
Int J Comput Vis (2012) 100:78–98
DOI 10.1007/s11263-012-0528-5

Keypoints and Local Descriptors of Scalar Functions on 2D
Manifolds

Andrei Zaharescu · Edmond Boyer · Radu Horaud

Received: 18 June 2011 / Accepted: 15 April 2012 / Published online: 4 May 2012
© Springer Science+Business Media, LLC 2012

Abstract This paper addresses the problem of describing
surfaces using local features and descriptors. While meth-
ods for the detection of interest points in images and their
description based on local image features are very well un-
derstood, their extension to discrete manifolds has not been
well investigated. We provide a methodological framework
for analyzing real-valued functions defined over a 2D man-
ifold, embedded in the 3D Euclidean space, e.g., photomet-
ric information, local curvature, etc. Our work is motivated
by recent advancements in multiple-camera reconstruction
and image-based rendering of 3D objects: there is a growing
need for describing object surfaces, matching two surfaces,
or tracking them over time. Considering polygonal meshes,
we propose a new methodological framework for the scale-
space representations of scalar functions defined over such
meshes. We propose a local feature detector (MeshDOG)
and region descriptor (MeshHOG). Unlike the standard im-
age features, the proposed surface features capture both the
local geometry of the underlying manifold and the scale-
space differential properties of the real-valued function it-
self. We provide a thorough experimental evaluation. The
repeatability of the feature detector and the robustness of
feature descriptor are tested, by applying a large number of
deformations to the manifold or to the scalar function.
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1 Introduction

The representation of visual information in terms of a struc-
tured collection of local features has been an active research
topic for the last decade and it is of great importance for a
variety of tasks, such as tracking, registration, recognition,
retrieval, etc. Feature-based approaches were introduced in
the computer vision literature three decades ago (Bolles and
Cain 1982; Bolles and Horaud 1986) for the purpose of rec-
ognizing and localizing partially occluded objects. Initially,
features represented local geometric information. More re-
cently, feature-based image analysis has become very popu-
lar (Lowe 2004; Mikolajczyk and Schmid 2005). The vast
majority of existing methods detect and describe features
using photometric information from a single image. Re-
cently, image features were extended to 2D+ t features, used
for characterizing short image sequences for video analysis
(Laptev 2005).

Recent progress in multiple-view stereo and image-based
modelling and rendering allows the recovery of geometric
and photometric information directly from images (Seitz
et al. 2006). This means that one can characterize 3D shapes
based on both geometric and photometric features. How-
ever, if taken separately, geometric or photometric informa-
tion have limited utility, as the whole richness of the data is
not fully exploited. Consider, for example, 3D deformable or
articulated objects. Their 2D appearances, i.e., images, are
not full invariant to motions and to viewing conditions and
hence, image-based features do not yield robust 3D descrip-
tors. Similarly, geometric features are not robust to complex
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object motions that can considerably change the topology.
Therefore, we believe that photometric and geometric infor-
mation need to be handled in a consistent and simultaneous
manner. To this purpose, we observe that both photometric
and geometric information available with a 3D object can
both be viewed as scalar (real-valued) functions defined over
a 2D manifold, e.g., the surface of an object; This may well
be considered as a generalization of scalar functions defined
over an Euclidean domain, e.g., light intensity over an im-
age, to non-Euclidean domains. One can thus build on exist-
ing feature-based image description paradigms, in order to
investigate and propose extensions to 3D shapes.

The main contribution of this paper is a novel family of
keypoint-based local surface descriptors that takes into ac-
count both the geometric properties of the surface and any
scalar field defined over the surface, e.g. the photometric
information available from multiple-camera setups. We de-
velop an interest point detector and associated local scale-
space descriptors that can be applied to various function de-
fined over the surface, e.g, texture, colour, Gaussian curva-
ture, mean curvature, geodesic integral, etc. To this end, we
use discrete operators, e.g., the gradient defined for scalar
functions on discrete surface domains (meshes), thus tak-
ing into account both the functions’ differential properties
as well as the underlying intrinsic geometry of the surface.
Based on these operators, both an interest point detector
and a local descriptor are introduced, namely MeshDOG
and MeshHOG. MeshDOG is a generalization of the Differ-
ence of Gaussian (DOG) operator (Marr and Hildreth 1980;
Lowe 2004) and it is used to build a discrete Laplacian op-
erator on a mesh. This allows us to represent scalar func-
tions over multiple scales, i.e., by convolution with a discrete
Laplacian operator, and to detect points of interest as local
extrema. MeshHOG is a generalization of the Histogram of
Oriented Gradients (HOG) descriptor that was proposed for
describing 2D images (Dalal and Triggs 2005). The newly
descriptor, MeshHOG, is defined with respect to the mea-
surements available at each vertex of the discrete surface and
it can be implemented with any scalar function.

The newly proposed surface-based interest point detector
and region descriptor exhibit a number of interesting proper-
ties with respect to the corresponding image-based counter-
parts:

1. A 3D detector takes more information into account than
an image based one and it does not suffer from false de-
tections due to occluding contours;

2. There are no affine (nor perspective) distortions, since
the computations are performed in a local metric space.
Hence, there is no need for affine-invariance;

3. Image descriptors are sensitive to 2D occlusions. This
is not an issue with surface descriptors, provided that a
complete reconstruction of the underlying 3D object is

Fig. 1 The feature detection method described in this paper can be
applied to any scalar function defined over a 2D manifold such as the
meshed surface shown here: photometric data (a) and associated points
of interest (b); mean surface curvature (c) and the detected features (d)

available, which is typically the case with reconstructions
from multiple camera setups;

4. The descriptor captures both the (local) 3D geometry and
the gradient information associated with the scalar func-
tion;

5. In a multiple-camera setting, photometric information
can be elegantly fused together from several images. This
provides a photometric descriptor that is both image-
invariant and more robust to image noise.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses related work and it emphasizes our own con-
tribution to the problem of extracting local surface features.
Section 3 introduces the mathematical formulation used to
define the gradient and hessian operators on discrete mani-
folds that are needed to build local features. Sections 4 and 5
introduce the local feature detector and region descriptor, re-
spectively. Section 6 presents a detailed performance evalua-
tion and comparison with other methods, before concluding
in Sect. 7.



80 Int J Comput Vis (2012) 100:78–98

2 Related Work

In the recent past, there has been a lot of work aimed at visu-
ally characterizing 3D objects for the purposes of modelling
and recognition.

2.1 Surface Features Based on Image Processing

One possible approach is to rely on image keypoints with
their associated local descriptors and to use them in order to
build 3D surface features.

Detectors Keypoints are often associated with the detec-
tion of interest points in images, such as the extrema of
the Laplacian of the image intensity function. They can be
detected at various scales using the difference of Gaussian
(DOG) approximation of the Laplacian (see Mikolajczyk
and Schmid 2005 for a review and the references therein).

Descriptors 2D feature descriptors are generally designed
to be robust to changes in illumination and invariant to im-
age transformations such as translation, rotation, or scale
(Matas et al. 2004; Lowe 2004; Dufournaud et al. 2004;
Dalal and Triggs 2005; Bay et al. 2008) and, more gener-
ally, to 2D affine transformations (Mikolajczyk and Schmid
2004). This type of image-based descriptors have been suc-
cessfully used to characterize 3D objects (Rothganger et al.
2006). We note, however, that there are inherent limitations
with these approaches. First, it is required that the image de-
scriptors are back projected onto the 3D surface of the object
which may lead to a redundant and ambiguous representa-
tion, since a 3D surface point corresponds to several points
belonging to different images. Second, these descriptors are
well suited only for objects which are locally planar. Third,
the image-based descriptors are limited to photometric in-
formation and hence, one cannot build 3D descriptors based
on the geometric properties of the underlying surface, e.g.,
curvature. Our method is quite different because it directly
exploits the local geometric properties of the object’s under-
lying surface.

Image keypoints and associated local descriptors were
extended to image sequences (Laptev 2005; Wong and
Cipolla 2007; Kläser et al. 2008), by considering the 2D + t

(spatio-temporal) volume defined by a short image se-
quence. Such image + time features can be seen as local
detectors/descriptors defined over a volumetric representa-
tion, i.e., a regular 3D grid. We consider a different prob-
lem, namely the extension from features defined on regular
domains to features defined over irregular non-Euclidean
domains.

2.2 Surface Features Based on Local Geometric Properties

Another category of methods attempts to extract local geo-
metric information from range images or from point-cloud
data.

Detectors Novatnack and Nishino (2007) defines the scale
space in a planar parameterization of the surface using the
normal map; 3D keypoints are detected as the extrema of
this representations, based on a gradient operator defined
over a planar vector field. An analysis of the scale-variability
of geometric structures captured in range images is pro-
posed in Novatnack and Nishino (2008), while Bariya and
Nishino (2010) extends this method to deal with cluttered
3D scenes in an object recognition task. The automatic iden-
tification of interest regions on surfaces, taking into account
geometric features such as scale-space extrema based on the
average mean curvature flow, is proposed in Schlattmann
et al. (2008). In Mian et al. (2010), it is proposed to de-
tect keypoints that characterize 3D and 2.5D surfaces. Mesh
saliency methods are proposed in Lee et al. (2005), Castel-
lani et al. (2008), based on the centre-surround operator,
adapted from the visual attention literature.

