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Abstract We propose a generative model based method for
recovering both the shape and the reflectance of the sur-
face(s) of a scene from multiple images, assuming that il-
lumination conditions and cameras calibration are known in
advance. Based on a variational framework and via gradi-
ent descents, the algorithm minimizes simultaneously and
consistently a global cost functional with respect to both
shape and reflectance. The motivations for our approach are
threefold. (1) Contrary to previous works which mainly con-
sider specific individual scenarios, our method applies in-
discriminately to a number of classical scenarios; in partic-
ular it works for classical stereovision, multiview photomet-
ric stereo and multiview shape from shading. It works with
changing as well as static illumination. (2) Our approach
naturally combines stereo, silhouette and shading cues in a
single framework. (3) Moreover, unlike most previous meth-
ods dealing with only Lambertian surfaces, the proposed
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method considers general dichromatic surfaces. We verify
the method using various synthetic and real data sets.
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1 Introduction and Related Work

Recovering the three-dimensional surface shape using mul-
tiple images is one of the major research topics in com-
puter vision. Many methods have been proposed to solve
the problem during these last two decades; refer to Seitz et
al. (2006) for an evaluation of various recent methods. On
the other hand, for a long time, the estimation of surface ra-
diance/reflectance was secondary and was mainly of use to
set up the shape reconstruction task (Faugeras and Keriven
1998; Zickler 2006; Zickler et al. 2002). Even some very re-
cent works (Pons et al. 2005, 2007; Goesele et al. 2006; Zach
et al. 2006; Tran and Davis 2006; Kolev et al. 2007b, 2007a)
compute the 3D shape without considering radiance estima-
tion. However, radiance/reflectance estimation has become
a matter of concern in multiview reconstruction scenarios in
the last decade. For example, Jin, Soatto et al. estimate con-
jointly the 3D shape and radiance (tensors) (see Jin et al.
2003, 2005; Soatto et al. 2003; Yezzi and Soatto 2003), or
the 3D shape and the (piecewise constant) albedo of a Lam-
bertian surface (Jin et al. 2008).

Here, radiance is a combination of lighting, surface re-
flectance, and the geometry of a scene. In other words, radi-
ance contains shading and shadows and, from raw radiance,
it is impossible to correct them when changing the lighting.
Therefore, recovering reflectance is required for realistic re-
lighting, which is also fundamental, for example, in virtual
reality as well as augmented reality where the lighting con-
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ditions when re-synthesizing a scene may be different from
the lighting conditions when capturing a scene.

In addition, in real life applications, perfect Lambertian
surfaces are rare and, therefore, multiview stereo algorithms
have to be robust to specular reflection. Many ideas have
been exploited to improve the robustness of the algorithms.
A widespread idea is to use appropriate similarity measures
as in Faugeras and Keriven (1998), Jin et al. (2002), Kim et
al. (2003), Pons et al. (2005, 2007), Yang et al. (2003), Yoon
and Kweon (2006). However, those similarity measures are
not generally valid under general lighting conditions and/or
not physically motivated. Another common strategy is to
modify input images in order to remove specular highlights
so as to obtain images as if the original surfaces had been
purely Lambertian; see Yoon and Kweon (2006), Mallick et
al. (2005), Zickler et al. (2008). These methods are based
on the well known Neutral Interface Reflection (NIR) as-
sumption (Lee et al. 1990) which supposes that the spectral
energy distribution of specular reflection components is sim-
ilar to the spectral energy distribution of incident light. Nev-
ertheless, these methods are strongly limited by the specific
lighting configuration. For example, the method in Yoon and
Kweon (2006) is valid only for a single (uniformly) col-
ored illumination. Although Zickler et al. (2008) recently
showed that it is always possible to represent an image with
(M − N) specularity-independent color channels, where M

is the number of color channels of an image and N is the
number of different illuminant colors, their image represen-
tation may only work with up to two different illuminant
colors because images have three color channels in general.
Similarly, some authors do not consider the image pixels that
potentially have specular reflection components—these are
treated as outliers (Hernández Esteban et al. 2008; Birkbeck
et al. 2006). The idea in this approach is to work only on
data that one is able to model well (and so to ignore what
is too complicated to model). The authors have then to in-
crease the amount of data (i.e. the number of input images)
in order to compensate for the loss of information. Thus, this
strategy cannot be applied to two-frame stereo.

