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ABSTRACT

The problem of 2D sound-source localization based on a
robotic binaural setup and audio-motor learning is addressed.
We first introduce a methodology to experimentally verify
the existence of a locally-linear bijective mapping between
sound-source positions and high-dimensional interaural data,
using manifold learning. Based on this local linearity as-
sumption, we propose an novel method, namely probabilistic
piecewise affine regression, that learns the localization-to-
interaural mapping and its inverse. We show that our method
outperforms two state-of-the art mapping methods, and al-
lows to achieve accurate 2D localization of natural sounds
from real world binaural recordings.

1. INTRODUCTION

The human extraordinary ability of localizing one or several
sound sources from the perceived acoustic signals has been
intensively studied in cognition [1], in computational audition
[2], and more recently in the emerging field of robot hear-
ing [3]. The most commonly used cues in binaural compu-
tational sound-source localization (SSL) are interaural cues,
namely the ITD (interaural time difference), the IPD (inter-
aural phase difference) and the ILD (interaural level differ-
ence). A lot of techniques exist to evaluate their values, ei-
ther in the time domain using cross-correlation [4], or in the
time-frequency domain using Fourier analysis [5, 6] or gam-
matone filters [7]. Once such cues are computed they need to
be mapped to a source position. The vast majority of current
SSL approaches mainly focus on frontal azimuth estimation,
i.e., 1D localization [4, 5, 7, 8], while very few perform 2D
localization [9]. All these approaches rely on a simplifying
geometric or parametric model of sound propagation in the
binaural system. Simple models assume a direct path propa-
gation from source to microphones (single attenuation coef-
ficient and delay) while more advanced ones use a spherical-
head model for ITD propagation (Woodworths formula), ap-
proximate ILD data from a human head related transfer func-
tion (HRTF) dataset with a sine function [8] or rely on a spiral
ear model [9]. In all these cases, extra parameters are needed
such as the distance between microphones, the radius of the

head, the sound speed, the shape of the ear or the sine coef-
ficients. Following this view, the number of parameters re-
quired to accurately model a real world binaural system may
become prohibitively high including the exact shape of the
recording device, of the room, and all their acoustic proper-
ties. This is often unaccessible in practice, which is an impor-
tant limitation for real-world SSL. On the other hand, in the
particular case of a hearing robot, other sensory data may be
available, such as the motor states (proprioception) or source
position based on vision.

The task of learning a mapping between two spaces can
be summarized as follows: if we are given a set of training
couples {(xn,yn)}Nn=1 ⊂ RL × RD, how can we obtain a
relationship between the latent space RL and the observation
space RD such that given a new observation in one space, its
associated point in the other space is deduced? This prob-
lem has been extensively studied in machine learning, and
offers a broad range of applications. In audio, it was notably
used in text-to-speech synthesis [10], voice conversion [11]
or articulatory-acoustic mapping systems [12], but never thor-
oughly examined for SSL. In this study, we focus on a partic-
ular class of mapping techniques where the relationship be-
tween the two spaces is approximately locally linear. This ap-
proximation is particularly relevant for data lying on a smooth
Riemanian manifold, which by definition is locally homeo-
morphic to an Euclidean space. Given a set of K unknown
linear transformations, locally linear mapping can be split in
(i) assigning training couples to transformations and (ii) us-
ing linear regression to estimate the parameters of each trans-
formation. These two tasks can be achieved within a proba-
bilistic framework, where observations are seen as the real-
ization of random variables X and Y , while assignments to
transformations are modeled as hidden variablesZ. Although
the mixture of linear regression model (MLR) [13] represents
data by a set of linear transformations, the transformations are
not local since Z is independent of X . This is unsuitable for
manifold data. Mapping methods based on Gaussian mixture
models (GMM) [10, 11, 12], widely used in audio applica-
tions, were recently unified by the mixture of probabilistic
linear regression model (MPLR) [14]. In MPLR, posteriors
p(Z|x) or p(Z|x,y) are first obtained by estimating a GMM
with the EM algorithm on latent data or joint data. Then,
transformations parameters are estimated with weighted lin-
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ear regression. As the two tasks are achieved sequentially,
the partitioning of the latent space is not optimal in the max-
imum likelihood sense. Conversely, the mixture of experts
model (MoE) and its probabilistic view [15] allows to jointly
optimize the partitioning of the latent space and local trans-
formation parameters using EM. However, MoE is a generic
model inspired by gating networks, and was not specifically
designed for piecewise linear data.

