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Abstract

Stereo matching is a challenging problem, especially
in the presence of noise or of weakly textured objects.
Using temporal information in a binocular video se-
quence to increase the discriminability for matching has
been introduced in the recent past, but all the proposed
methods assume either constant disparity over time, or
small object motions, which is not always true. We in-
troduce a novel stereo algorithm that exploits temporal
information by robustly aggregating a similarity statis-
tic over time, in order to improve the matching accu-
racy for weak data, while preserving regions undergo-
ing large motions without introducing artifacts.

1 Introduction

The use of a stereo video presents advantages over
single-frame stereo. The extra information may help
the matching process to improve accuracy and to en-
force temporal consistency of disparity maps in the case
of weakly textured regions or when the matching is am-
biguous. We see three main approaches in the literature.

The first group computes the scene flow. These
methods simultaneously estimate depth and motion.
The is a formulation of the coupled estimation prob-
lems of disparity (between a stereo pair) and optical
flow (between consecutive frames) which mutually con-
strain each other. This task is traditionally solved by
variational [1], MRF [7], or seed-growing [4] methods.

In the second group, there are methods which rely
on independent motion estimates to improve the stereo
matching. In [2], the disparity maps are filtered by a
median filter along pixel trajectories obtained by an ex-
ternal optical flow module. Independent optical flow
is also used in [13], where the authors propose an
MRF framework with an extra term which penalizes
discrepancies in photoconsistency of the (optical flow
related) neighbourhood in the current-, previous-, and
next frames. Similar MRF formulation [6] additionally

disconnects the edges to prevent over-smoothing in case
of large motion and failure of the optical flow estimates.

The third group is composed of methods of spa-
tiotemporal stereo that do not estimate the motion ex-
plicitly, but exploit a local spatiotemporal neighbour-
hood of pixels to increase discriminability of the sim-
ilarity statistics. Paper [5] projects an artificial pattern
varying over time onto the static scene and temporally
aggregate the statistic. The similarity statistic (based on
bilateral filtering) is temporally aggregated also in [9],
such that adjacent frames are weighted by a Gaussian
kernel to cope with a small motion. In [12] the authors
study how spatiotemoral windows are deformed due to
surface slant and motion and propose an optimization
framework to find the distortion parameters and invari-
ant similarity statistic. Alternatively, the same insensi-
tivity is achieved in [10, 11] by representing the image
using Gabor filter responses and the similarity statistic
is computed in a closed form. However, all these meth-
ods assume that the disparity between frames changes
only slowly. In reality this assumption is not valid near
object boundaries or in the presence of rapidly moving
objects, which causes serious artifacts.

The main contribution of this paper is a method of
spatiotemporal stereo which benefits from aggregating
the similarity statistic over a time window. Unlike pre-
vious work on spatiotemporal stereo algorithms, the
proposed method is robust to abrupt temporal changes
in disparity due to large motions. The main idea of our
algorithm is to automatically detect image regions cor-
responding to such changes, such that the aggregation
of the similarity statistic over the time window is dis-
connected for these regions. The algorithm is imple-
mented within the efficient seed growing procedure [3].

2 Method description

Let us have two synchronized and epipolar-rectified
video streams Il(x, y, t) and Ir(x, y, t). Variables
x and y index respective horizontal and vertical im-
age coordinates in pixels, t indexes the time, i.e. a



frame of the streams. The streams are related by a
disparity function d(x, y, t) which assigns the corre-
spondences between pixels in the left and right image

Il(x, y, t) ≈ Ir(x+ d(x, y, t), y, t). (1)

A matching algorithm must measure a certain similar-
ity statistic between potentially corresponding pixels to
establish the correspondences. The simplest statistic
is a difference of pixel intensities, which is however
ambiguous. More discriminable statistics use a small
neighbourhood (a window) around the potential corre-
spondence. Then, these algorithms locally approximate
the disparity function. For instance, paper [12] uses a
linear approximation. In a small spatiotemporal neigh-
bourhoodN around location (x0, y0, t0), e.g. a 3D win-
dow of 5×5 pixels over 3 frames, the disparity function
is d(x, y, t) ≈ d̂(di, d0, d1, d2, dt) = di + d0 + d1(x−
x0) + d2(y − y0) + dt(t − t0). Then they use an opti-
mized statistic to measure a photometric consistency of
the potential correspondence for candidate disparities di

TSSD(x0, y0, t0, di) =

min
d0,d1,d2,dt

X
(x,y,t)∈N

“
Il(x, y, t)−Ir(x+ d̂(di, d0, d1, d2, dt), y, t)

”
2

(2)

to compensate the distortion which occurs due to sub-
pixel displacement d0, surface slant d1, d2, and tempo-
ral disparity change dt.

