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Abstract In this study, we present a calibration technique
that is valid for all single-viewpoint catadioptric cameras.
We are able to represent the projection of 3D points on a
catadioptric image linearly with a 6 × 10 projection ma-
trix, which uses lifted coordinates for image and 3D points.
This projection matrix can be computed from 3D–2D cor-
respondences (minimum 20 points distributed in three dif-
ferent planes). We show how to decompose it to obtain in-
trinsic and extrinsic parameters. Moreover, we use this pa-
rameter estimation followed by a non-linear optimization to
calibrate various types of cameras. Our results are based on
the sphere camera model which considers that every central
catadioptric system can be modeled using two projections,
one from 3D points to a unitary sphere and then a perspec-
tive projection from the sphere to the image plane. We test
our method both with simulations and real images, and we
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1 Introduction

Since their introduction to the computer vision commu-
nity, catadioptric omnidirectional cameras have been uti-
lized in many application areas such as surveillance (Scotti
et al. 2005), tele-presence (Nagahara et al. 2003), robot nav-
igation (Chahl and Srinivasan 2000) and 3D reconstruc-
tion (Lhuillier 2007). Omnidirectional cameras being single-
viewpoint are searched, since it is an important property. If
single-viewpoint cameras are used, directions of the light
rays coming into the camera can easily be calculated and
combined in a multiview geometric framework (Hartley
and Zisserman 2004). Catadioptric systems, combinations
of camera lenses and mirrors were extensively studied by
Baker and Nayar (1999). They showed which of these sys-
tems are able to provide the single-viewpoint property, i.e.,
if the mirror has a focal point which can behave like an effec-
tive pinhole. Among those systems the most useful ones are
the para-catadioptric and the hyper-catadioptric models, us-
ing a mirror of parabolic/hyperbolic shape, coupled with an
orthographic/perspective camera. Swaminathan et al. (2001)
conducted a detailed study on the geometry of non-single-
viewpoint systems. There also exist studies for approximat-
ing a viewpoint in non-single-viewpoint systems as Derrien
and Konolige proposed for spherical mirrors (Derrien and
Konolige 2000).
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Camera calibration is essential when we want to ex-
tract metric information from images. It establishes a rela-
tionship between the 3D rays and their corresponding pix-
els in the image. This relationship makes possible to mea-
sure distances in a real world from their projections on
the images (Faugeras 1993). Camera calibration is basically
composed of two steps. The first step consists of model-
ing the physical and optical behavior of the sensor through
a geometric-mathematical model. There exist several ap-
proaches that propose different models to deal with central
catadioptric systems (Kang 2000; Svoboda and Pajdla 2002;
Scaramuzza et al. 2006; Toepfer and Ehlgen 2007; Geyer
and Daniilidis 2000). The second step consists of estimating
the parameters that compose this model using direct or iter-
ative methods. These parameters are of two types, intrinsic
and extrinsic. The intrinsic parameters basically considers
how the light is projected through the mirror and the lens
onto the image plane of the sensor. The extrinsic parameters
give the position and orientation of the catadioptric system
with respect to a world coordinate system.

Several methods have been proposed for calibration of
catadioptric systems. Some of them consider estimating the
parameters of the parabolic (Geyer and Daniilidis 2002b;
Kang 2000), hyperbolic (Orghidan et al. 2003) and coni-
cal (Cauchois et al. 1999) mirrors together with the cam-
era parameters. Calibration of outgoing rays based on a
radial distortion model is another approach. Kannala and
Brandt (2004) used this approach to calibrate fisheye cam-
eras. Scaramuzza et al. (2006) and Tardif et al. (2006) ex-
tended the approach to include central catadioptric cameras
as well. Mei and Rives (2007), on the other hand, developed
another Matlab calibration toolbox that estimates the para-
meters of the sphere camera model. Parameter initialization
is done by user input, namely, the location of the principal
point and depiction of a real world straight line in the omni-
directional image (for focal length estimation).

Svoboda and Pajdla (2002) derived epipolar geometry
constraints for all types of central catadioptric cameras.
Geyer and Daniilidis have shown the existence of a fun-
damental matrix for para-catadioptric cameras (Geyer and
Daniilidis 2001, 2002a). This has been extended by Sturm
towards fundamental matrices and trifocal tensors for mix-
tures of para-catadioptric and perspective images (Sturm
2002). Barreto showed that the framework can also be ex-
tended to cameras with lens distortion due to the similari-
ties between the para-catadioptric and division models (Bar-
reto 2006; Barreto and Daniilidis 2006). Recently, Sturm
and Barreto (2008) extended these relations to the general
catadioptric camera model, which is valid for all central
catadioptric cameras. They showed that the projection of a
3D point can be modeled using a projection matrix of size
6×10. They also show the existence of a general fundamen-
tal matrix of size 15 × 15 and plane homographies, again of

size 15 × 15. They used the sphere camera model (Geyer
and Daniilidis 2000) and so-called lifted coordinates.

This paper is an extended version of our previous work
(Bastanlar et al. 2008) where the calibration theory of cen-
tral cameras proposed by Sturm and Barreto (2008) is put
into practice. We compute the generic projection matrix,
Pcata, with 3D–2D correspondences, using a straightforward
DLT-like (Direct Linear Transform (Abdel-Aziz and Karara
1971)) approach, i.e. by solving a linear equation system.
Then, we decompose Pcata to estimate intrinsic and extrin-
sic parameters. Having these estimates as initial values of
system parameters, we optimize the parameters based on
minimizing the reprojection error. A software version of our
method is available at the author’s Web page.1 When com-
pared to the technique of Mei and Rives (2007) our approach
has the advantages of not requiring input for parameter ini-
tialization and being able to calibrate perspective cameras as
well. On the other hand, our algorithm currently needs a 3D
calibration object.

