Data Analysis and Manifold Learning Lecture 10: Spectral Matching

Radu Horaud
INRIA Grenoble Rhone-Alpes, France
Radu.Horaud@inrialpes.fr
http://perception.inrialpes.fr/

Outline of Lecture 10

- Graph isomorphism problems
- Solving graph isomorphism with spectral matching
- Problems with standard algorithms
- The "signature" of an eigenvector
- Graph matching based on point registration

Material for this lecture

- A. Sharma, R. Horaud, and D. Mateus. "3D Shape Registration Using Spectral Graph Embedding and Probabilistic Matching". To appear soon as a book chapter. 2011.

The Graph Isomorphism Problem

- Let two graphs \mathcal{G}_{A} and \mathcal{G}_{B} have the same number of nodes, and let $\pi: \mathcal{V}_{A} \longrightarrow \mathcal{V}_{B}$ be a bijection;
- π is an isomorphism if and only if:

$$
u \sim v \Longleftrightarrow \pi(u) \sim \pi(v)
$$

- The notion of graph isomorphism allows to study the structure of graphs.
- The graph isomorphism problem: an algorithm that determines whether two graphs are isomorphic
- It is one of only two, out of 12 total, problems listed in Garey \& Johnson (1979) whose complexity remains unresolved: It has not been proven to be included in, nor excluded from, P (polynomial) or NP-complete.

The Subgraph Isomorphism Problem

- Let two graphs \mathcal{G}_{A} with n_{A} nodes and \mathcal{G}_{B} with n_{B} nodes such that $n_{A}>n_{B}$.
- One must determine whether \mathcal{G}_{A} contains a subgraph that is isomorphic to \mathcal{G}_{B}.
- The number of possible solutions is: $\binom{n_{B}}{n_{A}} n_{B}$!
- The problem is NP-complete (Nondeterministic polynomial).

The Maximum Subgraph Matching Problem

- Let two graphs \mathcal{G}_{A} with n_{A} nodes and \mathcal{G}_{B} with n_{B} nodes such that $n_{A}>n_{B}$.
- Determine the largest pair of subgraphs $\left(\mathcal{G}_{A}^{\prime}, \mathcal{G}_{B}^{\prime}\right)$, with $\mathcal{G}_{A}^{\prime} \subset \mathcal{G}_{A}$ and $\mathcal{G}_{B}^{\prime} \subset \mathcal{G}_{B}$, such that \mathcal{G}_{A}^{\prime} and \mathcal{G}_{B}^{\prime} are isomorphic.
- The number of possible solutions is:

$$
\sum_{i=1}^{n_{B}}\binom{i}{n_{A}}\binom{i}{n_{B}} i!
$$

- The problem is NP-complete

How to Solve Graph Isomorphism Problems

- Let's consider, as above two undirected graphs (weights are all equal to 1) with the same number of nodes.
- Let's define a metric between the two graphs as:

$$
\arg \max _{\pi} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(e_{i j}-e_{\pi(i) \pi(j)}\right)^{2}
$$

Using Graph matrices

- Let \mathbf{W}_{A} and \mathbf{W}_{B} be the adjacency matrices of two graphs with the same number of nodes n
- Let $\mathbf{P} \in \mathcal{P}_{n}$ be a permutation matrix: exactly one entry in each row and column is equal to 1 , and all the other entries are 0 :
- Left multiplication of \mathbf{W} with \mathbf{P} permutes the rows of \mathbf{W} and
- Right multiplication of \mathbf{W} with \mathbf{P} permutes the columns of \mathbf{W}
- What does $\mathbf{P W P}^{\top}$?
- $\mathbf{W}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\top}$
- $\mathbf{P W P}^{\top}=(\mathbf{P U}) \boldsymbol{\Lambda}(\mathbf{P U})^{\top}$
- Think of the rows of \mathbf{U} as the coordinates of the graph's vertices in spectral space ... the nodes are renamed

A Simple Example

$$
\begin{gathered}
\mathbf{W}_{A}=\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] \quad \boldsymbol{v}_{1} \\
\mathbf{P}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] \quad \mathbf{W}_{B}=\mathbf{P} \mathbf{W}_{A} \mathbf{P}^{\top}=\left[\begin{array}{llll}
0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Which corresponds to:

$$
v_{1} \leftrightarrow u_{2}, v_{2} \leftrightarrow u_{1}, v_{3} \leftrightarrow u_{4}, v_{3} \leftrightarrow u_{4}
$$

The Graph Isomorphism Problem with Matrices

- The metric between two graphs becomes:

$$
\mathbf{P}^{\star}=\arg \min _{\mathbf{P}}\left\|\mathbf{W}_{A}-\mathbf{P} \mathbf{W}_{B} \mathbf{P}^{\top}\right\|^{2}
$$

- where the Frobenius norm is being used:

$$
\|\mathbf{A}\|_{F}^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}^{2}=\operatorname{tr}\left(\mathbf{A}^{\top} \mathbf{A}\right)
$$

An Exact Solution

- When the metric is equal to zero:

$$
\mathbf{W}_{A}=\mathbf{P} \mathbf{W}_{B} \mathbf{P}^{\top}
$$

- Two isomophic graphs have the same eigenvalues;
- The reverse is not always true.