Descriptors A number of 3D descriptors were proposed.
3D spin images (Johnson and Hebert 1999), one of the first
proposed methods, build 2D histograms by accumulating
points that fall on a rotating plane along the normal. 3D
shape contexts (Körtgen et al. 2003; Frome et al. 2004)
extend the idea of spin images, by accumulating 3D his-
tograms within a spherical support region. For a detailed
survey, see Tangelder and Veltkamp (2004), Bustos et al.
(2005). Intrinsic shape signatures are proposed in Zhong
(2009), thus improving on shape contexts by using a dif-
ferent histogram partitioning scheme. In Novatnack and
Nishino (2008), an image-based descriptor is proposed us-
ing the local R

2 embedding of the surface normal infor-
mation. Similarly, Hua et al. (2008) builds 2D conformal
maps of a 3D shape by mapping an irregular domain, such
as a mesh, to a regular grid. In the resulting shape vector
image, standard 2D scale-space keypoint detection and de-
scription (Lowe 2004) can be applied to build 3D features.
Such features are robust to isomorphic deformations. How-
ever, due to conformal mapping limitations, they are sensi-
tive to even small topological changes. More recently, Rug-
geri et al. (2010) proposed to build local 3D descriptors
of a meshed surface at the locations of the critical points,
the maxima, minima and saddle points of the eigenfunc-
tions of the Beltrami-Laplace operator. Similarly, Bronstein
et al. (2011) proposed to use the critical points of the auto-
diffusion function, the diagonal elements of the heat-kernel
matrix of a mesh, in order to obtain an intrinsic scale-space
representation of the mesh’s geometry. These methods allow
to describe an object in terms of its intrinsic local geometry,
but they do not allow to characterize other scalar functions.
Again, these methods cannot exploit photometric informa-
tion.
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2.3 Combining Photometric Information with 3D Features

Closer to our own methodology, a category of methods
attempts to characterize the photometric information that
is available when considering 3D objects obtained from
multiple-view reconstructions. Starck and Hilton (2007)
proposes a concatenated surface descriptor, encompassing
local geometry (a region descriptor based on geodesic-
intensity histograms) and photometric information, edge and
corner descriptors that take into account the local isometric
mapping to R

2; In Wu et al. (2008) a SIFT-based descrip-
tor using 3D oriented patches is proposed, namely VIP, or
viewpoint-invariant patches, which was used for 3D model
matching. Both Starck and Hilton (2007) and Wu et al.
(2008) are among the first attempts to devise a descriptor
that combines geometric and photometric information. Our
proposed approach is similar in spirit to Wu et al. (2008), but
instead of back-projecting an image descriptor onto the sur-
face, we propose to detect keypoints and build an associated
descriptor directly onto the surface, taking full advantage of
the 3D nature of the surface.

Recently, a number of extensions were proposed to our
previous work (Zaharescu et al. 2009). Smith et al. (2011)
consider the specific scenario when the 3D triangulated
mesh and the scalar function are from single range-intensity
image. The discrete gradient approximation, inspired from
Xu (2004), requires the scalar function to be defined over
the faces of a triangulated mesh. This may be difficult and
expensive to retrieve from the initial data, or it may not be
available at all. Alternatively, we propose a radically dif-
ferent way of approximating gradient computation on any
polygonal mesh that only requires that the scalar function is
defined at the mesh vertices. This allows us to compute not
only gradients of functions but also gradients of directional
derivatives of these functions, which are needed for keypoint
detection.

2.4 Registration and Recognition

Interestingly, many applications of 3D modelling make use
of local features, e.g., rigid and non-rigid registration, object
recognition, shape retrieval, etc. Recent work (Furukawa
and Ponce 2008; Ahmed et al. 2008; de Aguiar et al. 2007;
Varanasi et al. 2008) addressed non-rigid mesh registration
using observations from multiple views. The vast majority
of the proposed methods (one notable exception being Fu-
rukawa and Ponce 2008) use both geometric information ex-
tracted from surfaces and photometric data available from
images. The latter is first extracted using 2D image descrip-
tors (such as SIFT), and subsequently back-projected onto
the mesh. This sparse description is generally used to boot-
strap dense matching. Surface descriptors may well be used
for 3D object recognition, as it has been already done in Shi-
lane et al. (2008), using the Princeton shape benchmarking

database.1 Our work contributes to these efforts by taking
a different, yet complementary approach: image-feature de-
tection and description methodologies are extended to fea-
tures defined directly onto discrete 2D manifolds.

2.5 Paper Contributions

This paper is an extended version of Zaharescu et al. (2009),
which introduced 3D shape descriptors inspired from im-
age descriptors. Unlike an image, which is a regular Eu-
clidean domain, a 3D shape is often defined over an irreg-
ular non-Euclidean domain such as a mesh, which may be
viewed as a discrete manifold. In Zaharescu et al. (2009)
we proposed a surface keypoint detection based on a dif-
ference of Gaussian operator (MeshDOG) and a local de-
scriptor based on the histogram of oriented gradients (Mesh-
HOG). Both MeshDOG and MeshHOG require the estima-
tion of a gradient operator and of first- and second-order di-
rectional derivative operators. In this paper we propose an
improved computational framework for estimating the gra-
dient and the directional derivatives of real-valued functions
defined on discrete manifolds, e.g., a mesh. With respect to
Zaharescu et al. (2009), we relax the constraint that the mesh
vertices must correspond to a regular sampling of the under-
lying continuous surface; We do this by using the geodesic
distance throughout the formulation. Also, the proposed gra-
dient computation is now cast into a least square minimiza-
tion problem that can be efficiently estimated using a linear
solver. The gradient method is inspired from Barth (1993),
Mukherjee et al. (2010) and it could, in principle, be applied
to any kind of polygonal mesh or to a point cloud. It dif-
fers from previous approaches that are based on the eigen-
functions of a discrete Laplace-Beltrami operator, e.g., Xu
(2004), Luo et al. (2009). Additionally, we introduce a new
dataset as well as an in-depth evaluation of our method, thus
testing both the repeatability of the keypoint detector and the
robustness of the region descriptor under a large number of
deformations. Finally, two other existing datasets are used
for comparisons with other existing methods.

3 Differential Mesh Processing

In this section we introduce a computational framework re-
quired to estimate interest points and local descriptors of a
scalar function defined over a manifold. To this end, we de-
fine several operators that can handle an irregular domain,
including the gradient operator and the first- and second-
order directional derivative operators.

Let M be a 2D closed manifold (i.e. compact and with-
out boundaries) embedded in R

3 and let M be a discrete

1http://shape.cs.princeton.edu/benchmark/.

http://shape.cs.princeton.edu/benchmark/
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mesh representation of M composed of vertices on M and
of convex polygons, i.e. facets. M can be viewed as a graph
M(V,E), where V = {vi}Ni=1 is the set of mesh vertices and
E = {eij } is the set of edges between adjacent vertices. We
associate a 3D point vi ∈ R

3 with each mesh vertex vi . Note
that an image can be viewed as a “flat” uniformly sampled
mesh with boundaries, i.e., a grid of vertices with valence 4
and whose facets are rectangles.

3.1 Gradient

Let f : M → R be a smooth real-valued function defined on
M, e.g., photometric data or curvature. In order to estimate
the gradient ∇Mf (v) of f at point v, we consider the first
order Taylor expansion approximating f at a manifold point
vi in a neighborhood of point vj :

f (vi ) ≈ f (vj ) + ∇Mf (vi )
�(vi − vj ). (1)

where the gradient � belongs, by definition, to the tangent
plane of M at vi . In the discrete case one can therefore
write:

∇Mf (vi )
�(vi − vj ) ≈ f (vi ) − f (vj ), (2)

where ∇Mf (v) denotes the discrete gradient of f at v.
This expression can be used to estimate the discrete gra-
dient at any mesh vertex vi through an error minimization
criterion (Sibson 1981). We adopt the least square gradient
construction that follows this principle (Barth 1993) and we
seek the 3D vector that minimizes the criterion:

∇Mf (vi ) = argmin
g

{ ∑
vj ∼vi

wij

(
f (vi ) − f (vj )

− g�(vi − vj )
)2

}
, (3)

where the notation vj ∼ vi means that vj ∈ N (vi ), i.e., the
neighbourhood of vi considered in the estimation and where
the weights wij balance the contributions of the neighboring
vertices. Both N (vi ) and wij are chosen as follows.

N (vi ) is usually the first ring of vertices around vi . How-
ever, in order to make it more robust to non-uniform sam-
pling, N (vi ) can be defined as the set of vertices vj ∈ M

residing within a geodesic ball centred in vi of radius r :

N (vi ) = {
vj |dg(vi ,vj ) < r

}
, (4)

where dg(vi ,vj ) represents the geodesic distance between
vi and vj .