In the next section, we introduce the sphere camera
model and the proposed linear representation using lifted
coordinates. In Sect. 3, we show how to compute and de-
compose the generic projection matrix into the intrinsic and
extrinsic camera parameters. In Sect. 4 we present an analy-
sis on the spatial distribution of 3D points required for an un-
ambiguous estimation of the generic projection matrix. We
also show the relation between the parameters of the real
catadioptric systems and the parameters of the sphere cam-
era model. In Sects. 5 and 6, we present the results of ex-
periments for the mentioned calibration approach with sim-
ulated and real images, respectively. Conclusions are stated
in Sect. 7.

2 Background

2.1 Notations

We do not distinguish between a projective transformation
and the matrix representing it. Matrices are represented by
symbols in sans serif font, e.g. M and vectors by bold sym-
bols, e.g. Q. Equality of matrices or vectors up to a scalar
factor is written as ∼. [a]× denotes the skew-symmetric ma-
trix associated with the cross product of 3-vectors.

2.2 Camera model

We use the sphere model for catadioptric projection intro-
duced by Geyer and Daniilidis (2000). All central catadiop-
tric cameras can be modeled by a unit sphere and a perspec-
tive projection, such that the projection of 3D points can

1http://webdiis.unizar.es/~lpuig/DLTOmniCalibration/Toolbox.tar.gz.

http://webdiis.unizar.es/~lpuig/DLTOmniCalibration/Toolbox.tar.gz
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Fig. 1 Projection of a 3D point to two image points in the sphere cam-
era model. The z-axis of the camera coordinate system is positive up-
wards. The camera is looking up

be performed in two steps (Fig. 1). First, one projects the
point onto the unit sphere, obtaining the intersection of the
sphere and the line joining its center and the 3D point. There
are two such intersection points, which are represented as

s± = (Q1,Q2,Q3,±
√

Q2
1 + Q2

2 + Q2
3)

T
. These points are

then projected in the second step, using a perspective pro-
jection P resulting in two image points, q± = Ps±, one of
which is physically true. This model covers all central cata-
dioptric cameras, encoded by ξ , which is the distance be-
tween the perspective camera and the center of the sphere,
and ψ which is the distance between the center of the sphere
and the image plane. We have ξ = 0 for perspective, ξ = 1
for para-catadioptric and 0 < ξ < 1 for hyper-catadioptric
cameras.

Let the unit sphere be located at the origin and the op-
tical center of the perspective camera, at the point Cp =
(0,0, ξ)T. The perspective camera is modeled by the projec-
tion matrix P ∼ ApRp(I − Cp), where Ap is its calibration
matrix. We assume it is of the form

Ap =
⎛
⎜⎝

f 0 cx

0 f cy

0 0 1

⎞
⎟⎠ , (1)

with f the focal length and (cx, cy) the principal point. The
rotation Rp denotes a rotation of the perspective camera
looking at the mirror (this rotation is usually very small, thus
often neglected). Rotation about the z-axis can always be ne-
glected since it is coupled with the rotation of the whole sys-
tem about the z-axis. Since both intrinsic and extrinsic pa-
rameters of the perspective camera are intrinsic parameters
for the catadioptric camera, we replace ApRp by a generic
projective transformation K. Note that the focal length of the
perspective camera in the sphere model is different from the
focal length of the physical camera looking at the mirror; its
value is actually determined by the physical camera’s focal
length, the mirror parameters and the rotation between the

camera and the mirror (Rp). In Sect. 4 we study this rela-
tionship. The intrinsic parameters of the catadioptric cam-
era are thus ξ and K.

To simplify, it is usual to work with the intermedi-
ate image points r± ∼ K−1q±. Explicitly defined as r± =
(Q1,Q2,Q3 ± ξ

√
Q2

1 + Q2
2 + Q2

3)
T
, before giving final re-

sults for the actual image points q±.

2.3 Lifted coordinates from symmetric matrix equations

The derivation of multi-linear relations for catadioptric im-
agery requires the use of lifted coordinates. The Veronese
map (Barreto and Daniilidis 2006) Vn,d of degree d maps
points of P n into points of an m dimensional projective
space P m, with m = (

n+d
d

) − 1.
Consider the second order Veronese map V2,2, that em-

beds the projective plane into the 5D projective space, by
lifting the coordinates of point q to

q̂ = (
q2

1 q1q2 q2
2 q1q3 q2q3 q2

3

)T
. (2)

Vector q̂ and matrix qqT are composed by the same el-
ements. The former can be derived from the latter through
a suitable re-arrangement of parameters. Define v(U) as the
vector obtained by stacking the columns of a generic matrix
U (Horn and Johnson 1991). For the case of qqT, v(qqT) has
several repeated elements because of the matrix symmetry.
By left multiplication with a suitable permutation matrix S
that adds the repeated elements, it follows that

q̂ = D−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
S

v(qqT), (3)

with D a diagonal matrix, Dii = ∑9
j=1 Sij .

If U is symmetric, then it is uniquely represented by
vsym(U), the row-wise vectorization of its lower left trian-
gular part:

vsym(U) = D−1Sv(U)

= (U11,U21,U22,U31, · · · ,Unn)
T. (4)

Since S gives us the position of the repeated elements of
v(U), it is easy to recover v(U) from vsym(U)

v(U) = STvsym(U). (5)

In this paper, we use the Veronese map V3,2 to lift the
homogeneous coordinates of 3D points Q to 10-vectors Q̂.
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2.4 Lifted matrices

Let us now discuss the lifting of linear transformations, in-
duced by liftings of points. Consider A such that r = Aq. The
relation rrT = A(qqT)AT can be written as a vector mapping

v(rrT) = (A ⊗ A)v(qqT), (6)

with ⊗ denoting the Kronecker product (Horn and John-
son 1991). Using the symmetric vectorization, we have q̂ =
vsym(qqT) and r̂ = vsym(rrT), thus, from (5) and (6):

r̂ = D−1S(A ⊗ A)ST

︸ ︷︷ ︸
Â

q̂, (7)

where Â represents the lifted linear transformation, which is
a 6 × 6 matrix.