On the other hand, Bhat and Nayar (1998) analyzed the
physics of specular reflection and the geometry of stereop-
sis to reduce errors due to non-Lambertian surfaces, which
leads to a relationship between stereo vergence, surface
roughness, and the likelihood of a correct match. Zickler
et al. (2002) presented the Helmholtz stereopsis to over-
come the specular reflection problem. However, these two
approaches require specialized camera/lighting configura-
tions. Concerning the robustness to non-Lambertian effects,
it also worth to cite the work of Jin et al. (2005) which
considers the so-called radiance tensor. However, although
some similarity measures such as normalized cross corre-
lation (Faugeras and Keriven 1998; Pons et al. 2005, 2007)
could help to be robust to some illumination changes, the ra-
diance tensor presented in Jin et al. (2005) is not appropriate

when images of the scene are taken under several different
lighting conditions.

In this paper, we propose a method for jointly estimating
the shape and the reflectance of scene surfaces from mul-
tiple images. This can also be understood as the separation
of geometry, reflectance, and illumination from radiance. In
fact, our goal is to provide a shape and reflectance estima-
tion method that is global (in the sense that it simultaneously
and consistently optimizes shape and reflectance) and com-
pletely model based. The method we propose is robust to
non-Lambertian effects by directly incorporating a specu-
lar reflectance model in the mathematical formulation of the
problem. By incorporating a complete photometric image
formation model, it also advantageously exploits photomet-
ric phenomena, as is explicitly done in photometric stereo
methods. Furthermore, it allows to naturally deal with a set
of images taken under several lighting conditions.

Some recent works already provide solutions in this di-
rection. Goldman et al. (2005) present a relevant photomet-
ric stereo technique that simultaneously recovers shape and
spatially-varying reflectance. They model spatially-varying
reflectance as a linear combination of a small number of
Ward BRDFs, while Hertzmann and Seitz (2005) use a sim-
ilar representation of reflectance using images of simple ob-
jects made of the same material as the modeled scene. In ad-
dition, Yu et al. (2004, 2007) propose a model-based method
for recovering the 3D shape and the reflectance of a non-
Lambertian object. Nevertheless, in this last paper, the au-
thors constrain the object to be made of a single textureless
material; that is to say that the parameters of the reflectance
(in particular the albedo) are the same for all the points of
the object surface. So, the method in Yu et al. (2004, 2007) is
a “multiview shape from shading” method, similarly as the
one proposed by Jin et al. (2004, 2008) which focuses on
the Lambertian case. To our knowledge, most works going
in the same direction as ours are limited to surfaces made of
a single (textureless) material. In particular, this is the case
for the photometric stereo methods proposed by Georghi-
ades (2003), Vogiatzis et al. (2005) and for the multiview
photometric stereo work of Lu and Little (1995). Only a
small number of similar works are able to recover scenes
with varying albedo: Birkbeck et al. (2006) and Hernández
Esteban et al. (2008). However, in these approaches, specu-
lar highlights are filtered out by using a simple thresholding.
As a result, only diffuse components are used to estimate
shape. Moreover, in Birkbeck et al. (2006), the authors sim-
ply compute the light visibility of a point using a surface
normal and a light direction and Hernández Esteban et al.
(2008) also used a thresholding to detect shadowed pixels
that are not visible from light sources, which is however not
working in the presence of multiple light sources. Finally,
let us emphasize that the method of Hernández Esteban et
al. (2008) is specifically a photometric stereo method, i.e. it
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requires several different lighting configurations and cannot
perform classical stereo-vision.

In our work, we do not want to restrain ourselves to a sin-
gle textureless material, i.e. the reflectance properties of the
object can be spatially variable. Actually, nowadays, more
and more objects are printed and so it is fundamental to be
able to recover textured and patterned objects. In return, of
course, we will not be able to recover lighting conditions as
done in Jin et al. (2004, 2008), and we have to use a sepa-
rate process which computes them. In this work, we assume
that lighting conditions are known in advance. In practice,
we can use spherical objects with the reference white color
to capture the direction and color of light sources (Powell et
al. 2001; Zhou and Kambhamettu 2002).

More generally, one of the goals of this paper is to show
that the joint computation of shape and reflectance is benefi-
cial from several points of view. In addition to providing the
reflectance of the scene (which is necessary e.g. for realistic
re-lighting), this allows to naturally introduce specular mod-
els in the mathematical formulation of the multiview recon-
struction problem; and thus this allows the method to be ro-
bust to highlights. Without any additional effort, this allows
also to deal with a set of images lighted by several different
conditions (which is not possible with radiance only). More-
over in such a case, the method allows to completely exploit
the variations of the radiance according to the changes of il-
lumination, as in photometric stereo. Finally, this enables to
easily incorporate constraints on the reflectance and in par-
ticular to exploit shading effects in textureless regions (even
if the number of different lighting conditions does not allow
to do photometric stereo; e.g. if all images are taken under
the same illumination).