The weight function wij can be uniform or it can vary
with respect to, e.g., areas (Sibson 1981) or inverse dis-
tances (Barth 1993) in the neighbourhood of vi . In Mavriplis
(2003) it is shown that weighted gradient estimations based

on inverse distances significantly improve over unweighted
estimations. In this work, the weight function is a zero-
centred Gaussian function:

wij = Gσ

(
dg(vi ,vj )

) = exp
(−d2

g(vi ,vj )/2σ 2). (5)

Note that vector g in (3) can be advantageously con-
strained to belong to the tangent plane of M at vi , whenever
the normal unit vector ni to this tangent plane is known:

∇Mf (vi ) = argmin
g

{ ∑
vj ∼vi

wij

(
f (vi ) − f (vj )

− g�(vi − vj )
)2 + λi

(
g�ni

)2
}
, (6)

where the positive scalar λi is chosen such that the tangent-
plane constraint is emphasized:

λi =
∑

vj ∼vi

wij .

The constrained minimization (6) is a linear least-squares
problem that is efficiently solved using standard matrix fac-
torization methods, such as singular value decomposition
(Lay 1996).

The current gradient computation formalism is better mo-
tivated mathematically than our previously proposed ap-
proximation (Zaharescu et al. 2009). Even though the cur-
rent formulation handles better particular edge cases, both
methods behave numerically similar on the average, when
dealing with evenly sampled manifold discretizations.

3.2 Directional Derivatives

The directional derivative Daf (v) of f at v ∈ M along vec-
tor a is then, by definition, the projection of the gradient
vector ∇Mf (v) along the direction of a:

Daf (v) = ∇Mf (v)� a
‖a‖ , (7)

where a is a vector lying in the tangent plane of M at v.
The discrete directional derivative at vi along any direction
in the tangent plane at vi can therefore be computed using
(7) with the discrete gradient ∇Mf (vi ) estimated using (6).

Let us now consider second discrete directional deriva-
tives along unit vectors a and b lying in the tangent plane to
the mesh at vi . Such a second directional derivative can be
written as:

Dabf (vi ) = ∇M

(∇Mf (vi )
�b

)�a,

= Da
(
Dbf (vi )

)
, (8)

which requires an estimate of the gradient of the scalar
function Dbf (vi ), namely ∇Dbf (vi ). This can be easily
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obtained by applying the least square criterion (6) to the
directional derivative function. Similarly, one can estimate
Daaf (vi ), Dbbf (vi ), Dabf (vi ) and Dbaf (vi ). By further
assuming that the vectors a and b form an orthonormal ba-
sis of the tangent plane at vi , one obtains the Hessian matrix
of f :

Ha,b

(
f (vi )

) =
[

Daaf (vi ) Dabf (vi )

Dbaf (vi ) Dbbf (vi )

]
. (9)

Assuming that the directional derivatives of f are con-
tinuous, the order of the differentiation does not matter,
and hence (by Clairaut’s theorem), one should expect the
Hessian in (9) to be symmetric, namely that Dabf (vi ) =
Dbaf (vi ). However, in our case, the gradients ∇Daf (vi )

and ∇Dbf (vi ) are obtained by numerical optimization
of (6). Hence, the Hessian is not guaranteed to be symmetric.
This means that it is not guaranteed that the two eigenvalues
of (9) are real. Therefore, we propose to use the following
real symmetric matrix:

H̃a,b

(
f (vi )

) = 1

2

(
Ha,b

(
f (vi )

) + H�
a,b

(
f (vi )

))
(10)

which corresponds to the projection of H onto the linear
space of 2×2 symmetric matrices (Horn and Johnson 1994).

3.3 Convolution

Finally, using the same notations, the normalized convolu-
tion of the function f with a Gaussian kernel G yields:

Fσ (vi ) = f � Gσ (vi )

= 1

Ki

∑
vj ∼vi

f (vj ) exp
(−d2

g(vi ,vj )/2σ 2) (11)

where Gσ is the Gaussian function defined in (5) and Ki is
a normalization term such that:

Ki =
∑

vj ∼vi

Gσ

(
dg(vi ,vj )

)
.

Using the properties of convolution, one can easily com-
pute the first- and second-order directional derivatives of Fσ ,
namely:

DaFσ (vi ) = Daf � Gσ (vi ), (12)

DabFσ (vi ) = Dabf � Gσ (vi ). (13)

3.4 Numerical Approximations

Geodesics The computation of geodesic distances on arbi-
trarily triangular meshes can be computed by the fast march-
ing method (Kimmel and Sethian 1998) or by other approx-
imations (Surazhsky et al. 2005). In practice, in the interest

of computational speed, we have used a local shortest path
approximation on the edge connectivity graph. It has been
observed experimentally that, for typical meshes, the varia-
tions due to the triangulation are minimal.

Normals At first, a local normal estimation is used, using a
one ring neighbourhood. In order to increase the robustness
of the normal estimation, a smoothed version is then com-
puted, using the mean estimate in a small geodesic neigh-
bourhood.

Curvatures Instead of using the classical curvature estima-
tion method (Meyer et al. 2002) that employs only a one
ring neighbourhood, we employ the more robust method
proposed in Dong and Wang (2005), using a 3 ring neigh-
bourhood.

4 Feature Detection (MeshDOG)

Feature detection comprises three steps, as illustrated in
Fig. 2. First, the extrema of the function’s Laplacian are
found across scales using a one-ring neighbourhood. The
Laplacian is approximated with the standard difference of
Gaussian (DOG) operator. Second, the extrema thus de-
tected are thresholded. Finally, the unstable extrema are
eliminated, only retaining the features exhibiting some de-
gree of cornerness.

4.1 Scale-Space Construction

A scale-space representation of any scalar function f de-
fined on a mesh is considered, built by progressive convo-
lutions over f . The scale-space is built over s = 3 octaves,
covering each octave in c = 6 steps. This is accomplished
by progressive convolutions with a Gaussian kernel (11) of
the original scalar function:

F0 = f, (14)

Ft = Ft−1 � Gσ(t), (15)

with t = {1,2, . . . , s · c}. The standard deviation parameter
σ(t) of the Gaussian at iteration t is chosen based on the
formula:

σ(t) = 2
1

c−2 	 t
c

eavg, (16)

where eavg represents the average edge length. As it can
be observed, the value of σ(t) only changes when t starts
spanning a new octave. σ(t) remains unchanged for the
next c iterations, while t covers the current octave, thanks
to the term 	 t

c

. This behaviour emulates in spirit the 2D

grid downsampling, introduced in Lowe (2004), but without
modifying the mesh geometry, which can be an expensive
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Fig. 2 Feature detection shown with photometric data. (a) Original mesh (27240 vertices); (b) Scale-space extrema (5760 vertices left); (c) Thresh-
olding (1360 vertices left); (d) Corner detection (650 vertices left)

Fig. 3 An example of processing (a) color intensity and (f) mean curvature. Scale-space representation of color (b)–(e) and of mean curvature
(g)–(j). The mesh corresponds to frame 30 of the pop2lock sequence from the University of Surrey

operation, in the case of non-uniformly sampled meshes.
Therefore, an important observation is that, when building
the scale space of scalar function defined over the mesh, the
mesh geometry does not change. This contrasts to other ap-
proaches, such as Hou and Qin (2010), that construct the
scale-space by generating meshes with different samplings,
thus requiring further mesh processing and simplification.

The difference of Gaussian operator is then used as an ap-
proximation of the Laplacian operator, built by subtracting
adjacent convolved functions:

Lt = Ft − Ft−1. (17)

An example can be observed in Fig. 3, where the data
being used correspond to frame 30 of the pop2lock sequence
from the University of Surrey data set. The features being

shown are colour intensity (first row) and mean curvature
(second row).

4.2 Feature Detection

Feature points represent a subset of all vertices that can be
detected with high repeatability. Using local gradient infor-
mation is one way to detect a repeatable feature. There-
fore, the feature points are selected as the local extrema over
one ring neighbourhoods, in the current and in the adjacent
scales. Such an example can be observed in Fig. 1(b).

From the extrema of the scale space, only the top β = 5 %
of the maximum number of vertices are being considered,
sorted by magnitude. We have chosen a percentage value,
versus a hard value threshold, in order to keep the detector
flexible, no matter which scalar function is being considered,
i.e. colour intensity or mean curvature, without the need
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for normalization. However, when the threshold response is
known a priori for a particular scalar function, such as it is
the case in Lowe (2004) with image intensity, it can be easily
used instead.

Additionally, in order to eliminate more non-stable re-
sponses, we only retain the features that exhibit corner char-
acteristics. As proposed in Lowe (2004), this can be done
by examining the eigenvalues of the 2 × 2 Hessian matrix
of second directional derivates of the difference of Gaussian
operator, i.e., Sect. 3.

Let us consider the Difference of Gaussian operator Li ,
defined in (17) and the symmetric Hessian matrix approxi-
mation H̃x,y(Li(vi )) from (10), where (x,y) is a pair of or-
thonormal vectors lying in the tangent plane Ti of M at vi .
The absolute value of the ratio between the two sorted eigen-
values, |μ1| ≥ |μ2| of this matrix is a good indication of a
corner response. By construction, this ratio is independent
of the choice of the local coordinate frame, i.e., vectors x
and y. We use |μ1/μ2| = 10 as threshold value to eliminate
the non-stable edge responses.