A few useful properties of the lifting of transformations
are (Horn and Johnson 1985, 1991):

ÂB = ÂB̂, Â−1 = Â−1, ÂT = D−1ÂTD. (8)

3 Generic Projection Matrix

As explained in the previous section, a 3D point is mathe-
matically projected to two image points. Sturm and Barreto
(2008) represented these two 2D points via the degenerate
dual conic generated by them, i.e. the dual conic contain-
ing exactly the lines going through at least one of the two
points. Let the two image points be q+ and q−; the dual
conic is then given by

� ∼ q+qT− + q−qT+. (9)

The vectorized matrix of the conic can be computed as
shown below using the lifted 3D point coordinates, intrinsic
and extrinsic parameters.

vsym(�) ∼ K̂6×6Xξ R̂6×6 (I6 T6×4) Q̂10. (10)

Here, R represents the rotation of the catadioptric camera.
Xξ and T6×4 depend only on the sphere model parameter ξ

and the position of the catadioptric camera C = (tx, ty, tz)

respectively, as shown here:

Xξ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

−ξ2 0 −ξ2 0 0 1 − ξ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (11)

T6×4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2tx 0 0 t2
x

−ty −tx 0 tx ty

0 −2ty 0 t2
y

−tz 0 −tx tx tz

0 −tz −ty ty tz

0 0 −2tz t2
z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12)

Thus, a 6 × 10 catadioptric projection matrix, Pcata, can
be expressed by its intrinsic and extrinsic parameters, like
the projection matrix of a perspective camera.

Pcata = K̂Xξ︸︷︷︸
Acata

R̂6×6
(

I6 T6×4
)

︸ ︷︷ ︸
Tcata

(13)

3.1 Computation of the Generic Projection Matrix

Here we show the way used to compose the equations us-
ing 3D–2D correspondences to compute Pcata. Analogous to
the perspective case ([q]×PQ = 0), we write the constraint
based on the lifted coordinates (Sturm and Barreto 2008):

[̂q]× Pcata Q̂ = 0. (14)

This is a set of 6 linear homogeneous equations in the
coefficients of Pcata. Using the Kronecker product, this can
be written in terms of the 60-vector pcata containing the 60
coefficients of Pcata:
(

Q̂T ⊗ [̂q]×
)

pcata = 06. (15)

Stacking these equations for n 3D–2D correspondences
gives a system of equations of size 6n × 60, which can be
solved by linear least squares, e.g. using the SVD (Singu-
lar Value Decomposition). Note that the minimum number
of required correspondences is 20: a 3 × 3 skew symmet-
ric matrix has rank 2, its lifted counterpart rank 3. There-
fore, each correspondence provides only 3 independent lin-
ear constraints.

3.2 Generic Projection Matrix and Calibration

The calibration process consists of getting the intrinsic and
extrinsic parameters of a camera. Once Pcata has been com-
puted from point correspondences, our purpose is to decom-
pose Pcata as in (13). Consider first the leftmost 6 × 6 sub-
matrix of Pcata:

Ps ∼ K̂Xξ R̂. (16)

Let us define M = PsD−1PT
s . Using the properties given

in (8) and knowing that for a rotation matrix R−1 = RT, we
can write R̂−1 = D−1R̂TD. And from that we obtain D−1 =
R̂D−1R̂T which we use to eliminate the rotation parameters:

M ∼ K̂Xξ R̂ D−1R̂TXT
ξ K̂T = K̂Xξ D−1XT

ξ K̂T. (17)
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Equation (17) holds up to scale, i.e. there is a λ with M =
λK̂Xξ D−1XT

ξ K̂T. For initialization we assume that the camera
is well aligned with the mirror axis, i.e. assume that Rp = I,

thus K = Ap =
( f 0 cx

0 f cy

0 0 1

)
.

We then use some elements of M to extract the intrinsic
parameters:

M16 = λ(−(f 2ξ2) + c2
x(ξ

4 + cx(1 − ξ2)2),

M44 = λ

(
f 2

2
+ c2

x(2ξ4 + (1 − ξ2)2)

)
,

M46 = λcx(2ξ4 + (1 − ξ2)2),

M56 = λcy(2ξ4 + (1 − ξ2)2),

M66 = λ(2ξ4 + (1 − ξ2)2).

The intrinsic parameters are computed as follows:

cx = M46

M66
, cy = M56

M66
, ξ =

√√√√
M16
M66

− c2
x

−2(M44
M66

− c2
x)

,

f =
√

2(2ξ4 + (1 − ξ2)2)

(
M44

M66
− c2

x

)
.

After extracting the intrinsic part Acata of the projection
matrix, we are able to obtain the 6 × 10 extrinsic part Tcata

by multiplying Pcata with the inverse of Acata:

Tcata = R̂6×6(I6T6×4) ∼ (̂KXξ )
−1Pcata. (18)

Hence, the leftmost 6 × 6 part of Tcata will be the esti-
mate of the lifted rotation matrix R̂est. If we multiply the
inverse of this matrix with the rightmost 6 × 4 part of Tcata,
we obtain an estimate for the translation (T6×4). This trans-
lation should have an ideal form as given in (12) and we are
able to identify translation vector elements (tx, ty, tz) from
it straightforwardly.

We finally have to handle the fact that the estimated
R̂est will not, in general, be an exact lifted rotation ma-
trix. This lifted rotation matrix in particular is oversized
since it considers the lifting of a full rotation matrix R̂ =
R̂z(γ )R̂y(β)R̂x(α). For illustration in (19) we show the lift-
ing of a rotation matrix around the x-axis.