In this paper we show that high-dimensional binaural
observations, parameterized by low-dimensional motor-state
parameters, enjoy an intrinsic manifold structure, and hence
are locally linear. With this property in mind, we propose a
novel SSL method based on a probabilistic piecewise affine
regression model (PPAR) specifically designed to deal with
high-dimensional acoustic data that have an intrinsic low-
dimensional manifold structure. PPAR is based on a gener-
ative model that is used to learn the mapping between a set
of motor states and associated binaural cues. We show that
this mapping can be inverted in closed-form to obtain the full
posterior density function p(X|y) in the latent space given
a new observation y. We further generalize this inversion to
the case of missing and/or redundant observations in order to
solve for two-dimensional SSL of natural, sparse sounds. The
proposed method uses an audio-motor learning stage with
white noise and does not require any a priori knowledge on
the system’s geometry and parameters.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the binaural model and the audio-motor
paradigm. Section 3 validates the manifoldness of the bin-
aural data. Section 4 describes the PPAR method and its
associated Bayesian inverse mapping extended to missing
and redundant observations. Section 5, compares PPAR with
MPLR [14], and shows SSL results obtained with PPAR.
Section 6 concludes and provides directions for future work.

2. THE AUDIO-MOTOR MODEL AND DATA

Any SSL method needs a content-independent sound rep-
resentation containing as much spatial information as pos-
sible. Rather than single ILD and ITD coefficients, we use
frequency-dependent ILD and IPD values calculated from
a short-term Fourier transform (STFT) analysis, as done in
e.g. [5, 6]. First, the complex-valued spectrograms associ-
ated with the two microphones are computed with a 64ms
time-window and 8ms overlap, yielding T = 126 frames for
a 1s signal. Since sounds are recorded at 16,000Hz, each
time window contains 1,024 samples which are transformed
into F = 512 complex Fourier coefficients associated to
frequency channels between 0 and 8,000Hz. For a binaural
recording made in the presence of a single sound source lo-
cated at x in a listener-centered coordinate frame, we denote
with {s(S)

ft }
F,T
f,t=1 the complex-valued spectrogram emitted

by the source, and with {s(L)
ft }

F,T
f,t=1 and {s(R)

ft }
F,T
f,t=1 the left

(and right) perceived spectrograms. The HRTF model pro-
vides a relationships between the emitted and the perceived
spectrograms points:

s
(L)
ft = h

(L)
f (x) s(S)

ft and s
(R)
ft = h

(R)
f (x) s(S)

ft (1)

where h(L) and h(R) denote the left and right non-linear
HRTFs. The interaural transfer function (ITF) is defined by
the ratio between the two HRTFs, i.e., If (x) = h

(R)
f /h

(L)
f ∈

C. The interaural spectrogram is defined by Îft = s
(R)
ft /s

(L)
ft ,

so that Îft ≈ If (x). This way, Îft does not depend on
the emitted spectrogram value s(S)

ft but only on the emitting
source position x. However, this approximation holds only
if the source is emitting at (f, t) (i.e. s(S)

ft 6= 0). Therefore,
interaural spectrograms of natural sounds are sparse. Miss-
ing interaural spectrograms values will be characterized by
χft = 0 and χft = 1 otherwise. They can be determined
using a threshold on left and right spectral powers |s(L)

ft |2 and

|s(R)
ft |2. We define the ILD spectrogram α and the IPD spec-

trogram φ as the log-amplitude and phase of the interaural
spectrogram Îf,t:

αft = 20 log |Îft| ∈ R, φft = exp(j arg(Îft)) ∈ C (2)

The phase difference is expressed in the complex domain, or
equivalently R2, to avoid problems due to phase circularity.
In the particular case of a sound source emitting white noise
from x, we have χt = 1 for all t, i.e., the sound source is
emitting at all (f, t) points. One can thus compute the tem-
poral means ᾱ(x) ∈ RF and φ̄(x) ∈ R2F of ILD and IPD
spectrograms. These mean vectors will be referred to as the
mean ILD and the mean IPD vectors associated tox. The well
established duplex theory suggests that ILD cues are mostly
used at high frequencies (above 1.5 kHz) while ITD (or IPD)
cues are mostly used at low frequencies (below 1.5kHz) in
humans. Indeed, ILD values are similar because the HRTF
can be neglected at low frequencies, and the phase difference
becomes very unstable with respect to the source position at
high frequencies. To account for these phenomena, the initial
binaural cues are split into two distinct vectors, namely the
mean low-ILD and high-ILD and the mean low-IPD and high-
IPD vectors, where low corresponds to 96 frequency channels
between 0 and 1.5kHz and high corresponds to 416 frequency
channels between 1.5kHz and 8kHz.