However, there are several sources of errors in this
approach: (i) Tendency to get stuck in a local extrema;
(ii) Not a significant gain in discriminability1 over the
case where d0 = d1 = d2 = dt = 0, since the statis-
tic is improved by the optimization for both correct
and incorrect matches; (iii) When the assumption on
the linearity of the disparity function within the local
spatiotemporal neighbourhood is violated (e.g. abrupt
change in disparity), the method fails dramatically.

Therefore we adopted a different approach in the
aggregation. As an elementary similarity statistic,
we use Moravec’s normalized cross correlation [8],

NCC(x0, y0, t0, di) =

2 cov
`
Wl(x0, y0, t0),Wr(x0 + di, y0, t0)

´
var
`
Wl(x0, y0, t0)

´
+ var

`
Wr(x0 + di, y0, t0)

´
+ ε

,

(3)

where Wl(x0, y0, t0) is a spatial window (a subimage)
of N × N pixels centered at position (x0, y0) of the
frame t0 of the left stream. Similarly Wr, and ε is a

1The discriminability of the similarity statistic is proportional to a
probability that the statistic has better response for the true correspon-
dence than for the incorrect ones.

machine epsilon to prevent instability of the statistic in
case of low intensity variance. The statistic has conse-
quently low response in textureless regions [3].

Then the NCC statistic is aggregated over a sym-
metric time window of 2T + 1 frames, such that

TNCC(x0, y0, t0, di) =
1

2T + 1

t0+TX
t=t0−T

NCC(x0, y0, t, di).

(4)

Apparently, the TNCC statistic is decayed when the dis-
parity changes significantly within the temporal win-
dow. Notice that the motion in general is not harm-
ful, but the motion changing the disparity is. A typical
distribution of NCC(t) statistic over the time t of the
window for a correct match (x0, y0, t = 0, di) is the
following: If the disparity is constant over time, all per-
frame correlations for t = {−T, . . . , T} are high. If
the disparity changes slowly, the correlation is slightly
lower more faraway from the central frame. However,
when the disparity changes rapidly, the correlation off
the central frame drops quickly, since the other corre-
lations measure a photometric consistency of locations
which are not corresponding any more.

On the other hand, a potential mismatch (i.e. wrong
correspondence) has the distribution of per-frame corre-
lations over the time window such that the correlations
are low, but due to random fluctuations or texture self-
similarity there may be high responses for any frame of
the temporal window. The temporal aggregation in (4)
averages out these excesses and decreases their correla-
tions and hereby increases the discriminability.

However, it is important to detect phenomena cor-
responding to large changes in disparity and in these
cases to use the central correlation only without any ag-
gregation which would cause artifacts. Therefore, we
propose a robust temporal normalized cross correlation

RTNCC(x0, y0, t0, di) =(
NCC(x0, y0, t0, di) if

`
NCC(t0)−NCC(t0±1)́ ≥α,

TNCC(x0, y0, t0, di) otherwise.
(5)

This means that RTNCC uses the correlation (3) of the
central frame, if it is higher than correlations of adja-
cent frames by threshold α. Otherwise, RTNCC uses
the average correlation TNCC over the entire temporal
window (4). For simplicity of notation, we omitted all
other indexes x0, y0, di in the condition in (5).

Matching algorithm. To establish the matching be-
tween stereo images, the proposed RTNCC statistic was
integrated in a seed growing procedure [3]. This al-
gorithm uses seed correspondences obtained by match-
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Figure 1. Quantitative evaluation.

ing Harris points. For each seed the algorithm searches
other correspondences in their surroundings by maxi-
mizing the similarity statistic. If the similarity statistic
of a candidate exceeds a threshold, then a new corre-
spondence is found. It becomes a new seed and the pro-
cess repeats until there are no more seeds to be grown.