R̂x(α)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 cosα 0 − sinα 0 0

0 0 cos2 α 0 −2 cosα sinα sin2 α

0 sinα 0 cosα 0 0

0 0 cosα sinα 0 cos2 α − sin2 α − cosα sinα

0 0 sin2 α 0 2 cosα sinα cos2 α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(19)

Since Pcata has been estimated up to scale it is impossible
to extract the rotation components from single elements of
R̂est. To deal with this problem we algebraically manipulate
the ratios between the elements of this lifted matrix and we
extract the angles one by one. First, we recover the rota-

tion angle around the z axis, γ = tan−1(
R̂est,51

R̂est,41
). Then, R̂est

is modified by being multiplied by the inverse of the rota-
tion around the z axis, R̂est = R̂−1

z (γ )R̂est. Then, the rotation
angle around the y axis, β , is estimated and R̂est is modified

β = tan−1(
−R̂est,52

R̂est,22
), R̂est = R̂−1

y (β) R̂est. Finally, the rotation

angle around the x axis, α, is estimated as α = tan−1(
R̂est,42

R̂est,22
).

3.3 Other Parameters of Non-linear Calibration

The intrinsic and extrinsic parameters extracted in closed-
form in Sect. 3.2 are not always adequate to model a real
camera. Extra parameters are needed to correctly model the
catadioptric system, namely, tilting and lens distortions.

As mentioned before K̂ = ̂ApRp = ÂpR̂p where Rp is the
rotation between camera and mirror coordinate systems, i.e.
tilting. Tilting has only Rx and Ry components, because ro-
tation around the optical axis, Rz, is coupled with the exter-
nal rotation around the z axis of the entire catadioptric sys-
tem. Note that tilting angles of the sphere camera model are
not equivalent to the tilting angles of the actual perspective
camera looking at the mirror.

As is well known, imperfections due to lenses are mod-
eled as distortions for camera calibration. Radial distortion
models contraction or expansion with respect to the image
center and tangential distortion models lateral effects. To
add these distortion effects to our calibration algorithm, we
employed the approach of Heikkila and Silven (1997).

Radial distortion:

	x = x(k1r
2 + k2r

4 + k3r
6 + · · · ),

	y = y(k1r
2 + k2r

4 + k3r
6 + · · · ), (20)

where r = √
x2 + y2 and k1, k2, . . . are the radial distortion

parameters. We observe that estimating two parameters is
enough for an adequate estimation.

Tangential distortion:

	x = 2p1xy + p2(r
2 + 2x2),

	y = p1(r
2 + 2y2) + 2p2xy,

(21)

where r = √
x2 + y2 and p1,p2 are the tangential distortion

parameters.
Once we have identified all the parameters to be esti-

mated we perform a non-linear optimization to compute
the whole model. We use the Levenberg-Marquardt method
(LM).2 The minimization criterion is the root mean square

2Method provided by the function lsqnonlin in Matlab
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(RMS) of distance between a measured image point and its
reprojected correspondence. Since the projection equations
we use map 3D points to dual image conics, we have to ex-
tract the two potential image points from it. The one closer
to the measured point is selected and then the reprojection
error measured. We take as initial values the parameters ob-
tained from Pcata and initialize the additional 4 distortion
parameters and the tilt angles in Rp , by zero.

3.4 Algorithm to Compute Pcata

Here we summarize the algorithm used to compute the
generic projection matrix Pcata.

1. Linear Solution. Using 3D–2D correspondences we com-
pute Pcata by a DLT-like approach.

2. Intrinsic/Extrinsic Parameter Extraction. Assuming that
the perspective camera is perfectly aligned with the mir-
ror axis, i.e. there is no tilting and that the images are not
distorted. We extract from the linear solution, the intrin-
sic (ξ, f, cx, cy) and extrinsic (α,β, γ, tx, ty, tz) parame-
ters in closed-form.

3. Initialization Vector. An initialization vector is con-
structed with the extracted parameters. Two parameters
are added to consider the tilting angles (rx, ry) and four
more corresponding to the radial (k1, k2) and tangential
(p1,p2) distortion.

4. Non-linear Optimization Process. Using this vector as an
initialization vector, we perform a non-linear optimiza-
tion process using the LM algorithm. The minimization
criterion is the reprojection error.

4 Other Theoretical and Practical Issues

In the last section we explained that 20 3D–2D correspon-
dences are enough to compute the calibration of the central
catadioptric systems. In principle these 20 correspondences
can be located anywhere inside the FOV of the catadiop-
tric system. Since we want to construct a feasible calibration
system based on planar patterns we restrict the 3D points to
be located in planes. From simulations we observed that the
minimum number of planes where the 3D points should be
located is three in the general case. In particular, two planes
can be used to compute Pcata if several constraints are im-
posed, but the simplicity of using linear equations is lost.

Since we restrict the calibration points to lie on planes
(planar grid-based calibration) some degeneracies can ap-
pear if the calibration points are located in a particular con-
figuration. Something similar to the pinhole camera case
with the twisted cubic (Buchanan 1988), for which calibra-
tion fails even if the points lie on more than two planes.
However, a complete analysis of such degeneracies is out
of the scope of this paper.

In this section we present a proof that points lying in three
different planes are required to linearly and uniquely com-
pute the generic projection matrix Pcata. We also show that
under several assumptions we can compute Pcata from points
lying in just two planes. We also explain how the parameters
in the sphere camera model are related with those of the real
catadioptric system.