Finding an Exact Solution in the Spectral Domain

- Let's write an equality:

$$
\mathbf{W}_{A}=\mathbf{P}^{\star} \mathbf{W}_{B} \mathbf{P}^{\star \top}
$$

- Consider the spectral decompositions:

$$
\mathbf{W}_{A}=\mathbf{U}_{A} \boldsymbol{\Lambda}_{A} \mathbf{U}_{A}^{\top} \text { and } \mathbf{W}_{B}=\tilde{\mathbf{U}}_{B} \boldsymbol{\Lambda}_{B} \tilde{\mathbf{U}}_{B}^{\top}
$$

- with the notation:

$$
\widetilde{\mathbf{U}}_{B}=\mathbf{U}_{B} \mathbf{S} \text { and } \mathbf{S}=\operatorname{Diag}\left[s_{i}\right], s_{i}= \pm 1
$$

- By substitution in the first equation, we obtain:

$$
\mathbf{P}^{\star}=\mathbf{U}_{B} \mathbf{S U}_{A}^{\top}
$$

Short Discussion

- There are as many solutions as the number of possible S-matrices, i.e., 2^{n}.
- Not all of these solutions correspond to a valid permutation matrix.
- There exist some \mathbf{S}^{\star} that exactly make \mathbf{P}^{\star} a permutation: these are valid solutions to the graph isomorphism problem
- Eigenspace alignment:

$$
\mathbf{U}_{A}=\mathbf{P}^{\star} \mathbf{U}_{B} \mathbf{S}^{\star}
$$

The rows of \mathbf{U}_{A} can be interpreted as the coordinates of the graph's vertices in the eigenspace of \mathbf{W}_{A}. The above equation can be interpreted as a registration between the embedding of the two graphs. Hence:

- The graph isomorphism problem can be viewed as a rigid registration problem in embedded space.

The Hoffman-Wienlandt Theorem

Theorem

(Hoffman and Wielandt) If \mathbf{W}_{A} and \mathbf{W}_{B} are real-symmetric matrices, and if α_{i} and β_{i} are their eigenvalues arranged in increasing order, $\alpha_{1} \leq \ldots \leq \alpha_{i} \leq \ldots \leq \alpha_{n}$ and
$\beta_{1} \leq \ldots \leq \beta_{i} \leq \ldots \leq \beta_{n}$, then

$$
\begin{equation*}
\sum_{i=1}^{n}\left(\alpha_{i}-\beta_{i}\right)^{2} \leq\left\|\mathbf{W}_{A}-\mathbf{W}_{B}\right\|^{2} \tag{1}
\end{equation*}
$$

- This theorem is the fundamental building block of spectral graph matching.

Additional Results

Corollary

The inequality (1) becomes an equality when the eigenvectors of \mathbf{W}_{A} are aligned with the eigenvectors of \mathbf{W}_{B} up to a sign ambiguity:

$$
\begin{equation*}
\mathbf{U}_{B}=\mathbf{U}_{\mathbf{A}} \mathbf{S} \tag{2}
\end{equation*}
$$

Corollary
If \mathbf{Q} is an orthogonal matrix, then

$$
\begin{equation*}
\sum_{i=1}^{n}\left(\alpha_{i}-\beta_{i}\right)^{2} \leq\left\|\mathbf{W}_{A}-\mathbf{Q} \mathbf{W}_{B} \mathbf{Q}^{\top}\right\|^{2} \tag{3}
\end{equation*}
$$

- Indeed, matrix $\mathbf{Q} \mathbf{W}_{B} \mathbf{Q}^{\top}$ has the same eigenvalues as matrix \mathbf{W}_{B}.

Umeyama's Theorem

Theorem

(Umeyama'1988) If \mathbf{W}_{A} and \mathbf{W}_{B} are real-symmetric matrices with n distinct eigenvalues (that can be ordered), $\alpha_{1}<\ldots<\alpha_{i}<\ldots<\alpha_{n}$ and $\beta_{1}<\ldots<\beta_{i}<\ldots<\beta_{n}$, the minimum of :

$$
J(\mathbf{Q})=\left\|\mathbf{W}_{A}-\mathbf{Q} \mathbf{W}_{B} \mathbf{Q}^{\top}\right\|^{2}
$$

is achieved for:

$$
\begin{equation*}
\mathbf{Q}^{\star}=\mathbf{U}_{A} \mathbf{S} \mathbf{U}_{B}^{\top} \tag{4}
\end{equation*}
$$

and hence (3) becomes an equality:

$$
\sum_{i=1}^{n}\left(\alpha_{i}-\beta_{i}\right)^{2}=\left\|\mathbf{W}_{A}-\mathbf{Q}^{\star} \mathbf{W}_{B} \mathbf{Q}^{\star \top}\right\|^{2}
$$

Method Proposed by Umeyama in 1988

- Notice that (4) can be written as:

$$
\mathbf{U}_{A}=\mathbf{Q}^{\star} \mathbf{U}_{B} \mathbf{S}
$$

which is a relaxed version of the the permutation matrix in the exact isomorphism case (permuation is replaced by an orthogonal matrix).