5 Feature Descriptor (MeshHOG)

In association with the detector presented in the previous
sections, we propose building a local descriptor, named
MeshHOG, similar in spirit to the histogram of gradient de-
scriptor (HOG) (Dalal and Triggs 2005), but extended to 2D
manifolds. A 2D image is in essence a 2D regular grid. The
regularity assumption does not always hold in the case of
a 2D manifold, that can exhibit non regular sampling. For
this reason, the support region of the descriptor has to be
chosen using a measure invariant to local triangulation, such
as the geodesic distance. In addition to invariance to mesh
sampling, the descriptor should also exhibit invariance to a
number of other transformations, such as rotation and scale.
The scale invariance is achieved by considering the gradi-
ent information at the scale of the detected interest point.
Rotation invariance is achieved by defining a local coordi-
nate system using the normal at the detected interest point,
the dominant gradient in the support region and their cross
product. Finally, a two level histogram of gradient is com-
puted, both spatially, at a coarse level, in order to maintain a
certain high-level spatial ordering, and using orientations, at
a finer level. Trilinear interpolation is used in order to mini-
mize the sampling effect in the histogram bins. The fact that
the gradient vectors are 3D allows the computation of the
histograms in 3D.

5.1 Support Region

The descriptor for vertex vi is computed within a support
region N (vi ), defined using a geodesic ball of radius r ,

as in (4). The geodesic support region is chosen adaptively
based on a global measure, such that the descriptor is robust
to scale and to spatial sampling. The value of r is chosen
such that it covers a proportion αr of the total mesh area,
where αr ∈ (0,1). By denoting with AM the total area of the
mesh M , which can be computed as the sum of all triangle
areas, the radius of the circular support region is:

r =
[√

αrAM

Π

]
, (18)

where [x] denotes the integer of x and assuming that the sur-
face covering the ring neighbourhood can be approximated
with a circle. In practice, we use r such that αr = 2 %.

In the current work we assumed that we are dealing with
fully reconstructed objects, thus recovering the “true” global
object scale. If this is the case, choosing the size of a sup-
port region based on (18) makes it scale and sampling invari-
ant. However, when dealing with partially reconstructed ob-
jects, the support-region size should be chosen based on the
scale reported by the detected interest point, as suggested in
Novatnack and Nishino (2008), Bariya and Nishino (2010),
Mian et al. (2010).

5.2 Local Coordinate System

As mentioned earlier, a local coordinate system is desirable,
in order to make the descriptor invariant to mesh rotations.
A local coordinate system can be built using the unit vector
ni orthogonal to the plane Ti tangent to M at vertex vi , and
a pair of orthonormal vectors residing in this plane. Given
an arbitrary unit vector ai ∈ Ti , a local coordinate system C

is constructed as:

C = {ai ,ni ,ai × ni}. (19)

It is therefore important to choose the unit vector ai based
on some intrinsic local property of the scalar function, and
hence make the choice of the local coordinate system in-
variant to mesh rotations. The direction corresponding to the
most dominant gradient magnitude in the neighbourhood ex-
hibits such a desired behaviour. Therefore, the unit vector
ai is chosen as the direction associated with the dominant
bin in a polar histogram ha , with ba = 36 bins. The his-
togram is constructed by considering the projected partici-
pating neighbouring vertices vj ∈ N (vi ) onto Ti . The vertex
contribution ci(vj ) to the appropriate bin takes into account
the gradient magnitude and the geodesic distance from the
centre vertex vi , weighted by a Gaussian (see (5)):

ci(vj ) = ∥∥∇Mf (vj )
∥∥Gσ

(
dg(vi ,vj )

)
, (20)

where the standard deviation is: σ = εr , with r the support
region radius and ε the spatial influence. ε is set to 0.5 in
our experiments.
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Therefore, bin ha(k,vi ) yields:

ha(k,vi ) =
∑

vj ∼vi

χha(k,vi )(vj )ci(vj ), (21)

where k = {1,2, . . . , ba} is the bin index and χha(k,vi )(vj )

represents the indicator function for bin selection. In gen-
eral, the indicator function is defined as :

χZ(x) =
{

1 if x ∈ binZ,

0 otherwise.
(22)

In order to reduce aliasing and the boundary effects of
binning, votes ci(vj ) are interpolated trilinearly between
neighbouring bins during the histogram computation. In
practice, that means relaxing the indicator function defini-
tion (22). The same interpolation technique is used in the
next sub-section.

5.3 The HOG Descriptor

Instead of computing full 3D orientation histograms, as pro-
posed in Kläser et al. (2008), we project the gradient vec-
tors onto the three planes associated with the local coordi-
nate system (19), in order to provide a more compact repre-
sentation of the descriptor. A possible drawback of the ap-
proach described below is a decrease in the discriminabil-
ity of the descriptor. However, given the fact that local sur-
face neighbourhoods and the associated gradients estimated
at the mesh vertices typically span a limited subset of the
possible 3D spatial/orientation bins, the current compression
scheme does not incur any practical setbacks.

For each of the three planes, a two-level histogram hs,o

is computed. First, the plane is divided in bs = 4 polar slices
hs , starting with the origin and continuing in the direction
dictated by the right hand rule, with respect to the other or-
thonormal vector. When projected onto the plane, the partic-
ipating neighbouring vertices vj will fall within one of the
spatial slices.

Second, for each spatial slice, the space is divided into
bo = 8 orientation slices ho. The projected gradient vectors
∇Mf (vj ) of the vertices vj ∈ N (vi ) that projected onto spa-
tial slice are used to determine the orientation slice, as shown
in Fig. 4(d).

Similar to the histogram definition (21), the histogram
bin hs,o(e, l,vi ) yields:

hs,o(e, l,vi ) =
∑

vj ∼vi

χhs,o(e,l,vi )(vj )ci(vj ), (23)

where e = {1,2, . . . , bs} is the spatial bin index, l =
{1,2, . . . , bo} is the orientation bin index and χhs,o(e,l,vi )

represents the indicator function for bin selection, defined
as:

χhs,o(e,l,vi )(vj ) = χhs(e,vi )(vj )χho(l,vi )

(∇Mf (vj )
)
. (24)

Fig. 4 (a) 3D Histogram—polar mapping used for creating his-
tograms via binning of 3D vectors; (b) Choosing three orthogonal
planes onto which to project the 3D histogram. (c) Polar coordinate
system used for creating histograms via binning of 2D vectors, shown
in this example with eight polar slices. (d) Example of typical spa-
tial and orientation histograms, using four spatial polar slices and eight
orientation slices

The final descriptor is obtained by concatenating the
bs · bo histogram values for each of the 3 orthonormal
planes. In order to make the descriptor invariant to mesh
sampling, the concatenated histograms are normalized us-
ing the L2 norm. The final descriptor will have 3 × bs × bo

elements. Given the previous choice of parameters, the di-
mensionality of the descriptor is 3 × 4 × 8 = 96.

Whenever reducing the descriptor dimensionality is a re-
quirement, keeping only histograms computed in the tangent
plane Ti is a possibility, thus shrinking the descriptor to 32
elements. Also, if multiple scalar functions are available, an
aggregate descriptor can be built by concatenating multiple
individual descriptors.

The method has been implemented in C++. The source
code has been made available under a GPL license and it
can be downloaded from.2

6 Performance Evaluation

In this section an extensive evaluation will be performed,
covering both the interest point detector and the region de-
scriptor. The original paper (Zaharescu et al. 2009) intro-
duced some preliminary empirical results, in the context of
sparse mesh matching.

2http://mvviewer.gforge.inria.fr.

http://mvviewer.gforge.inria.fr
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Fig. 5 Examples of possible
transformations of the null
shape (shown in strength 3 out
of 5) for the PHOTOMESH
dataset

Results are presented in four different scenarios. In
Sect. 6.1, the performance is evaluated on the newly pro-
posed PHOTOMESH dataset, which consists of deforma-

tions on meshes equipped with photometric information. In
Sect. 6.2 the performance of the currently proposed method
is compared with other state of the art methods on the
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Table 1 Transformations and
noise levels of the
PHOTOMESH dataset

Transformation Type Noise (strength x = {1,2,3,4,5})

Noise Color Gaussian Noise with σx = {0.002t,0.005t,0.01t,0.02t,0.05t}, t = 255

Shot Noise Color Shot noise with signal to noise ratio SNRx = {0.002,0.005,0.01,0.02,

0.05} and noise amplitude σ = 50.

Noise Geometry Gaussian Noise with σx = {0.1t,0.2t,0.3t,0.4t,0.5t}, where t = eavg .

Shot Noise Geometry Shot noise with signal to noise ratio SNRx = {0.002,0.005,0.01,0.02,

0.05} and noise amplitude σ = 20 eavg .

Rotation Geometry Gaussian noise with σx = {0.1t,0.2t,0.3t,0.4t,0.5t}, t = π .