4.1 Three Planes Are Needed to Compute Pcata Using
Linear Equations

Here we show that in order to compute Pcata, the 3D cal-
ibration points must lie in at least 3 different planes. We
first prove that two planes are not sufficient. Let �1 and �2

be the two planes. Hence, each calibration point Q satis-
fies (�T

1Q)(�T
2Q) = 0. This can be written as a linear con-

straint on the lifted calibration points: pTQ̂ = 0, where the
10-vector p depends exactly on the two planes. Thus, if Pcata

is the true 6×10 projection matrix, then adding some multi-
ple of pT to any row of Pcata gives another 6 × 10 projection
matrix, P̄cata, which maps the calibration points to the same
image entities as the true projection matrix. We may write
the ambiguity as

P̄cata = Pcata + vpT, (22)

where v is a 6-vector and represents the 6-dof on Pcata that
can not be recovered using only linear projection equations
and calibration points located in only two planes. This is
not the case for perspective cameras, where two planes are
enough to compute the 3 × 4 perspective projection matrix.

For three planes, there is no linear equation as above that
holds for all calibration points. Hence, also supported by our
experiments, it seems plausible that three planes are suf-
ficient for uniquely computing the projection matrix. Note
that by planes we do not mean that calibration grids have to
be composed of three or more planar grids. The planes can
be virtual: whenever it is possible to fit the two planes to the
whole set of 3D points, Pcata can not be computed.

4.2 Adding Constraints to Estimate the Projection Matrix
from Points on Two Planes Only

In the last section we observe that to compute Pcata linearly
and uniquely, 3D points must be sufficiently well distrib-
uted, such that no two planes contain all of them. In this
section we analyze what prior information allows neverthe-
less to compute the calibration parameters using two planes.
We know by (22) that the true projection matrix is related to
any other solution by

Pcata = P̄cata − vpT. (23)
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Consider the equation to eliminate the extrinsic parame-
ters:

M ∼ PsD−1PT
s , (24)

where Ps is the leftmost 6 × 6 submatrix of Pcata.
Now we redefine it as follows:

M ∼ (P̄s − vpT
s )D

−1(P̄s − vpT
s )

T
, (25)

where P̄s is the leftmost 6 × 6 submatrix of P̄cata and ps is
the first 6 elements of the 10-vector p. Assuming that the
two planes are perpendicular to each other, we can write
�1 = [1,0,0,0]T and �2 = [0,1,0,0]T which gives us
ps = [0,1,0,0,0,0]T (we obtain p by vsym(�1�

T
2 +�2�

T
1)

since �1�
T
2 represents a degenerate dual conic on which all

Q lie).
Let us develop (25):

M ∼ P̄sD−1P̄T
s︸ ︷︷ ︸

M̄

− P̄sD−1ps︸ ︷︷ ︸
b

vT

− v pT
s D−1P̄s︸ ︷︷ ︸

bT

+v pT
s D−1ps︸ ︷︷ ︸

ρ

vT, (26)

M ∼ M̄ − bvT − vbT + ρvvT. (27)

We can compute ρ, it is 1
2 (D22 = 2). So we just need to

obtain elements of v to recover Pcata. The principal point
can be computed using different approaches, one of these
is shown in (Mei and Rives 2007), which requires the user
interaction. Let us suppose we know the principal point
(cx, cy), and we put the origin of the image reference sys-
tem on it (cx = 0, cy = 0). Then we have:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f 4 0 0 0 0 −f 2ξ2

0 f 4

2 0 0 0 0

0 0 f 4 0 0 −f 2ξ2

0 0 0 f 2

2 0 0

0 0 0 0 f 2

2 0

−f 2ξ2 0 −f 2ξ2 0 0 2ξ4 + (1 − ξ2)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(28)

From this matrix we can extract 6 equations to solve
for the elements of v. For example: M11 − M33 = 0,
M11 −2M22 = 0, M44 −M55 = 0, M13 = 0, M35 = 0, M56 = 0.

We test the case where fx = fy using simulated data
with perfect 3D–2D correspondences. We observe that as
explained in theory, the only modified column is the second
one, described by the vector ps = [0,1,0,0,0,0]T. In this
case we are able to obtain the correct Pcata. However, when
we added Gaussian noise to the 3D–2D correspondences,

more than one column is modified making very difficult to
recover the real projection matrix. Therefore, we conclude
that the approach using points lying in just two planes is not
suitable to compute the generic projection matrix in real sit-
uations. We continue our experiments with calibration grids
having three planes.

4.3 Relation Between the Real Catadioptric System and
the Sphere Camera Model

As mentioned before, the focal length in the sphere model is
not the same as the focal length of the real camera, looking
at the mirror. This is best seen for the para-catadioptric case,
where the real camera is orthographic (infinite focal length)
whereas the perspective camera in the sphere model has a
finite focal length. The analogous is true also for the tilting
parameters.

In this section we analyze the relation between the para-
meters present in a real catadioptric system and their repre-
sentation in the sphere camera model. The objective of this
analysis is to observe if it is possible to recover the intrinsic
parameters of the real catadioptric system from their coun-
terparts in the sphere camera model. We analyze the tilting
and focal length f of the conventional camera.

4.3.1 Tilting

Tilting in a camera can be defined as a rotation of the im-
age plane w.r.t. the pinhole. This is also equivalent to tilting
the incoming rays since both have the same pivoting point:
the pinhole. In the Fig. 2a the tilt in a catadioptric camera is
represented. Similarly, the tilt in the sphere model (Rp in
K = ApRp) corresponds to tilting the rays coming to the
perspective camera of the sphere model (Fig. 2b). Although
the same image is generated by both models, the tilting an-
gles are not identical, even they are not proportional to each
other. So, it is also not possible to obtain the real system tilt
amount by multiplying the sphere model tilt by a coefficient.

4.3.2 Focal Length f

The composition of para-catadioptric and hyper-catadioptric
systems is different. The first one uses a parabolic mirror and
an orthographic camera. In this case the focal length of the
real system, fc, is infinite.