- For each sign matrix \mathbf{S} (remember that there are 2^{n} such matrices) there is an orthogonal matrix that satisfies Umeyama's theorem, but not all these matrices can be easily relaxed to a permutation, and not all these permutations correspond to an isomorphism.

Umeyama's Heuriststic

- Take the absolute values of the eigenvector's components:

$$
\overline{\mathbf{U}}_{A}(i, j)=\left|u_{i j}\right|
$$

- It can be shown that the problem can be written as the following maximization problem:

$$
\max _{\mathbf{Q}} \operatorname{tr}\left(\overline{\mathbf{U}}_{A} \overline{\mathbf{U}}_{B}^{\top} \mathbf{Q}^{\top}\right)
$$

This is not, however, such an easy problem to solve (See Umeyama'1988 for more details).

- It can be looked at as an assignment problem, namely extracting a permutation matrix \mathbf{P} from the nonnegative matrix $\overline{\mathbf{Q}}=\overline{\mathbf{U}}_{A} \overline{\mathbf{U}}_{B}^{\top}$.

Discussion

The method just described has serious limitations:

- It applies to graphs with the same number of nodes;
- It assumes that there are no eigenvalue multiplicities and that the eigenvalues can be reliably ordered;
- The heuristic proposed is weak and it does not necessarily lead to a simple algorithm;
- Other heuristics were proposed.

Eigenvector Histogram

- The Laplacian eigenvector associated with the smallest non-null eigenvalue is the direction of maximum variance of a graph (principal component)
- The histogram of this eigenvector's entries is invariant to vertex ordering.

Characterization of These Histograms

- If $\mathbf{L} \boldsymbol{u}=\lambda \boldsymbol{u}$ then: $\mathbf{P L P}^{\top} \mathbf{P} \boldsymbol{u}=\lambda \mathbf{P} \boldsymbol{u}$
- The vectors \boldsymbol{u} and $\mathbf{P u}$ have the same histograms;
- Remind that for each eigenvector \boldsymbol{u}_{i} of \mathbf{L} we have $-1<u_{i k}<+1, \bar{u}_{k}=0$, and $\sigma_{k}=1 / n$.
- The number of bins and the bin-width are invariant:

$$
\begin{aligned}
w_{k} & =\frac{3.5 \sigma_{k}}{n^{1 / 3}}=\frac{3.5}{n^{4 / 3}} \\
b_{k} & =\frac{\sup _{i} u_{i k}-\inf _{i} u_{i k}}{w_{k}} \approx \frac{n^{4 / 3}}{2}
\end{aligned}
$$

- The histogram is not invariant to the sign change, i.e., $H\{\boldsymbol{u}\} \neq H\{-\boldsymbol{u}\}$.

Shape Matching (1)

Shape Matching (2)

Shape Matching (3)

Sparse Shape Matching

- Shape/graph matching is equivalent to matching the embedded representations [Mateus et al. 2008]
- Here we use the projection of the embeddings on a unit hyper-sphere of dimension K and we apply rigid matching.
- How to select t and t^{\prime}, i.e., the scales associated with the two shapes to be matched?
- How to implement a robust matching method?

Scale Selection

- Let \mathbf{C}_{X} and $\mathbf{C}_{X^{\prime}}$ be the covariance matrices of two different embeddings \mathbf{X} and \mathbf{X}^{\prime} with respectively n and n^{\prime} points:

$$
\operatorname{det}\left(\mathbf{C}_{X}\right)=\operatorname{det}\left(\mathbf{C}_{X^{\prime}}\right)
$$

- $\operatorname{det}\left(\mathbf{C}_{X}\right.$ measures the volume in which the embedding X lies. Hence, we impose that the two embeddings are contained in the same volume.
- From this constraint we derive:

$$
t^{\prime} \operatorname{tr}\left(\mathbf{L}^{\prime}\right)=t \operatorname{tr}(\mathbf{L})+K \log n / n^{\prime}
$$

Robust Matching

- Build an association graph.
- Search for the largest set of mutually compatible nodes (maximal clique finding).
- See [Sharma and Horaud 2010] (Nordia workshop) for more details.