Besides low computational complexity, the advan-
tage of the algorithm in our context is the input of seeds.
Namely, we observed the condition in (5) of RTNCC is
reliable in textured regions only. Nevertheless, the seed
correspondences are points with the Harris property and
for them the decision works well. Therefore, we pro-
pose to take this decision for the initial seeds only. Each
seed then propagates a flag indicating whether the ag-
gregation in RTNCC is used or not and this flag is in-
herited by its ‘offspring’ seeds in the growing process.

3 Experiments

We performed a set of experiments to demonstrate
that the proposed algorithm can cope with weak or am-
biguous data and images corrupted by noise, without
introducing artifacts of smoothing boundaries of rapidly
moving objects. We compare the proposed method (RT-
NCC) with two baseline instances of the growing algo-
rithm: (i) the algorithm which uses the spatial neigh-
bourhood only for matching (NCC), and (ii) the algo-
rithm which trivially uses the spatio-temporal neigh-
bourhood, such that all per-frame correlations are av-
eraged (TNCC). The other comparisons are with two
state-of-the art spatio-temporal methods: (i) temporal
SSD optimization [12] integrated in the growing al-
gorithm (TSSD), and (ii) the stequel matching algo-
rithm [10] (Sizintsev09).

For all experiments, we used 5× 5 pixel windows as
the spatial neighbourhood of all statistics, parameter α
in RTNCC (5) was empirically set to 0.8. For the short
synthetic sequence, we set temporal window half-size
to T = 2, while for the real one it was set to T = 7.

(a) Left Image (b) Ground Truth (c) NCC (d) TNCC

(e) TSSD (f) Sizintsev09 (g) RTNCC (h) RTNCC agg.

Figure 2. Synthetic dataset of [4]. Frame
6, noise level σ = 0.5. Disparity maps.

Ground-truth experiment. To quantitatively com-
pare the different algorithms, we tested on a stereo se-
quence with ground-truth disparity maps used in [4],
Fig. 2(a). It consists of three objects: a background
plane, a sphere, and a thin bar. The plane and sphere
move slowly, while the thin bar moves rapidly (about
30 pixels per frame) from right to left crossing the en-
tire scene. It is textured randomly with a white noise.

We measured ratio of correctly matched pixels in
non-occluded regions, i.e. number of all pixels without
mismatches (error ≥ 1 pixel) and unmatched pixels di-
vided by the total number of pixels. The input images
were perturbed with zero mean additive Gaussian noise
with successively increasing standard deviation σ. The
noise has equal variance as the signal for σ = 1.

In Fig. 1, we can see the algorithm using NCC per-
forms very well without noise. The texture is optimal
and hence the correlation is very high and unambigu-
ous. However, it degrades with noise, Fig. 2(c), produc-
ing mismatches as small spatial only image windows do
not correlate well. The TNCC degradates slowly with
increasing level of noise, however the ratio of correct
matches is lower since it tends to completely miss the
rapidly moving bar, Fig. 2(d). The temporal aggrega-
tion helps to filter out the noise in slowly moving re-
gions, but the aggregation is harmful for the bar where
the disparity changes abruptly over time, since for this
region TNCC of the false background wins over TNCC
of the true bar. Similarly, the other two methods Siz-
intsev09 and TSSD perform well filtering the noise but
both of them have serious problems with the rapidly
moving bar where the disparity changes abruptly over
time, Fig. 2(e), 2(f). The proposed RTNCC performs
the best. It is as good as the NCC for low noise, and it is
always superior to other methods with increasing levels
of noise. It has fewer mismatches in slowly moving re-
gions, but at the same time it preserves the rapidly mov-
ing bar without artifacts, Fig. 2(g). It correctly aggre-
gates over time using TNCC in regions where it helps,
and for other regions it uses the spatial statistic NCC.



(a) Left Image (b) Right Image

(c) NCC (d) TNCC

(e) RTNCC (ours) (f) TSSD

(g) Sizintsev09 (h) RTNCC agg.

Figure 3. DAGM Exposure Challenge
dataset. Disparity maps.

