2)
f(4)− f(2)
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The Laplacian matrix of a graph

L = 5>5
(Lf)(vi) =

∑
vj∼vi

(f(vi)− f(vj))
Connection between the Laplacian and the adjacency matrices:

L = D−A

The degree matrix: D := Dii = d(vi).

L =


2 −1 −1 0
−1 3 −1 −1
−1 −1 2 0
0 −1 0 1
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Example: A graph with 10 nodes

1 2
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4

67

8
10
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The adjacency matrix

A =



0 1 1 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0
1 0 0 0 0 1 1 0 0 0
1 0 0 0 1 0 0 1 0 0
0 1 0 1 0 0 0 0 1 0
0 0 1 0 0 0 1 1 0 1
0 0 1 0 0 1 0 0 0 0
0 0 0 1 0 1 0 0 1 1
0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 1 0 1 0 0
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The Laplacian matrix

L =



3 −1 −1 −1 0 0 0 0 0 0
−1 2 0 0 −1 0 0 0 0 0
−1 0 3 0 0 −1 −1 0 0 0
−1 0 0 3 −1 0 0 −1 0 0
0 −1 0 −1 3 0 0 0 −1 0
0 0 −1 0 0 4 −1 −1 0 −1
0 0 −1 0 0 −1 2 0 0 0
0 0 0 −1 0 −1 0 4 −1 −1
0 0 0 0 −1 0 0 −1 2 0
0 0 0 0 0 −1 0 −1 0 2



Radu Horaud Data Analysis and Manifold Learning; Lecture 3



The Eigenvalues of this Laplacian

Λ = [ 0.0000 0.7006 1.1306 1.8151 2.4011
3.0000 3.8327 4.1722 5.2014 5.7462 ]
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Matrices of an undirected weighted graph

We consider undirected weighted graphs; Each edge eij is
weighted by wij > 0. We obtain:

Ω :=


Ωij = wij if there is an edge eij
Ωij = 0 if there is no edge
Ωii = 0

The degree matrix: D =
∑

i∼j wij
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The Laplacian on an undirected weighted graph

L = D−Ω

The Laplacian as an operator:

(Lf)(vi) =
∑
vj∼vi

wij(f(vi)− f(vj))

As a quadratic form:

f>Lf =
1
2

∑
eij

wij(f(vi)− f(vj))2

L is symmetric and positive semi-definite ↔ wij ≥ 0.

L has n non-negative, real-valued eigenvalues:
0 = λ1 ≤ λ2 ≤ . . . ≤ λn.
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Other adjacency matrices

The normalized weighted adjacency matrix

ΩN = D−1/2ΩD−1/2

The transition matrix of the Markov process associated with
the graph:

ΩR = D−1Ω = D−1/2ΩND1/2
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Several Laplacian matrices

The unnormalized Laplacian which is also referred to as the
combinatorial Laplacian LC ,

the normalized Laplacian LN , and

the random-walk Laplacian LR also referred to as the discrete
Laplace operator.

We have:

LC = D−Ω

LN = D−1/2LCD−1/2 = I−ΩN

LR = D−1LC = I−ΩR
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Relationships between all these matrices

LC = D1/2LND1/2 = DLR
LN = D−1/2LCD−1/2 = D1/2LRD−1/2

LR = D−1/2LND1/2 = D−1LC
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Some spectral properties of the Laplacians

Laplacian Null space Eigenvalues Eigenvectors

LC =
UΛU>

u1 = 1 0 = λ1 < λ2 ≤
. . . ≤ λn ≤
2 maxi(di)

u>i>11 = 0,
u>i uj = δij

LN =
WΓW>

w1 = D1/21 0 = γ1 < γ2 ≤
. . . ≤ γn ≤ 2

w>i>1D
1/21 =

0,
w>i wj = δij

LR =
TΓT−1

T =
D−1/2W

t1 = 1 0 = γ1 < γ2 ≤
. . . ≤ γn ≤ 2

t>i>1D1 = 0,
t>i Dtj = δij
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Spectral properties of adjacency matrices

From the relationship between the normalized Laplacian and
adjacency matrix: LN = I−ΩN one can see that their eigenvalues
satisfy γ = 1− δ.

Adjacency matrix Eigenvalues Eigenvectors

ΩN = W∆W>,
∆ = I− Γ

−1 ≤ δn ≤ . . . ≤ δ2 <
δ1 = 1

w>i wj = δij

ΩR = T∆T−1 −1 ≤ δn ≤ . . . ≤ δ2 <
δ1 = 1

t>i Dtj = δij
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The Laplacian of a graph with one connected component

Lu = λu.

L1 = 0, λ1 = 0 is the smallest eigenvalue.

The one vector: 1 = (1 . . . 1)>.

0 = u>Lu =
∑n

i,j=1wij(u(i)− u(j))2.

If any two vertices are connected by a path, then
u = (u(1), . . . , u(n)) needs to be constant at all vertices such
that the quadratic form vanishes. Therefore, a graph with one
connected component has the constant vector u1 = 1 as the
only eigenvector with eigenvalue 0.
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A graph with k > 1 connected components

Each connected component has an associated Laplacian.
Therefore, we can write matrix L as a block diagonal matrix :

L =

 L1

. . .