To automatically gather a large number of such vectors
associated with different source positions, we used the same
technique and robot setup as in [3]. A binaural acoustic
dummy-head is mounted onto a pan-tilt (ψ, θ) motor sys-
tem. The emitter (a loud speaker) is fixed in a reference
position at 2.5 meters in front of the robot, while the robot
is placed in 160 pan angles ψ ∈ [−160◦, 160◦] (left-right)
and 60 tilt angles θ ∈ [−60◦, 60◦] (up-down), with 2◦ steps,
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Fig. 1: Two-dimensional representations of mean interaural vectors using LTSA. For vi-
sualization purposes, points corresponding to the same tilt angle (elevation) have the same
color and they are linked in pan angle (azimuth) order with a black line.
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Fig. 2: Low-dimensional representations of
mean high-ILD vectors using PCA.

i.e., N = 9, 600 uniformly distributed motor states. Hence,
the source location spans a 320◦ azimuth range and a 120◦

elevation range in the robot’s frame. Notice that there is
a one-to-one association between motor states and source
locations. They will be denoted by {xn}Nn=1. For each
xn ∈ R2, two binaural recordings are made: (i) white noise
which can be used to estimate ᾱ(xn) and φ̄(xn), and (ii)
a randomly picked utterance amongst 362 samples from the
TIMIT dataset [16]. These are 50% female, 50% male and
they last 1-5s. Sparse interaural spectrograms can be com-
puted from these recordings and are used to test our sound
localization algorithm on natural sounds in section 5. All the
experiments were carried out in real-world conditions, i.e., a
room with natural reverberations and background noise.

3. THE MANIFOLD OF INTERAURAL CUES

In this section, we analyze the intrinsic structure of the mean
high- and low- ILD and IPD vectors previously described.
While these vectors live in a high-dimensional space, they
should be parameterized by motor states and hence, lie on
a lower L-dimensional manifold with L = 2. We propose
to experimentally verify the existence of this manifold struc-
ture using non-linear dimensionality reduction, and examine
whether obtained representations are homeomorphic to the
motor-state space. Such a homeomorphism would allow us
to confirm (or invalidate) the existence of a locally linear bi-
jective mapping between motor states (or equivalently, source
positions) and the interaural data gathered with our setup.

If the interaural data lie in a linear subspace, a standard
dimensionality reduction method such as PCA could be used.
However, in the case of a non-linear subspace one should use
a manifold learning technique, e.g., diffusion kernels [17].
Alternatively, we chose to use local tangent-space alignment

(LTSA) [18] because it essentially relies on the assumption
that the data are locally linear, which is our central hypoth-
esis. LTSA starts by building a local neighborhood around
each high-dimensional observation. Under the key assump-
tion that each such neighborhood spans a linear space of low
dimension corresponding to the dimensionality of the tangent
space, i.e., a Riemannian manifold, PCA can be applied to
each one of these neighborhoods thus yielding as many low-
dimensional data representations as points in the data set. Fi-
nally a global low-dimensional map is built by optimal align-
ment of these local representations (see [18] for details). Two-
dimensional1 maps obtained using LTSA are shown in Fig. 1.
Mean low-ILD, low-IPD, and high-ILD maps are smooth and
homeomorphic to the motor-state space, thus confirming that
these cues can be used for 2D binaural SSL based on lo-
cally linear mapping. However, this is not the case for the
mean high-IPD map which features several distortions, el-
evation ambiguities, and crossings. While these computa-
tional experiments confirm the duplex theory for IPD cues,
they surprisingly suggest that ILD cues at low frequencies
still contain rich enough 2D sound-source position informa-
tion. We can therefore concatenate full-spectrum ILD and
low-frequency IPD vectors to form an observation space in
RD (with D = 704), which will be referred to as the ILPD
space. Similarly, we can define sparse ILPD spectrograms for
general sounds.

Fig. 2 shows the result of applying PCA globally to the
mean high-ILD data with L = 2. One may observe that
the resulting map is extremely distorted, due to the non-
linear nature of the high-ILD manifold. This rules out the
use of a linear regression method to estimate the interaural-
to-localization mapping and justifies the development of an
appropriate piecewise-linear mapping method.

1When applying PCA locally, we observed a significant eigengap between
the 2nd and 3rd eigeinvalues, thus validating the choice L = 2.