For the hyper-catadioptric system, we are able to relate
f with the focal length of the perspective camera in the real
system, fc. We start with defining explicitly the projection
matrix K. Assuming image skew is zero, Rp = I and princi-
pal point is (0,0), K is given in (Barreto and Araújo 2005)
as

K =
⎛
⎜⎝

(ψ − ξ)fc 0 0

0 (ψ − ξ)fc 0

0 0 1

⎞
⎟⎠ , (29)
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Fig. 2 Tilt in a real system (a)
and in sphere model (b)

where ψ corresponds to the distance between the effective
viewpoint and the re-projection plane (cf. Fig. 1). The rela-
tion between the focal lengths is f = (ψ − ξ)fc. From the
same reference (Barreto and Araújo 2005) we get

ξ = d√
d2 + 4p2

, ψ = d + 2p√
d2 + 4p2

, (30)

where d is the distance between the foci of the hyperboloid
and 4p equals to the latus rectum. Developing the equations
we obtain p in terms of d and ξ , 2p = d

√
1 − ξ2/ξ , which

is used to obtain ψ = ξ + √
1 − ξ2. With this final relation

we can write

f = fc

√
1 − ξ2 (31)

from which we extract the focal length of the perspective
camera in the real system

fc = f√
1 − ξ2

. (32)

5 Calibration Experiments with a Simulated
Environment

We use a simulated calibration object having 3 planar faces
which are perpendicular to each other. The size of a face is
50 × 50 cm There are a total of 363 points, since each face
has 11 × 11 points and the distance between points is 5 cm
The omnidirectional image fits in a 1 Megapixel square im-
age. To represent the real world points we expressed the co-
ordinates in meters, so they are normalized in a sense. This
is important because we observed that using large numerical
values causes bad estimations with noisy data in the DLT

algorithm. Normalization of image coordinates is also per-
formed since we observed a positive effect both on estima-
tion accuracy and the convergence time. Therefore, in the
presented experiments, 3D point coordinates are in meters
and image coordinates are normalized to be in the same or-
der of magnitude, this is performed by dividing the image
coordinates by a constant.

We performed experiments for different settings of in-
trinsic parameters and varying position of the 3D calibra-
tion grid. We especially tested the accuracy of calibration
to variations in the intrinsic parameters (ξ and f ), the dis-
tance between the camera and the grid and the orientation
of the grid w.r.t. the camera. In all these cases, we mea-
sure the errors in final estimates of ξ and f , the main pa-
rameters of the sphere camera model. Errors are depicted in
Fig. 3, where an individual graph is plotted for each case
for clarity. In all experiments, Gaussian noise with σ = 1
pixel is added to the actual coordinates of grid corners.
The plotted errors are errξ = 100 · |ξnonlin − ξreal|/ξreal and
errf = 100 · |fnonlin − freal|/freal. For all the nodes in the
graphs, the experiment was repeated 100 times and the mean
value of estimates is plotted.

Figure 3a shows the effect of changing distance between
the camera and the grid. From left to right in the graph
distance-to-grid increases and distance values are selected
randomly within the given ranges. When the distance is
small, we reach an “optimal” position, such that the grid fills
the image well. As the grid moves away from the omnidirec-
tional camera, its image gets smaller and smaller. Examples
of the omnidirectional images generated are shown in Fig. 4.
In Fig. 4a, distance-to-grid is 45 cm whereas in Fig. 4b it is
60 cm The quality of parameter estimation decreases with
increasing distance. Since the grid covers a smaller area, the
same amount of noise (in pixels) affects the non-linear op-
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Fig. 3 Relative errors for ξ and f after non-linear optimization (in
percent) for varying intrinsic parameters and varying position of the
3D calibration grid. For all the nodes in the graphs, the experiment
was repeated 100 times and the mean value of estimates is plot-
ted. Real intrinsics, distance and orientation values are selected ran-
domly from the ranges given in x-axis. Intrinsic parameters range 1:

(ξ, f ) = [(0.96, 360) (0.84, 300)], range 2: (ξ, f ) = [(0.84, 300)
(0.72, 250)], range 3: (ξ, f ) = [(0.72, 250) (0.60, 210)]. Distance-
to-grid (in cm) range 1: [40 50], range 2: [50 60], range 3: [60 70].
In (a), (b) and (c), errors depicted versus increasing distance-to-grid,
decreasing (ξ, f ) pairs and increasing rotation angle respectively

Table 1 Initial and optimized
estimates with different
intrinsics and distance-to-grid
values. Amount of noise: σ = 1
pixel. ξDLT , fDLT and
ξnonlin, fnonlin are the results of
the DLT algorithm and
non-linear optimization
respectively, errξ and errf are
the relative errors, in percent
after non-linear optimization

Distance-to-grid

45 cm 60 cm

ξreal 0.96 0.8 0.96 0.80

freal 360 270 360 270

ξDLT 0.54 0.40 0.04 0.03

fDLT 361 268 243 190

ξnonlin 0.96 0.80 0.98 0.78

fnonlin 360 270 365 266

errξ 0.0 0.0 2.1 2.5

errf 0.0 0.1 1.4 1.5

timization more and errors in non-linear results increase as
can be expected. We observe the importance of a good place-
ment of the calibration grid, i.e. such that it fills the image
as much as possible.

Figure 3b shows the effect of real ξ and f values on
the estimation error (for two different distance-to-grid value
ranges). From left to right in the graph, ξ and f values de-
crease. They decrease in parallel, otherwise decreasing ξ

with fixed f would cause grid to get smaller in the image.
We truncated (ξ , f ) pairs at ξ = 0.6 since even smaller ξ

values are unlikely for omnidirectional cameras. We observe
that larger (ξ , f ) values produce slightly better results espe-
cially for increased distances. This observation can also be
made in Fig. 3a since the errors are depicted with two differ-
ent ranges of intrinsic parameter values. The reason is that
for fixed distance-to-grid values, higher (ξ , f ) spreads the
grid points to a larger area in the image, which decreases the
effect of noise. Observe Fig. 4b with Fig. 4c, where distance-
to-grid values are equal but Fig. 4b has higher (ξ , f ).