Lk


The spectrum of L is given by the union of the spectra of Li.

Each block corresponds to a connected component, hence
each matrix Li has an eigenvalue 0 with multiplicity 1.

The spectrum of L is given by the union of the spectra of Li.

The eigenvalue λ1 = 0 has multiplicity k.
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The eigenspace of λ1 = 0 with multiplicity k

The eigenspace corresponding to λ1 = . . . = λk = 0 is
spanned by the k mutually orthogonal vectors:

u1 = 1L1

. . .
uk = 1Lk

with 1Li = (0000111110000)> ∈ Rn

These vectors are the indicator vectors of the graph’s
connected components.

Notice that 1L1 + . . .+ 1Lk
= 1
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The Fiedler vector of the graph Laplacian

The first non-null eigenvalue λk+1 is called the Fiedler value.

The corresponding eigenvector uk+1 is called the Fiedler
vector.

The multiplicity of the Fiedler eigenvalue depends on the
graph’s structure and it is difficult to analyse.

The Fiedler value is the algebraic connectivity of a graph, the
further from 0, the more connected.

The Fiedler vector has been extensively used for spectral
bi-partioning

Theoretical results are summarized in Spielman & Teng 2007:
http://cs-www.cs.yale.edu/homes/spielman/
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Eigenvectors of the Laplacian of connected graphs

u1 = 1,L1 = 0.

u2 is the the Fiedler vector with multiplicity 1.

The eigenvectors form an orthonormal basis: u>i uj = δij .

For any eigenvector ui = (ui(v1) . . .ui(vn))>, 2 ≤ i ≤ n:

u>i 1 = 0

Hence the components of ui, 2 ≤ i ≤ n satisfy:

n∑
j=1

ui(vj) = 0

Each component is bounded by:

−1 < ui(vj) < 1
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Laplacian embedding: Mapping a graph on a line

Map a weighted graph onto a line such that connected nodes
stay as close as possible, i.e., minimize∑n

i,j=1wij(f(vi)− f(vj))2, or:

arg min
f

f>Lf with: f>f = 1 and f>1 = 0

The solution is the eigenvector associated with the smallest
nonzero eigenvalue of the eigenvalue problem: Lf = λf ,
namely the Fiedler vector u2.

Practical computation of the eigenpair λ2,u2): the shifted
inverse power method (see lecture 2).
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The shifted inverse power method (from Lecture 2)

Let’s consider the matrix B = A− αI as well as an eigenpair
Au = λu.

(λ− α,u) becomes an eigenpair of B, indeed:

Bu = (A− αI)u = (λ− α)u

and hence B is a real symmetric matrix with eigenpairs
(λ1 − α,u1), . . . (λi − α,ui), . . . (λD − α,uD)
If α > 0 is choosen such that |λj − α| � |λi − α| ∀i 6= j then
λj − α becomes the smallest (in magnitude) eivenvalue.

The inverse power method (in conjuction with the LU
decomposition of B) can be used to estimate the eigenpair
(λj − α,uj).
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Example of mapping a graph on the Fiedler vector
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Laplacian embedding

Embed the graph in a k-dimensional Euclidean space. The
embedding is given by the n× k matrix F = [f1f2 . . .fk]
where the i-th row of this matrix – f (i) – corresponds to the
Euclidean coordinates of the i-th graph node vi.

We need to minimize (Belkin & Niyogi ’03):

arg min
f 1...f k

n∑
i,j=1

wij‖f (i) − f (j)‖2 with: F>F = I.

The solution is provided by the matrix of eigenvectors
corresponding to the k lowest nonzero eigenvalues of the
eigenvalue problem Lf = λf .
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Spectral embedding using the unnormalized Laplacian

Compute the eigendecomposition L = D−Ω.

Select the k smallest non-null eigenvalues λ2 ≤ . . . ≤ λk+1

λk+2 − λk+1 = eigengap.

We obtain the n× k matrix U = [u2 . . .uk+1]:

U =

 u2(v1) . . . uk+1(v1)
...

...
u2(vn) . . . uk+1(vn)


u>i uj = δij (orthonormal vectors), hence U>U = Ik.

Column i (2 ≤ i ≤ k + 1) of this matrix is a mapping on the
eigenvector ui.

Radu Horaud Data Analysis and Manifold Learning; Lecture 3



Examples of one-dimensional mappings

u2 u3

u4 u8
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Euclidean L-embedding of the graph’s vertices

(Euclidean) L-embedding of a graph:

X = Λ
− 1

2
k U> = [x1 . . . xj . . . xn]

The coordinates of a vertex vj are:

xj =


u2(vj)√

λ2
...

uk+1(vj)√
λk+1


A formal justification of using this will be provided later.
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The Laplacian of a mesh

A mesh may be viewed as a graph: n = 10, 000 vertices,
m = 35, 000 edges. ARPACK finds the smallest 100 eigenpairs in
46 seconds.
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Example: Shape embedding
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