Scale Geometry Scale factor sx = {0.5,0.83,1.25,1.62,2.0}.
Local Scale Geometry The input mesh is dilated 3 ∗ x times. At each iteration, the vertices are

moved along the their normal by eavg/3.

Sampling Geometry The mesh is resampled to attain a desired edge size eavg(1.0 + x), us-
ing edge split, edge collapse and edge swap operations, as described in
Zaharescu et al. (2011).

Holes Geometry x random round holes are created, each having area corresponding to
5 % of the total initial mesh area.

Micro-Holes Geometry 3 ∗ x random round micro-holes are created, each having an area corre-
sponding to 3 neighbouring rings from the chosen centre vertex.

Topology Geometry The input mesh is sliced with x equidistant planes into closed non-
connected components, using Zaharescu et al. (2011).

Isometry & Noise Mixed Meshes are chosen from the captured 3D temporal sequences. x does
not encode noise amplitude. Noise is inherently introduced by the multi-
camera mesh reconstruction method and the multi-image colour estima-
tion process.

SHREC 2010 features database (Bronstein et al. 2010), con-
taining only geometric deformations. Additional compar-
isons with other methods are presented in Sect. 6.3, using
the database introduced in Kovnatsky et al. (2011), contain-
ing both geometric and photometric deformations, but in
the context of mesh retrieval. Finally, additional results are
presented in Sect. 6.3 in the context of rigid and non-rigid
sparse mesh matching.

6.1 Benchmark on the PHOTOMESH Dataset

While there already exist datasets that test a number of ge-
ometrical deformations (see the next section), they do not
contain photometric meshes and limit scalar functions to
measures of the surface geometry alone. Therefore, a new
dataset is proposed, named PHOTOMESH, aimed at testing
the repeatability of the detector and the robustness of the
descriptor under both photometric and geometric deforma-
tions.

6.1.1 Dataset

The dataset consists of 3 base shapes. also called null
shapes, endowed with photometric information at each ver-
tex. Simulated transformations are applied to them. Such
an example is shown in Fig. 5. Two of the null meshes are
obtained from multi-view stereo reconstruction algorithms,

whereas one is generated with a modelling program. The
photometric transformations are noise and shot noise. The
geometric transformations are noise, shot noise, rotation,
scale, local scale, sampling, holes, micro-holes, topology
and isometry. Each transformation has 5 levels of noise ap-
plied to it. Therefore, for one base shape, a total of 13 · 5 =
65 shapes are obtained. Hence, the database contains 135
shapes.

Noise Generally, the noise level corresponds to the noise
amplitude. For more information on how the noise is gener-
ated for the various transformations, please consult Table 1.
For isometries, groundtruth is obtained either by means
of non-rigid semi-elastic transformations (Cagniart et al.
2010), when using real data, or manually, in a modelling
program, such as Blender, when using fully synthetic data.
Additional noise is inherently introduced by the multi-view
image-based mesh reconstruction and mesh colour estima-
tion process. In addition to the colour differences between
views, there are regions that are not visible in any camera
view, but which are still reconstructed in 3D due to the in-
terpolation process, such as the sole of a foot.

6.1.2 Evaluation Methodology

The evaluation was performed for feature detection and for
region description. The performance is measured by com-
paring the features and descriptors obtained for the null
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shape with the ones obtained for the different transforma-
tions.

Feature Detection The criteria employed for quantifying
the quality of feature detection is repeatability. Given that
the ground-truth (one-to-one correspondence) is known for
each transformed shape B of the null shape A, the repeata-
bility is calculated as the percentage of detected feature
points in B that are within a geodesic ball of radius r = 1 %
of the surface area, from one of the detected interest points
in A.

Feature Description The quality of the feature description
is measured as the average normalized L2 distance between
descriptors corresponding to matched feature points.

6.1.3 Results and Discussion

Results are presented for three different scalar fields, defined
over the manifolds: colour intensity (fI ), mean curvature
(fM ) and Gaussian curvature (fG). Tables 3, 4, 5 summa-
rize the repeatability of the detector, whereas Tables 6, 7, 8
show the robustness of the descriptor.

In the case of colour noise and color shot noise perfor-
mance slowly degrades if the scalar function utilizes the
colour information (fI —Tables 3 and 6). In the case of
noise and shot noise, the performance slowly degrades for
all functions. Notice, however, that fI leads to better results
than fM and fG, because the last two scalar functions use
geometric information both when computing the gradient
and the actual curvature function.

Rotation and scale transformations prove experimentally
that the method is indeed invariant to rigid transformations.

Holes, micro-holes and topological transformations af-
fect the performance of the method linearly. That is partly
because these transformations modify the total surface area,
which in turn changes the local support area of the descrip-
tor. Also, topological changes introduce new keypoints with
the new structures. In the case of holes, some of the key-
points are simply missing.

Even though some invariance to the density of the mesh
discretization is built into the method, sampling still affects
the performance. One aspect is related to the fact that, even
though the detection method has invariance built in, during
the re-sampling process (when generating the transforma-
tion) some of the features could have moved further away

Table 2 Performance of different scalar functions under purely iso-
metric transformations

Measure fI fM fG

Repeatability 0.99 0.98 0.98

Robustness 0.07 0.15 0.16

than 1 % and they are now detected as incorrect matches.
Also, resampling will affect the computation of curvature.
Lastly, when computing the descriptor histograms, as the
sampling decreases, more bins can become empty, due to the
increased sparsity of the participating vertices. One potential
way to overcome this effect is to ensure sufficient sampling,
by sub-sampling densely enough to guarantee that at least
one sample is available for each bin.

The method also exhibit quasi-invariance to isometric
transformations. In theory, pure isometric transformations
do not affect Gaussian curvature, but they do affect mean
curvature and the estimation of normals. In practice, how-

Table 3 Repeatability of MeshDOG (photometric)

Transform. Strength

1 <2 <3 <4 <5

Color Noise 1.00 0.99 0.99 0.97 0.93

Color Shot Noise 0.98 0.96 0.91 0.86 0.76

Geometry Noise 1.00 1.00 1.00 0.99 0.99

Geometry Shot Noise 1.00 0.99 0.99 0.99 0.98

Rotation 1.00 1.00 1.00 1.00 1.00

Scale 1.00 1.00 1.00 1.00 1.00

Local Scale 1.00 1.00 0.99 0.99 0.99

Sampling 0.96 0.96 0.95 0.90 0.94

Holes 1.00 1.00 0.99 0.99 0.97

Micro-Holes 1.00 1.00 0.99 0.99 0.99

Topology 0.93 0.86 0.82 0.82 0.78

Isometry + Noise 0.95 0.97 0.97 0.93 0.96

Average 0.98 0.98 0.97 0.95 0.94

Table 4 Repeatability of MeshDOG (mean curvature)

Transform. Strength

1 <2 <3 <4 <5

Color Noise 1.00 1.00 1.00 1.00 1.00

Color Shot Noise 1.00 1.00 1.00 1.00 1.00

Geometry Noise 0.96 0.93 0.91 0.90 0.89

Geometry Shot Noise 0.99 0.98 0.96 0.95 0.94

Rotation 1.00 1.00 1.00 1.00 1.00

Scale 1.00 1.00 1.00 1.00 1.00

Local Scale 0.99 0.98 0.97 0.96 0.96

Sampling 0.92 0.89 0.91 0.88 0.92

Holes 0.99 0.99 0.99 0.98 0.98

Micro-Holes 1.00 1.00 0.99 0.99 0.98

Topology 0.90 0.83 0.75 0.62 0.76

Isometry + Noise 0.95 0.96 0.94 0.94 0.93

Average 0.97 0.96 0.95 0.93 0.95
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Table 5 Repeatability of MeshDOG (Gaussian curvature)

Transform. Strength

1 <2 <3 <4 <5

Color Noise 1.00 1.00 1.00 1.00 1.00

Color Shot Noise 1.00 1.00 1.00 1.00 1.00

Geometry Noise 0.97 0.93 0.87 0.83 0.79

Geometry Shot Noise 0.99 0.98 0.97 0.96 0.92

Rotation 1.00 1.00 1.00 1.00 1.00

Scale 1.00 1.00 1.00 1.00 1.00

Local Scale 0.98 0.98 0.97 0.96 0.95

Sampling 0.88 0.88 0.91 0.94 0.92

Holes 0.99 0.99 0.99 0.97 0.97

Micro-Holes 1.00 0.99 0.99 0.98 0.97

Topology 0.85 0.70 0.65 0.58 0.64

Isometry + Noise 0.95 0.96 0.95 0.92 0.93

Average 0.97 0.95 0.94 0.93 0.92

Table 6 Robustness of MeshHOG (photometric)

Transform. Strength

1 <2 <3 <4 <5

Color Noise 0.02 0.04 0.07 0.10 0.16

Color Shot Noise 0.04 0.11 0.17 0.24 0.31

Geometry Noise 0.18 0.23 0.26 0.28 0.30

Geometry Shot Noise 0.03 0.06 0.11 0.16 0.24

Rotation 0.01 0.01 0.01 0.01 0.01

Scale 0.01 0.01 0.01 0.01 0.00

Local Scale 0.12 0.15 0.18 0.19 0.21

Sampling 0.26 0.30 0.33 0.35 0.34

Holes 0.01 0.02 0.06 0.04 0.06

Micro-Holes 0.01 0.01 0.05 0.05 0.05

Topology 0.14 0.22 0.24 0.26 0.28

Isometry + Noise 0.19 0.20 0.19 0.21 0.21

Average 0.09 0.11 0.14 0.16 0.18

ever, the transformations are not purely isometric, due to
errors introduced during the mesh tracking or mesh defor-
mation process. In addition, when using real meshes ob-
tained from the multi-view stereo reconstruction, a signifi-
cant amount of colour noise is implicitly introduced, since
colours are interpolated in areas that are non-visible. When
considering just the synthetic mesh isometry, the results are
a lot more accurate, as presented separately in Table 2.