4. PROBABILISTIC PIECEWISE AFFINE MAPPING

Let X ⊂ RL be a subset of the low-dimensional latent space,
i.e., the space of sound-source positions (or motor states), and
RD be the high-dimensional observation space, i.e., the space
of ILPD cues. The computational experiments of section 3
suggest that there exists a smooth, locally linear bijection g :
X → Y ⊂ RD such that the set Y = {g(x),x ∈ X} forms
an L−dimensional manifold embedded in RD. Based on this
assumption, the proposed idea is to compute a piecewise-
affine probabilistic approximation of g from a training data
set {(xn,yn)}Nn=1 ⊂ X × Y and to estimate the inverse of
g using a Bayesian formulation. The local linearity of g sug-
gests that each point yn is the image of a point xn ∈ Rk ⊂ X
by an affine transformation tk, plus an error term. Assum-
ing that there is a finite number K of such affine transfor-
mations tk and an equal number of associated regions Rk
we obtain a piecewise-affine approximation of g. With each
training-couple (xn,yn) we associate an assignment variable
zn = (z1n . . . zKn)> such that zkn = 1 if yn is the image of
xn ∈ Rk by tk and 0 otherwise. This allows us to write:

yn =
K∑
k=1

zkn(Akxn + bk) + en (3)

where the D × L matrix Ak and the vector bk ∈ RD define
the transformation tk, and en ∈ RD is an error term captur-
ing both the observation noise and the reconstruction error of
affine transformations. If we make the assumption that the
error terms en do not depend on xn, yn or zn, and are iid
realizations of a Gaussian variable with 0 mean and diagonal
covariance matrix Σ = diag(σ2

1:D) we obtain:

p(yn|xn, zkn = 1; Θ) = N (yn; Akxn + bk,Σ) (4)

where Θ designates all the model parameters (8). To make the
affine transformations local, we model zn by the realization
of a hidden multinomial random variable conditioned by xn:

p(zkn = 1|xn; Θ) =
πkN (xn; ck,Γk)∑K
k=1 πkN (xn; ck,Γk)

, (5)

where ck ∈ RL, Γk ∈ RL×L and
∑
k πk = 1. We can give

a geometrical interpretation of this distribution by adding the
following volume equality constraints to the model:

|Γ1| = · · · = |ΓK | and π1 = · · · = πK = 1/K (6)

One can verify that under these constraints, the set of K re-
gions of X maximizing (5) for each k defines a Voronoi dia-
gram of centroids {ck}Kk=1, where the Mahalanobis distance
||.||Γk

is used instead of the Euclidean one. This corresponds
to a compact probabilistic way of representing a general par-
titioning of the latent space into convex regions of equal vol-
ume. Extensive tests on simulated and audio data showed that

these constraints yielded lower reconstruction errors, on top
of providing a meaningful interpretation of (5). To make our
generative model complete, we define the following Gaussian
mixture prior on the latent variables:

p(xn; Θ) =
K∑
k=1

πkN (xn; ck,Γk) (7)

This model yields a closed-form and efficient EM algorithm
maximizing the observed-data log-likelihood log p(X,Y; Θ)
with respect to the model’s parameters:

Θ =
{
{Γk, ck,Ak, bk, πk}Kk=1,Σ

}
(8)

Posterior probabilities r(i)
kn = p(zkn = 1|xn,yn; Θ(i−1)) are

computed in the E-step from (4), (5) and Bayes inversion. The
M-step maximizes the expected complete-data log-likelihood
E(Z|X ,Y ,Θ(i))[log p(X,Y ,Z|Θ)]. We obtain the following
closed-form expressions for the parameters updates under the
volume equality constraints (6):

c
(i)
k =

N∑
n=1

r
(i)
kn

r̄
(i)
k

xn, Γ(i)
k =

(
K∑
k=1

r̄
(i)
k

N
|S(i)
k |

1
L

)
S(i)
k

|S(i)
k |

1
L

(9)

A(i)
k = Y(i)

k X(i)†
k , b

(i)
k =

N∑
n=1

r
(i)
kn

r̄
(i)
k

(yn − A(i)
k xn), (10)

σ2(i)
d =

1
K

K∑
k=1

N∑
n=1

r
(i)
kn

r̄
(i)
k

(ydn − a(i)>
dk xn − b(i)dk)2, (11)

where † is the Moore-Penrose pseudo inverse operator and:

S(i)
k =

∑N
n=1r

(i)
kn/r̄

(i)
k (xn − c(i)

k )(xn − c(i)
k )>

r̄
(i)
k =

∑K
k=1r

(i)
kn, A(i)

k = (a(i)
1k . . .a

(i)
Dk)>,a(i)

dk ∈ RL

X(i)
k = (r(i) 1

2
k1 (x1 − x̄(i)

k ) . . . r(i) 1
2

kN (xN − x̄(i)
k ))

Y(i)
k = (r(i) 1

2
k1 (y1 − ȳ

(i)
k ) . . . r(i) 1

2
kN (yN − ȳ

(i)
k ))

x̄
(i)
k =

∑N
n=1r

(i)
kn/r̄

(i)
k xn and ȳ

(i)
k =

∑N
n=1r

(i)
kn/r̄

(i)
k yn

Initial posteriors r(0)
kn can be obtained either by estimating a

K-GMM solely on X (GMM) or jointly on (X,Y ) (GMM-
J). One may see that the MPLR-GMM and MPLR-GMM-J
methods proposed in [14] are strictly equivalent to these
initializations followed by a single parameter estimation
using (10). Unlike [14], we use a consistent probabilistic
model enforcing partitioning within parameter estimation,
a component-dependent reconstruction error Σ, and an E-
step allowing to iterate until convergence to a maximum of
the log-likelihood. This significantly reduces the global re-
construction error (section 5). Fig. 3 shows a partitioning
example obtained with our method using a toy data set.

Let Θ̃ denote the parameters estimated with our algo-
rithm; we describe now a method based on Bayesian in-
version to estimate the unknown position x of a sound



Fig. 3: Latent space partitioning and locally affine mapping on a toy
data set (N = 9600, K = 15, L = 2, D = 3). Colors encode
regions in RD maximizing (5). Observe how well these regions (as-
sociated with affine transformations) are adjusted to the geometry of
both the latent space and the observed manifold.

source given its observed (possibly sparse) ILPD spectro-
gram Y χ = {ydt;χdt}T,Dt,d=1 as defined in section 2 and 3.
If we suppose that the observations are assigned to the same
position x and transformation z, it follows from our model
(4), (5), (7) that the posterior distribution p(x|Y χ; Θ̃) is a
GMM

∑K
k=1 αkN (x;µk,Vk) in RL with parameters:

µk = Vk
(

Γ̃
−1

k c̃k +
∑D,T
d,t=1

χdt
σ̃2
d

ãdk(ydt − b̃dk)
)
, (12)

Vk =
(

Γ̃
−1

k +
∑D,T
d,t=1

χdt
σ̃2
d

ãdkã
>
dk

)−1

and (13)

αk ∝ (|Vk|/|Γ̃k|)
1
2 exp

(
− 1

2 (
∑D,T
d,t=1

χdteσ2
d

(ydt − b̃dk)2

+ c̃>k Γ̃
−1

k c̃k + µ>k V−1
k µk)

)
(14)

where the weights {αk}Kk=1 are normalized to sum to 1. This
formulation is more general than the unique, complete ob-
servation case (T = 1,χ1 = 1). Several estimates can be
inferred from this posterior distribution. We used the poste-
rior expectation E[x|Y χ] =

∑K
k=1 αkµk which yields the

lowest average localization errors. However, the posterior
distribution may have several high modes, in which case the
posterior expectation becomes a misleading estimator. This
notably happens if the sound spectrum is extremely sparse.
In this case, one may preserve the full posterior distribution
and, for instance, combine it with other external probabilistic
knowledge.

5. EXPERIMENTS AND RESULTS

We compared the proposed algorithm with two different ini-
tialization strategies, PPAR-GMM and PPAR-GMM-J, to the
two algorithms proposed in [14], MPLR-GMM and MPLR-
GMM-J. We used these four algorithms for training with the
complete set of N = 9, 600 ILPD white-noise samples avail-
able from the audio-motor recordings. The algorithm per-
formance was evaluated using the mean reconstruction error,
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namely the ratio meand[σ2
d]/varn[ydn], where σ2

d is defined
by (11). As shown in Fig. 4, the proposed method signifi-
cantly outperforms the two others at a minor additional com-
putational cost. This is not surprising since PPAR yields max-
imum likelihood estimators of the affine transformations and
space partitioning obtained after several EM iterations2, while
MPLR-GMM and MPLR-GMM-J perform just one optimiza-
tion step (10). GMM-J initialization strategy will be used
from now on since it provides better results than GMM initial-
ization. Interestingly, the only free parameter of our method,
namely K, can be chosen based on a compromise between
computational cost and precision, since the higher the value of
K the lower the error. Next we evaluate the proposed inverse
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noise localization as a function of the training set’s density.