Figure 3c shows the effect of changing orientation of the
grid w.r.t. the camera. This is expressed in terms of the angle
between the optical axis of the omnidirectional camera and
the grid center. The grid is not rotated independently from
the camera axis because camera (mirror) has to see the in-
side of the 3D grid always. Figure 4d shows the case when
the grid is rotated so that the angle between its center and
camera optical axis is 40◦. Compare with Fig. 4b, where the
intersection of the three planes of the grid is at the image
center. We observe improvement with rotation specially for
increased distance-to-grid since grid points are more spread
and effect of noise decreases.

In Table 1, we list the results of the algorithm after lin-
ear (DLT) and non-linear steps for a few cases. Our main
observation is that the errors in linear estimates, ξDLT and
fDLT , are biased (values are smaller than they should be).
For all the cases, however, the true intrinsic parameters are
reached after non-linear optimization, modulo errors due to
noise.
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Fig. 4 Omnidirectional images
generated with varying
intrinsics, distance-to-grid and
orientation.
(a) (ξ, f ) = (0.96,360),
distance = 45 cm, no rotation.
(b) (ξ, f ) = (0.96,360),
distance = 60 cm, no rotation.
(c) (ξ, f ) = (0.76,270),
distance = 60 cm, no rotation.
(d) (ξ, f ) = (0.96,360),
distance = 60 cm, rotated
by 40◦

5.1 Estimation Errors for Different Camera Types

Here we discuss the intrinsic and extrinsic parameter estima-
tion for the two most common catadioptric systems: hyper-
catadioptric and para-catadioptric, with hyperbolic and par-
abolic mirrors respectively. We also discuss calibration re-
sults for perspective cameras.

5.1.1 Hyper-catadioptric System

Table 2 shows non-linear optimization results including the
rotation and translation parameters for fixed intrinsic para-
meters which corresponds to a hyper-catadioptric system.
3D pattern is used at the “optimal” grid position, i.e. it fills
the omnidirectional image like Fig. 4a. Results are in accor-
dance with Table 1 and Fig. 3.

5.1.2 Para-catadioptric System

Here ξ = 1, which has a potential to disturb the estimations
because Xξ becomes a singular matrix. We observe that the

results of the DLT algorithm are not as close to the real val-
ues when compared to the hyper-catadioptric system (cf. ini-
tial values in Table 2). However, the non-linear optimization
is able to estimate the parameters as successful as the hyper-
catadioptric examples given in Table 2.

5.1.3 Perspective Camera

In the sphere camera model, ξ = 0 corresponds to the per-
spective camera. Our estimations in linear and non-linear
steps are as successful as with the hyper-catadioptric case
and thus not shown in detail here.

5.2 Tilting and Distortion

It seems intuitive that small amounts of tangential distortion
and tilting have a similar effect on the image. In our simula-
tions we observed that trying to estimate both of them does
not succeed. Therefore, we investigate if we can estimate
tangential distortion of camera optics by tilt parameters, or
estimate tilt in the system by tangential distortion parame-
ters.
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Table 2 Non-linear
optimization results for a
hyper-catadioptric system,
10 parameters (rotation,
translation and intrinsic) are
optimized. Distance-to-grid is
45 cm and grid center coincides
with camera optical axis (no
rotation)

Real σ = 0.5 σ = 1

values Initial Estimated Initial Estimated

f 360 361 360 354 360

cx 500 503 500 505 500

cy 500 498 500 509 500

ξ 0.96 0.84 0.96 0.53 0.96

Rx(α) −0.62 −0.60 -0.62 -0.40 −0.62

Ry(β) 0.62 0.62 0.62 0.65 0.62

Rz(γ ) 0.17 0.15 0.17 0.18 0.17

tx 0.30 0.38 0.30 0.45 0.30

ty 0.30 0.40 0.30 0.44 0.30

tz 0.20 0.05 0.20 0.01 0.20

RMSE 0.70 1.42

When there exists no tilt but tangential distortion and we
try to estimate tilting parameters, we observed that the di-
rection and amount of tiltx, tilty, cx and cy changes propor-
tionally to the tangential distortion applied and the RMSE
decreases. However, the RMSE does not reach as low val-
ues as when there is no distortion. In the noiseless case, for
example, the RMSE is not zero. Hence, we concluded that
tilt parameters compensate the tangential distortion effect up
to some extent, but not perfectly. We also investigated if tilt-
ing can be compensated by tangential distortion parameters
and we had very similar results. Thus, tangential distortion
parameters have the same capability to estimate tilting.

6 Experiments with Real Images Using a 3D Pattern

In this section we perform experiments of camera calibration
using a 3D pattern, cf. Fig. 5(a). The 3D pattern has been
measured accurately doing a photogrammetric reconstruc-
tion by bundle adjustment. We use 6 convergent views taken
with a calibrated high-resolution camera (Canon EOS 5D
with 12.8 Mpix.) and software PhotoModeler. The estimated
accuracy of the 3D model is better than 0.1 mm. The omnidi-
rectional images were acquired using a catadioptric system
with a hyperbolic mirror.3 We computed the projection ma-
trix Pcata from a total of 144 3D–2D correspondences and
extracted the intrinsic and extrinsic parameters as explained
in Sect. 3. From simulations, we observed that we have bet-
ter and faster estimations if the 3D–2D correspondences are
in the same order of magnitude. So 3D points are given in
meters and 2D points are normalized in all the experiments.
A second evaluation of the calibration accuracy is performed
by a Structure from Motion experiment from two omnidirec-
tional images.

3Neovision H3S with XCD-X710 SONY camera.