Overall, the best results are obtained when using the de-
tector/descriptor in conjunction with the photometric infor-
mation (Tables 3 and 6).

Table 7 Robustness of MeshHOG (mean curvature)

Transform. Strength

1 <2 <3 <4 <5

Color Noise 0.00 0.00 0.00 0.00 0.00

Color Shot Noise 0.00 0.00 0.00 0.00 0.00

Geometry Noise 0.24 0.28 0.30 0.32 0.34

Geometry Shot Noise 0.05 0.10 0.17 0.25 0.36

Rotation 0.01 0.01 0.01 0.01 0.01

Scale 0.01 0.01 0.01 0.01 0.00

Local Scale 0.20 0.25 0.28 0.30 0.31

Sampling 0.30 0.34 0.35 0.36 0.36

Holes 0.01 0.02 0.06 0.06 0.06

Micro-Holes 0.01 0.01 0.06 0.07 0.08

Topology 0.15 0.24 0.26 0.26 0.29

Isometry + Noise 0.23 0.24 0.22 0.25 0.24

Average 0.10 0.12 0.14 0.16 0.17

Table 8 Robustness of MeshHOG (Gaussian curvature)

Transform. Strength

1 <2 <3 <4 <5

Color Noise 0.00 0.00 0.00 0.00 0.00

Color Shot Noise 0.00 0.00 0.00 0.00 0.00

Geometry Noise 0.26 0.29 0.31 0.33 0.34

Geometry Shot Noise 0.04 0.09 0.14 0.21 0.29

Rotation 0.01 0.01 0.01 0.01 0.01

Scale 0.01 0.01 0.01 0.01 0.00

Local Scale 0.21 0.25 0.28 0.30 0.31

Sampling 0.31 0.34 0.34 0.36 0.36

Holes 0.02 0.02 0.07 0.07 0.07

Micro-Holes 0.01 0.01 0.07 0.07 0.08

Topology 0.13 0.20 0.22 0.25 0.28

Isometry + Noise 0.23 0.24 0.22 0.25 0.25

Average 0.10 0.12 0.14 0.15 0.17

6.2 Benchmark on SHREC 2010 Features
Dataset—Non-photometric Meshes

An evaluation was also performed on the Shape Retrieval
Contest (SHREC) 2010 dataset3 (Bronstein et al. 2010), in
order to be able to compare with other existing methods.

3http://tosca.cs.technion.ac.il/book/shrec_feat.html.

http://tosca.cs.technion.ac.il/book/shrec_feat.html
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Fig. 6 Examples of possible transformations of the null shape (shown in strength 5 out of 5) for the SHREC 2010 Features dataset. Image taken
from Bronstein et al. (2010)

6.2.1 Dataset

The SHREC 2010 feature dataset is similar to the previously
proposed benchmark dataset from Sect. 6.1, except for the
fact that it does not contain scalar fields defined over the
manifolds (i.e. textures), nor any of scalar function transfor-
mations. In addition, the null shapes in the current dataset
are all synthetic, whereas 66 % of null shapes from the PHO-
TOMESH dataset are obtained from multi-view stereo. The
geometric transformations are similar to the ones introduced
in the Sect. 6.1.1. An example can be seen in Fig. 6.

6.2.2 Evaluation Methodology

The evaluation methodology is similar to the one presented
in Sect. 6.1.2. The measures tested are the repeatability of
feature detections and the robustness of the descriptors.

6.2.3 Results

The results of the proposed method are presented in Tables 9
and 14. The Gaussian curvature was used as the scalar func-
tion. The results using mean curvature are very similar, but
they are omitted in the interest of space.

Results for other top-performing methods, taken from
Bronstein et al. (2010), are also included. For feature detec-
tion, the following other methods are included: two heat ker-
nels variants based on the work of Sun et al. (2009)—HK1
(Table 10) and HK2 (Table 11); a Harris 3D corner detec-
tion method (Sipiran and Bustos 2010)—H1 (Table 12) and
a saliency based method (Castellani et al. 2008)—SP3 (Ta-
ble 13). For region description, the following methods are
included: two sparse heat kernel signature variants based on
the work of Sun et al. (2009)—SHK1 (Table 15) and SHK2
(Table 16) and the spin images method (Johnson and Hebert
1999)—SI (Table 17). For more information about the com-
peting methods and for additional results, please consult
(Bronstein et al. 2010).

Table 9 Repeatability of MeshDOG: feature detection algorithm us-
ing Gaussian curvature as the scalar field. Average number of detected
points: 129

Transform. Strength

1 ≤2 ≤3 ≤4 ≤5

Isometry 97.44 98.72 98.03 98.49 98.49

Topology 97.44 97.44 97.44 97.40 97.41

Holes 96.50 96.50 96.26 95.91 95.55

Micro holes 97.31 97.24 97.22 97.08 96.95

Scale 97.44 97.44 97.35 97.24 97.18

Local scale 94.62 91.67 89.27 85.99 82.62

Sampling 88.08 84.94 81.20 77.82 72.92

Noise 91.92 91.92 90.09 88.59 87.10

Shot noise 97.44 97.50 97.44 97.40 97.38

Average 95.35 94.82 93.81 92.88 91.73

Table 10 Repeatability of HK1: heat kernel based feature detection
algorithm. Average number of detected points: 23

Transform. Strength

1 ≤2 ≤3 ≤4 ≤5

Isometry 98.08 98.72 98.01 97.88 98.04

Topology 97.44 96.10 92.26 91.22 88.64

Holes 91.48 90.60 86.78 83.73 81.86

Micro holes 98.08 96.69 96.00 95.52 94.87

Scale 99.36 99.36 98.50 97.90 97.68

Local scale 98.08 94.83 90.09 83.05 78.31

Sampling 97.05 97.88 97.39 96.27 92.35

Noise 95.30 92.78 91.67 89.24 87.62

Shot noise 98.08 96.22 93.39 90.45 87.32

Average 96.99 95.91 93.79 91.70 89.63

In the context of feature detection, the proposed Mesh-
DOG method performs very well: it has the top average re-
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Table 11 Repeatability of HK2: heat kernel based feature detection
algorithm. Average number of detected points: 9

Transform. Strength

1 ≤2 ≤3 ≤4 ≤5

Isometry 100.00 100.00 100.00 100.00 100.00

Topology 94.44 90.38 87.45 88.70 85.76

Holes 80.54 79.00 75.25 72.10 69.99

Micro holes 100.00 100.00 98.15 96.58 95.64

Scale 100.00 100.00 100.00 98.61 97.78

Local scale 97.44 96.79 93.02 87.25 82.90

Sampling 100.00 100.00 100.00 100.00 96.20

Noise 100.00 95.19 93.16 89.37 85.77

Shot noise 100.00 95.30 90.03 82.10 74.38

Average 96.94 95.19 93.01 90.52 87.60

Table 12 Repeatability of H1: Harris 3D feature detection algorithm.
Average number of detected points: 303

Transform. Strength

1 ≤2 ≤3 ≤4 ≤5

Isometry 90.47 91.94 91.71 91.88 92.10

Topology 90.33 90.21 89.93 89.97 89.82

Holes 89.59 89.41 89.25 88.82 88.49

Micro holes 90.42 90.40 90.36 90.33 90.31

Scale 92.21 91.61 90.67 89.55 88.19

Local scale 88.08 86.49 83.64 80.99 78.98

Sampling 84.81 84.80 82.37 78.76 70.68

Noise 89.27 87.36 83.20 79.76 74.53

Shot noise 90.73 90.84 89.43 87.94 86.37

Average 89.55 89.23 87.84 86.44 84.38

sults for noise levels 3 to 5 and scores slightly worse (<2 %)
than HK1 and HK2 for noise levels 1 and 2. In the con-
text of region description, MeshHOG’s performance is af-
fected by sampling and noise, which pulls down the aver-
age performance. As mentioned earlier, the method is not
fully robust to sampling errors, mostly due to the fact that
for very sparse samplings, a large number of bins are left
empty. Proper dense re-sampling of the input mesh would
alleviate this problem.

6.3 Benchmarking Using the SHREC Photometric Dataset

A new dataset of photometric meshes is proposed in Kov-
natsky et al. (2011) in the context of shape retrieval.