mapping method in the case of a complete, unique observa-
tion, i.e., sound source localization using a mean ILPD vec-
tors computed from white noise. Localization error is evalu-
ated as a function of the density of the training set. We repre-
sent the density by the angle δ, corresponding to the average
pan and tilt absolute difference between a point and its nearest

2Convergence was reached after 10 to 20 iterations using mean ILPD data.



neighbor in the training set. The complete training set of den-
sity 2◦ was uniformly decimated at random to obtain irregu-
larly spaced and smaller training sets, while the test positions
were randomly chosen from the complete set so that most of
the test positions were outside the training set. For a given
density δ, 10 different decimated sets were used for training,
and 20 source positions were estimated for each one, i.e., 200
localization tasks. K was chosen such that there are approx-
imately 30 training samples per affine transformation. The
mean and standard deviation of the errors in azimuth and in el-
evation are shown in Fig. 5. The mean localization errors are
always smaller than half the training set density, which illus-
trates the interpolation ability of our method. In addition, the
error’s standard deviation remains reasonable even for heavily
decimated training sets, thus showing that the overall perfor-
mance is not much affected by the distribution and size of the
training set being used. No front-back azimuth or elevation
confusions were observed, thanks to the asymmetry of the
dummy head and to the spatial richness of ILPD cues. This is
in contrast with most of the current binaural SSL approaches
that focus only on frontal azimuth estimation.

Finally, we tested our SSL method with missing and re-
dundant observations using randomly located sound sources
emitting random utterances. The spectral power threshold
was manually set quite high, so that the test ILPD spectro-
grams had 89.6% of missing data in average. Mean azimuth
and elevation errors (Avg), standard deviations (Std), and per-
centage higher than 4×Avg (Out) over 500 tests are shown in
the table below. The low Stds and low amount of high errors
show the reliability and robustness of our method, even using
real world recordings of very sparse sounds emitted from a
wide range of azimuths and elevations.

Training Azimuth Elevation
density Avg Std Out Avg Std Out
δ = 2◦ 2.0◦ 1.8◦ 1.2% 1.3◦ 1.2◦ 1.2%
δ = 6◦ 5.6◦ 5.2◦ 1.2% 4.5◦ 5.3◦ 1.4%

6. CONCLUSION

In this paper, we emphasized the manifold structure of real-
world audio-motor data using ILD/IPD cues, and we set the
basis of a novel probabilistic framework for accurate 2D
sound source localization relying on this structure. More
generally, we presented a new methodology for examin-
ing whether a dataset is intrinsically locally linear based on
manifold learning, and proposed an adequate probabilistic
mapping method relying on this property. The advantage of
our Bayesian formulation is that it could serve as a basis for
a wide variety of extensions and other applications. For ex-
ample, a mixture of PPAR could be used for multiple sound
sources localization. In the future, we plan to thoroughly
examine how changes in the recording environment affect

the acoustic manifold structure. Such a study and a proper
adaptation of our mapping model would allow to make our
sound source localization method robust to changes in rever-
berations and positions in the room.
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[11] Y. Stylianou, O. Cappé, and E. Moulines, “Continuous proba-
bilistic transform for voice conversion,” IEEE Trans. Acoust.,
Speech, Signal Process., 1998.

[12] T. Toda, A. Black, and K. Tokuda, “Statistical mapping be-
tween articulatory movements and acoustic spectrum using a
gaussian mixture model,” Speech Communication, 2008.

[13] R. D. de Veaux, “Mixtures of linear regressions,” Comput.
Stat. Data Anal., 1989.

[14] Y. Qiao and N. Minematsu, “Mixture of probabilistic linear re-
gressions: A unified view of GMM-based mapping techiques,”
in ICASSP, 2009.

[15] L. Xu, M. I. Jordan, and G. E. Hinton, “An alternative model
for mixtures of experts,” in NIPS, 1995.

[16] J. S. Garofolo, L. F. Lamel, and W. M. Fisher, “The DARPA
TIMIT acoustic-phonetic continuous speech corpus,” 1993.

[17] R. Talmon, I. Cohen, and S. Gannot, “Supervised source local-
ization using diffusion kernels,” in WASPAA, 2011.

[18] Z. Zhang and H. Zha, “Principal manifolds and nonlinear di-
mensionality reduction via tangent space alignment,” SIAM
Journal on Scientific Computing, 2004.