Table 3 Parameters estimated using either tangential distortion or tilt-
ing angles

Real Using distortion Using tilting

f 279.84 297.24 306.11

cx 531.83 528.08 552.75

cy 407.98 406.28 427.89

ξ 0.96 0.86 0.93

RMSE 0 0.34 0.27

Table 4 Comparison between our method and Mei’s

Theoretic Pcata approach [Mei and Rives, 07]

f 279.84 297.24 298.65

ξ 0.96 0.86 0.72

cx 531.83 528.02 528.15

cy 407.98 406.28 403.39

6.1 Intrinsic Parameters

The first experiment is focused on obtaining the intrinsic pa-
rameters from Pcata to get initial estimates of these values.
As mentioned previously, we do not compute tilting and dis-
tortion parameters from Pcata but it is possible to include
them in the non-linear optimization. From simulations we
observed that we can compute either the tangential distortion
or the tilting parameters which are coupled and can not be
separated. We tested which one of these (tangential distor-
tion and tilting) can deal better with the intrinsic parameter
estimation. Table 3 shows a comparison of the estimations
performed with these two options. The real values given in
the table were computed using the calibration data of the
perspective camera (previously calibrated) and the mirror
parameters (provided by the manufacturer).
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Fig. 5 (a) 3D pattern, (b)
Omnidirectional image of the
3D pattern (1024 × 768 pixels)

Table 5 Rotation and
translation of the camera with
respect to the 3D pattern.
Rotation angles are in radians.
Translations are in meters. Real
values were computed by the
PhotoModeler software and a
high resolution camera

Experiment 1 Experiment 2 Experiment 3

Real Estimated Real Estimated Real Estimated

Rx −0.01 −0.02 −0.01 −0.003 −0.01 −0.002

Ry 0.02 0.02 0.02 0.01 0.02 0.03

Rz – – – – – –

tx 0.39 0.39 0.39 0.39 0.39 0.38

ty 0.21 0.21 0.33 0.33 0.23 0.23

tz −0.18 −0.18 −0.18 −0.18 −0.18 −0.18

RMSE 0.26 0.20 0.26

Catadioptric camera calibration using tilting gives a bet-
ter RMSE but the intrinsic values obtained are far from the
real ones. Estimation using distortion parameters increase
slightly the RMSE but the intrinsic parameters are close to
the real ones, except for ξ but this error can be attached to
the configuration of the system (the optical center of the per-
spective camera may not be exactly located at the other focal
point of the hyperbola describing the mirror) and not to the
model.

After these results, we decided to use tangential distor-
tion because it gives better results and depicts better the real
catadioptric system.

In order to verify our approach we compare our intrinsic
parameter estimates to the ones obtained by Mei’s (Mei and
Rives 2007) calibration approach (Table 4). As we can see
neither Mei’s approach nor Pcata approach can estimate the
theoretic f and ξ parameters but they give a good estima-
tion to cx and cy . Mei computes the initial values directly
from the inner circle of the omnidirectional image and using
information given by the user. Our approach computes all
the initial values from Pcata in closed form.

6.2 Extrinsic Parameters

To obtain ground truth extrinsic parameters we have taken
two additional images with the high resolution camera, ob-
serving the omnidirectional camera and the pattern. These

images are added to the ones used to measure the 3D pat-
tern. From this set of images the orientation and translation
of the camera with respect to the pattern are computed. Lo-
cation of the focal point was difficult since the points are not
easy to identify in the images and indeed inside the mirror.

We performed experiments with 3 different camera loca-
tions. Table 5 shows the rotations and translations obtained
from these experiments. Using PhotoModeler software we
were just able to compute the direction of the z-axis but not
the rotation around it. So we just show rotation estimations
for the x and y axis. We can observe that the extrinsic para-
meter estimation is performed with a good accuracy having
an average error of 0.0096 radians for rotations and 0.0022
meters for translations.

6.3 Structure from Motion

The second experiment to evaluate the accuracy of our ap-
proach consists of obtaining the Structure and Motion (SfM)
from two omnidirectional images observing the 3D pattern.
Figure 6(a) shows the 3D pattern with the angles between
the planes composing it. Figure 6(b) depicts the configura-
tion used to perform the SfM experiment. Using the inter-
nal calibration provided by our method we compute the cor-
responding 3D rays from each omnidirectional image. We
use these correspondences of 3D rays to compute the es-
sential matrix E which relates them. From this matrix we
compute two projection matrices P1 = [I|0] and P2 = [R|t].
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Fig. 6 (a) 3D pattern with the
angles between the planes.
(b) SfM configuration

Fig. 7 Images used in the SfM experiment

Then, with these projection matrices and the 3D rays as in-
put for a linear triangulation method (Hartley and Zisserman
2004) we compute an initial 3D reconstruction. Both the 3D
reconstruction and the camera location are later refined by
a non-linear optimization process. We use 144 points which
were extracted manually from the images. We measure the
average error between the real 3D points and their estima-
tions and the angle between the planes. We use as ground
truth the data computed by the photogrammetric software.
The angles between the planes as depicted in Fig. 6(a) are
α = 90.06◦, β = 89.60◦ and γ = 90.54◦. The estimated val-
ues are α = 89.22◦, β = 90.55◦ and γ = 89.73◦. We have an
average error of 0.86◦. We also measure the accuracy of the
3D points. The dimensions of the planar grids used in the 3D
pattern are 210 mm × 294 mm. We compute the Euclidean
distance between each reconstructed point and the ground
truth. The average error is 1.03 mm.

7 Conclusions

We presented a calibration technique based on the sphe-
re camera model which is able to represent every single-
viewpoint catadioptric system. We employed a generic 6 ×
10 projection matrix, which uses lifted coordinates for im-
age and 3D points. We estimated this projection matrix us-
ing 3D–2D correspondences (from a 3D calibration pattern),

and decomposed it to obtain intrinsic and extrinsic parame-
ters. We used this parameter estimation followed by a non-
linear optimization to calibrate various types of cameras. We
tested this method both with simulations and real images.
We also present a Structure from Motion experiment to test
the accuracy of our calibration method.
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