6.3.1 Dataset

The query set consists of 270 real-world human shapes from
5 classes, obtained from multi-view stereo reconstruction, to

Table 13 Repeatability of SP3: salient points feature detection algo-
rithm. Average number of detected points: 409

Transform. Strength

1 ≤2 ≤3 ≤4 ≤5

Isometry 86.17 87.42 87.24 87.76 88.15

Topology 86.18 85.63 85.58 85.56 85.56

Holes 85.72 85.10 84.34 83.56 82.58

Micro holes 68.52 62.27 57.96 54.75 51.99

Scale 89.80 88.28 86.82 85.14 83.70

Local scale 85.73 84.97 84.48 83.33 82.12

Sampling 85.02 83.15 82.21 79.94 77.61

Noise 87.31 85.43 83.28 81.36 79.40

Shot noise 85.95 84.42 82.77 81.76 81.23

Average 84.49 82.96 81.63 80.35 79.15

Table 14 Robustness of MeshHOG feature description algorithm
based on features detected by MeshDOG (average L2 distance between
descriptors at corresponding points). Average number of points: 129

Transform. Strength

1 ≤2 ≤3 ≤4 ≤5

Isometry 0.08 0.07 0.08 0.08 0.08

Topology 0.08 0.08 0.08 0.08 0.08

Holes 0.12 0.13 0.13 0.14 0.15

Micro holes 0.09 0.09 0.09 0.10 0.11

Scale 0.08 0.08 0.08 0.08 0.08

Local scale 0.18 0.25 0.27 0.28 0.31

Sampling 0.37 0.38 0.39 0.40 0.42

Noise 0.37 0.38 0.38 0.38 0.38

Shot noise 0.11 0.11 0.11 0.11 0.11

Average 0.16 0.17 0.18 0.18 0.19

which a number of transformations have been applied. Geo-
metric transformations are divided into isometry + topology
(real articulations and topological changes due to acqui-
sition imperfections), and partiality (occlusions and addi-
tion of clutter). Photometric transformations include con-
trast, brightness, hue, saturation and color noise. Mixed
transformations include isometry + topology transforma-
tions in combination with two randomly selected photo-
metric transformations. For each class, there are 5 different
transformation strength levels, adding up to 54 instances per
shape.

The null shape of each of the 5 classes was added
to the queried corpus, in addition to the other 75 shapes
used as clutter. Retrieval was performed by matching 270
transformed queries to the 75 + 5 null shapes. Each query
had exactly one correct corresponding null shape in the
dataset.
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Table 15 Robustness of SHK1: heat kernel signature feature descrip-
tion algorithm based on featured detected by HK1 (average L2 dis-
tance between descriptors at corresponding points). Average number
of points: 23

Transform. Strength

1 ≤2 ≤3 ≤4 ≤5

Isometry 0.05 0.04 0.04 0.04 0.04

Topology 0.05 0.06 0.12 0.14 0.19

Holes 0.07 0.07 0.07 0.08 0.09

Micro holes 0.05 0.05 0.06 0.06 0.06

Scale 0.05 0.05 0.05 0.05 0.05

Local scale 0.07 0.09 0.10 0.12 0.14

Sampling 0.06 0.06 0.06 0.08 0.13

Noise 0.08 0.09 0.11 0.12 0.13

Shot noise 0.05 0.06 0.10 0.16 0.25

Average 0.06 0.06 0.08 0.09 0.12

Table 16 Robustness of SHK2: heat kernel signature feature descrip-
tion algorithm based on featured detected by HK2 (average L2 dis-
tance between descriptors at corresponding points). Average number
of points: 9

Transform. Strength

1 ≤2 ≤3 ≤4 ≤5

Isometry 0.04 0.03 0.04 0.04 0.04

Topology 0.04 0.06 0.11 0.13 0.18

Holes 0.06 0.07 0.08 0.08 0.09

Micro holes 0.04 0.04 0.05 0.05 0.05

Scale 0.04 0.04 0.04 0.04 0.04

Local scale 0.07 0.08 0.10 0.13 0.16

Sampling 0.05 0.05 0.05 0.07 0.14

Noise 0.08 0.09 0.11 0.12 0.13

Shot noise 0.05 0.08 0.15 0.24 0.31

Average 0.05 0.06 0.08 0.10 0.13

6.3.2 Evaluation Methodology

Performance was evaluated using the precision-recall char-
acteristic for the shape retrieval task. Precision P(r) is
defined as the percentage of relevant shapes in the first
r top-ranked retrieved shapes. Mean average precision
(mAP ) was used as a single measure of performance, where
mAP = ∑

r P (r) · rel(r) and rel(r) is the relevance of a
given rank.

6.3.3 Results

Results for the proposed method are summarized in Ta-
ble 18. Photometric information was used in the scalar field.

Results for other top-performing methods are also pre-
sented in Tables 19–24. For more information, please con-

Table 17 Robustness of Spin Images feature description algorithm
based on features detected by SP2 (average L2 distance between de-
scriptors at corresponding points). Average number of points: 205

Transform. Strength

1 ≤2 ≤3 ≤4 ≤5

Isometry 0.12 0.10 0.10 0.10 0.10

Topology 0.11 0.11 0.11 0.11 0.11

Holes 0.12 0.12 0.12 0.12 0.12

Micro holes 0.15 0.15 0.16 0.16 0.16

Scale 0.18 0.15 0.15 0.15 0.15

Local scale 0.12 0.13 0.14 0.15 0.17

Sampling 0.13 0.13 0.13 0.13 0.15

Noise 0.13 0.15 0.17 0.19 0.20

Shot noise 0.11 0.13 0.16 0.17 0.18

Average 0.13 0.13 0.14 0.14 0.15

Table 18 Performance (mAP in %) of BoFs using MeshHOG descrip-
tors (photometry)

Transform. Strength

1 ≤2 ≤3 ≤4 ≤5

Isom + Topo 100.00 95.00 96.67 94.17 95.33

Partial 75.00 61.15 69.93 68.28 68.79

Contrast 100.00 100.00 100.00 98.33 94.17

Brightness 100.00 100.00 100.00 100.00 99.00

Hue 100.00 100.00 100.00 100.00 100.00

Saturation 100.00 100.00 100.00 98.75 99.00

Noise 100.00 100.00 88.89 83.33 78.33

Mixed 100.00 100.00 100.00 93.33 83.40

sult (Kovnatsky et al. 2011). The methods using bag of fea-
tures with heat kernel signatures (Tables 19) and the spectral
distance (Table 20) are purely geometric, which makes them
automatically invariant to the photometric noise (contrast,
brightness, hue, saturation, noise). Conversely, the colour
histogram method (Table 21) uses purely photometric infor-
mation, thus making it invariant to purely geometric trans-
formations (isometry + topology and partial). The methods
presented in Tables 22–24 use spectral decomposition meth-
ods in conjunction with both photometric and geometric in-
formation.

Comparing the overall results, the proposed method (Ta-
ble 18) performs very well. It provides the best results for the
partial geometric transformations (occlusions and the addi-
tion of clutter), as well as the best overall results for noise
strength 1. While overall top ranking results are obtained
by the method described in Table 23, the proposed method
comes to a very close second.
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Table 19 Performance (mAP in %) of ShapeGoogle using BoFs with
HKS descriptors (purely geometric)

Transform. Strength

1 ≤2 ≤3 ≤4 ≤5

Isom + Topo 100.00 100.00 96.67 95.00 90.00

Partial 66.67 60.42 63.89 63.28 63.63

Contrast 100.00 100.00 100.00 100.00 100.00

Brightness 100.00 100.00 100.00 100.00 100.00

Hue 100.00 100.00 100.00 100.00 100.00

Saturation 100.00 100.00 100.00 100.00 100.00

Noise 100.00 100.00 100.00 100.00 100.00

Mixed 90.00 95.00 93.33 95.00 96.00

Table 20 Performance (mAP in %) of pure geometric spectral shape
distance

Transform. Strength

1 ≤2 ≤3 ≤4 ≤5

Isom + Topo 80.00 90.00 88.89 86.67 89.33

Partial 56.25 65.62 61.61 58.71 61.13

Contrast 100.00 100.00 100.00 100.00 100.00

Brightness 100.00 100.00 100.00 100.00 100.00

Hue 100.00 100.00 100.00 100.00 100.00

Saturation 100.00 100.00 100.00 100.00 100.00

Noise 100.00 100.00 100.00 100.00 100.00

Mixed 66.67 73.33 78.89 81.67 81.33

Table 21 Performance (mAP in %) of color histograms (purely pho-
tometric)

Transform. Strength

1 ≤2 ≤3 ≤4 ≤5

Isom + Topo 100.00 100.00 100.00 100.00 100.00

Partial 100.00 100.00 100.00 100.00 100.00

Contrast 100.00 90.83 80.30 71.88 63.95

Brightness 88.33 80.56 65.56 53.21 44.81

Hue 11.35 8.38 6.81 6.05 5.49

Saturation 17.47 14.57 12.18 10.67 9.74

Noise 100.00 100.00 93.33 85.00 74.70

Mixed 28.07 25.99 20.31 17.62 15.38

6.4 Shape Matching

The current subsection introduces results of the currently
proposed approach in a shape matching application.