The map in Fig. 2(h) shows which case in (5) was used
in results of RTNCC. Pixels matched using the tem-
poral aggregation are indicated by gray colour, pixels
matched by spatial statistic by black colour. We can
see, it correctly used the spatial statistic NCC for the re-
gion of the bar, while for other pixels, it correctly used
the temporal aggregation TNCC.

Real outdoor scene. To show the validity of the pro-
posed algorithm on a real outdoor scene we tested under
the DAGM Exposure Changes dataset2 (DAGM). The
stereo camera is in a car driving in a highway in diffi-
cult lighting conditions, sudden exposure changes. Cars
going in the opposite lane moves very fast, see Fig. 3(a).

We show results for the frame, where the car is pass-
ing under the bridge. The texture of the road almost dis-
appears. It causes the spatial statistic NCC to fail, pro-
ducing many mismatches, as in Fig. 3(c). The spatio-
temporal version TNCC works better, Fig. 3(d). Much
information is retained due to the temporal aggregation.
Notice that the disparity of the road remains constant
over time and this is also the case of the car going in
the same direction, since the distance to it is more or
less constant. However, the problem is, that the car
going in the opposite direction (in red circle), whose
relative velocity is very high, is missed by the TNCC.
This is the same effect as the case of the rapidly mov-
ing bar in Fig. 2(d). TSSD has similar difficulties there,
Fig. 3(f). Surprisingly, algorithm Sizintsev09 has severe
problems with all rapidly moving pixels in the scene,

2www.dagm2011.org/adverse-vision-conditions-challenge.html

including those where the disparity remains constant. It
produces large artifacts in regions near the camera. The
proposed RTNCC works well, Fig. 3(e). It is signifi-
cantly superior to NCC and all objects, including the
car in the opposite direction, are preserved.

4 Conclusions

We presented a spatiotemporal correlation statistic
that increases the discriminability by aggregating over
time and hereby produces higher quality matching re-
sults. We showed the proposed method is robust to a
rapid motion in the scene, which is a situation where
the state-of-the-art algorithms are prone to artifacts.

Acknowledgements. This research was supported by
EC project FP7-ICT-247525-HUMAVIPS.

References

[1] T. Basha, Y. Moses, and N. Kiryati. Multi-view scene
flow estimation: A view centered variational approach.
In CVPR, 2010.

[2] M. Bleyer and M. Gelautz. Temporally consistent dis-
parity maps from uncalibrated stereo videos. In ISPA,
2009.

[3] J. Cech, J. Matas, and J. Perdoch. Efficient sequen-
tial correspondence selection by cosegmentation. IEEE
Trans. PAMI, 32(9), 2010.

[4] J. Cech, J. Sanchez-Riera, and R. P. Horaud. Scene flow
estimation by growing correspondence seeds. In CVPR,
2011.

[5] J. Davis, D. Nehab, R. Ramamoorthi, and
S. Rusinkiewicz. Spacetime stereo: A unifying
framework for depth from triangulation. IEEE Trans.
PAMI, 27(2), 2005.

[6] E. S. Larsen, P. Mordohai, M. Pollefeys, and H. Fuchs.
Temporally consistent reconstruction from multiple
video streams using enhanced belief propagation. In
ICCV, 2007.

[7] F. Liu and V. Philomin. Disparity estimation in stereo
sequences using scene flow. In BMVC, 2009.

[8] H. P. Moravec. Towards automatic visual obstacle
avoidance. In IJCAI, page 584, 1977.

[9] C. Richardt, D. Orr, I. Davies, A. Criminisi, and N. A.
Dodgson. Real-time spatiotemporal stereo matching us-
ing the dual-cross-bilateral grid. In ECCV, 2010.

[10] M. Sizintsev and R. P. Wildes. Spatiotemporal stereo
via spatiotemporal quadric element (stequel) matching.
In CVPR, 2009.

[11] M. Sizintsev and R. P. Wildes. Spatiotemporal oriented
energies for spacetime stereo. In ICCV, 2011.

[12] L. Zhang, B. Curless, and S. M. Seitz. Spacetime stereo:
Shape recovery for dynamic scenes. In CVPR, 2003.

[13] J. Zhu, L. Wang, J. Gao, and R. Yang. Spatial-temporal
fusion for high accuracy depth maps using dynamic
MRFs. IEEE Trans. PAMI, 32(5), 2010.