Table 22 Performance (mAP in %) of BoFs with cHKS descriptors
using fixed colorspace scaling factor (w = 0.1)

Transform. Strength

1 ≤2 ≤3 ≤4 ≤5

Isom + Topo 90.00 95.00 96.67 97.50 96.00

Partial 81.25 74.38 71.11 64.48 65.08

Contrast 100.00 100.00 100.00 98.75 98.00

Brightness 100.00 100.00 100.00 100.00 100.00

Hue 100.00 95.00 96.67 97.50 98.00

Saturation 100.00 96.00 84.51 76.53 71.39

Noise 100.00 100.00 86.33 81.62 76.03

Mixed 86.67 79.76 76.17 78.38 71.81

Table 23 Performance (mAP in %) of ShapeGoogle using w-multi-
scale BoFs with cHKS descriptors

Transform. Strength

1 ≤2 ≤3 ≤4 ≤5

Isom + Topo 100.00 100.00 96.67 97.50 94.00

Partial 68.75 68.13 69.03 67.40 67.13

Contrast 100.00 100.00 100.00 100.00 100.00

Brightness 100.00 100.00 100.00 100.00 100.00

Hue 100.00 100.00 100.00 100.00 100.00

Saturation 100.00 100.00 100.00 100.00 100.00

Noise 100.00 100.00 100.00 100.00 100.00

Mixed 100.00 100.00 96.67 97.50 98.00

Table 24 Performance of (mAP in %) of the multiscale joint
geometric-photometric spectral distance

Transform. Strength

1 ≤2 ≤3 ≤4 ≤5

Isom + Topo 100.00 100.00 100.00 100.00 100.00

Partial 62.50 72.92 65.97 62.50 67.50

Contrast 100.00 100.00 100.00 100.00 100.00

Brightness 100.00 100.00 100.00 100.00 100.00

Hue 100.00 100.00 100.00 100.00 100.00

Saturation 100.00 100.00 100.00 100.00 100.00

Noise 100.00 100.00 100.00 100.00 100.00

Mixed 100.00 93.33 95.56 96.67 93.70

6.4.1 Method

Let A and B be two meshes of the same object. The two
meshes do not necessarily have the same number of vertices.
Using the proposed approach, nA interest points are detected
on A, characterized by descriptors tAi , with i ∈ [1..nA]. Sim-



Int J Comput Vis (2012) 100:78–98 95

Fig. 7 Rigid matching results—Dino and Temple datasets. (a), (c) Results when using photometric information for both detection and description;
(b), (d) Error distribution when using different combinations of scalar functions

ilarly, nB interest points are detected on B , characterized by
descriptors tBj , with j ∈ [1..nB ].

For each descriptor tAi from surface A, the best match-
ing descriptor tBj from surface B is found, in terms of the

Euclidean distance dij = ‖tAi − tBj ‖. Cross validation is per-

formed, by checking that tBj ’s best match is indeed tAi . Fi-
nally, the candidate match is only accepted if the second best
match is significantly worse (γ = 0.7 or less from the best
match score). This method is not meant to fully solve the
matching problem, as would a global approach (e.g. Starck
and Hilton 2007). It is intended to allow further validation
and evaluation of the proposed detector and descriptor.

6.4.2 Datasets

In the evaluation, the following scenarios are considered:
(i) the two meshes are representations of the same rigid ob-
ject, which can thus be aligned using a rigid transformation;
(ii) the two shapes are representations of the same non-rigid
object, i.e. a moving person. In this context, the following
datasets are introduced:

– Rigid Objects: Reconstructions of the same object are
considered, using different camera sets. In particular,
different mesh reconstructions are obtained using (Za-
harescu et al. 2011) on the publicly available datasets
from the Middleburry Multi-View Stereo site (Seitz et al.
2006). The Dino datasets contains two meshes, one with
27240 vertices obtained from 16 cameras and the other
of 31268 vertices generated from 47 cameras. Similarly,
the Temple datasets contains two meshes, one with 78019
vertices obtained from 16 cameras and the other of 80981
vertices generated from 47 cameras.

– Synthetic Non-Rigid Objects: A synthetically generated
dataset is considered, entitled Synth-Dance, of a human
mesh with 7061 vertices moving across 200 frames.

– Real Non-Rigid Objects: Additionally, frames 515–550
from the INRIA Dance-1 sequence4 are used, where
the same reconstruction method (Zaharescu et al. 2011)
was employed to recover models using 32 cameras. The
meshes have vertices ranging between 16212 and 18332.

Photometric information The colour of each vertex of the
surface is computed by considering the median colour in the
visible images. It is assumed that the colours of a vertex fol-
lows a non-Gaussian distribution, due to errors that can oc-
cur around occluding contours. In the Synth-Dance dataset
the vertices are randomly coloured.

6.4.3 Evaluation Methodology

For each of the cases, a number of matches are produced
by the above mentioned matching algorithm. In the case
of rigid objects and synthetic non-rigid objects, the match
groundtruth is readily available. Therefore, error distribu-
tions of the matches can be computed. They accumulate
binned error distance from the groundtruth match, with the
size of a bin being the average edge length.

Comparison with 2D SIFT In addition, for the non-rigid
motion cases, a comparison is presented between the pro-
posed mesh matching framework using the MeshHOG de-
scriptor and a similar matching framework, based on 2D im-
age detectors and descriptors back-projected onto the mesh.
In the image-based framework, the matching is performed
in images and only then the 2D matches are back-projected
onto the surface. The SIFT (Lowe 2004) keypoint detector
and image descriptor was used in 2D. When matching the
two surfaces, only matches from the same cameras are con-
sidered. In order to carry such a comparison for the Synth-
Dance dataset, 16 virtual cameras and the associated images
have been generated. The virtual cameras are distributed in
a circular pattern around the object.

4http://4drepository.inrialpes.fr/.

http://4drepository.inrialpes.fr/
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Fig. 8 Non Rigid matching using synthetic data—dancer-synth
dataset. Comparison between MeshHOG and SIFT matching results.
Matches between frames 1 and 50 are visually depicted in (a), (d).
There are 364 matches for MeshHOG and 343 matches for SIFT. They

are also quantified in the error histograms (b), (e). The histogram bins
are of size equal to eavg . The last bin groups all the errors greater than
20 ∗ eavg . Additionally, the average histogram errors are shown in (c),
(f) for matching frame 1 with x, where x ∈ [2..200]

6.4.4 Results

Rigid Matching Results Figure 7 presents results on the
Dino and Temple datasets, with different possible combina-
tions of scalar functions for both detection and description:
photometric information, mean curvature and Gaussian cur-
vature. As the results show, the biggest benefit is obtained
from using the photometric information for region descrip-
tion, irrespective of which scalar function is used for detec-
tion, e.g. the red curves in the graphs from Fig. 7. How-
ever, the best overall results are obtained when photometric
information is used for both keypoint detection and region
description. Mean curvature seems to be the second most
informative measure when used for region description (the
green curves in the graphs from Fig. 7), whereas the Gaus-
sian curvature (the blue curves) is the worst performer.

Given the datasets and the matching procedure, it is to
be expected that photometric information provides the best
choice for region description. Geometry alone does not pro-
vide sufficient unique regions. Both the Dino and Temple
meshes exhibit a large number of repetitive geometric fea-
tures, that can only be disambiguated due to the slightly dif-
ferent photometric information.

Non-Rigid Matching Results Synthetic comparative re-
sults are presented in Fig. 8. The mesh in the first frame
was matched with all the other 199 meshes across the se-
quence. Observe that the MeshHOG descriptor generates
very few false positives in comparison with the SIFT equiv-
alent, clearly demonstrating the advantages of the proposed
approach. In addition, empirical results are presented in
Fig. 9 for the INRIA Dance-1 sequence. There are only
54 matches found using the SIFT back-projected method
between frame 525 and 526, whereas MeshHOG finds 174
matches. Even when matching across distant frames (530
and 550), our proposed method finds 27 correct matches,
whereas the SIFT back-projected method fails completely.
It is to be expected, since most of the inter-frame matches
are due to local creases formed by the clothes. The head is

Fig. 9 Non Rigid matching using real data—Dance-1 sequence.
(a) Matches between frames 525 and 526 using MeshHOG
(174 matches); (b) Matches between frames 530 and 550 using Mesh-
HOG (27 matches); (c) Matches between frames 525 and 526 using
SIFT (54 matches); (d) Matches between frames 530 and 550 using
SIFT (0 matches)

the only unique feature that can be robustly matched across
time.

7 Conclusion

We have introduced MeshDOG and MeshHOG, a new 3D
interest point detector and a new 3D descriptor, defined on
triangular meshes endowed with a scalar function. The de-
scriptor is able to capture the properties of both the local
geometry and of the scalar function in a succinct fashion. It
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is robust to changes in orientation, rotation, translation and
scale. The performance of both the interest point detector
and the feature descriptor was tested extensively, achieving
very competitive results, comparable with the state of the
art.

As a future direction, we plan to investigate how to fur-
ther extend the descriptor to take into account the temporal
dimension, considering the context of densely tracked sur-
faces.
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