Let us emphasize that, contrary to previous works that
consider specific scenarios, our method can be applied in-
discriminately to a number of classical scenarios—classical
stereovision, multiview photometric stereo, and multiview
shape from shading. Finally, based on the work of Gargallo
et al. (2007), our method allows to naturally and simply
combine in a single framework the three main cues avail-
able for shape reconstruction: silhouettes/apparent contours,
stereo, and shading. To our knowledge, it is the first method
which fuses these three cues in such a natural and convenient
way. We do not claim that the method presented here gives
better results (for 3D shape and reflectance) than previous
approaches that are usually specific for certain scenarios: its
intended merit is currently rather its generality.

The paper is organized as follows. In Sect. 2, we de-
scribe the modeling assumptions and we specify the no-
tations used. In Sect. 3, we formulate the problem in the
Bayesian framework; we then describe the associated cost
functions in detail in Sect. 4. In Sect. 5, we precisely ex-
plain how we are minimizing the global energy. Experimen-
tal results on synthetic and real images data sets are shown

in Sect. 6. Some discussion and future work are given in
Sects. 7 and 8 concludes this paper.

2 Modeling Assumptions and Notations

We assume here that the scene can be decomposed into two
entities: the foreground, which corresponds to the objects of
interest, and the background. The foreground is composed
by a set of (bounded and closed) 2D manifolds of R

3. These
surfaces are represented by S. More details are given below.

2.1 Cameras, Image Data, and Visibility

Image data are generated by nc pinhole cameras. The per-
spective projection, from world to image coordinates, per-
formed by the ith camera, is represented by Πi : R

3 → R
2.

πi ⊂ R
2 is the image domain of the ith camera (i.e. the area

covered by pixels). It is split into two parts: the pixels cor-
responding to the foreground, πiF = πi ∩ Πi(S), and the
other points πiB = πi \ πiF (associated to the background).
Ii : πi → R

c is the image of the true scene, captured by
the ith camera (c = 1 for a gray-scale image and c = 3 for
a color image). We denote by I the set of input images:
I = {I1, I2, . . . , Inc }; IiF and IiB are the restrictions of the
function Ii to πiF and πiB , respectively.

We consider the visibility function for image i, that is
induced by the foreground surfaces S, vi

S : R
3 → R. It is de-

fined as vi
S(X) = 1 if X is visible from the ith camera and

vi
S(X) = 0 if it is occluded by the foreground. Si denotes

the part of S that is visible from the ith camera and Π−1
i,S is

the back-projection from the ith camera onto Si , i.e. for all
points x ∈ πiF , Π−1

i,S (x) is the point on S along the ray join-
ing X to the optical center of the ith camera, that is closest
to the optical center.

2.2 Lighting Conditions

We model the illumination by a finite number of distant
point light sources, together with an ambient illumination
radiating constant energy isotropically in all directions. Il-
lumination conditions may be different for every image. nil

is the number of illuminants corresponding to the ith image
and lij ∈ S

2 and Lij ∈ R
c are the direction and intensity1

of the j th illuminant associated with the ith image, respec-
tively. Similarly, Lia ∈ R

c is the intensity1 of the ambient
illumination for the ith image.

To model occlusions of light sources from 3D points,
we use light visibility functions v

i,j
S : R

3 → R. We define
vLij

(X) = 1 if the j th illuminant of the ith image is visible
from X, vLij

(X) = 0 otherwise. In addition, SLij
is the part

of S that is visible from the j th illuminant of the ith image.

1Non-normalized color vector, if c = 3.
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In other words, vLij
(X) = 1 if X ∈ SLij

, vLij
(X) = 0 other-

wise. Based on the light visibility, we can take into account
self-shadowing.

2.3 Modeling the Foreground Surface

We model the foreground object(s) by its shape S and its
reflectance R. We denote Ω = (S,R). Contrary to most pre-
vious stereovision methods, we want to go beyond the Lam-
bertian model. In order to get a solvable minimization prob-
lem without too many unknowns, we use a parametric re-
flectance model. Such a model should be selected in consid-
eration of the applications aimed at. In this work, we con-
sider the popular Blinn-Phong shading model (Blinn 1997).
However, the proposed method is not limited to this model.
By following the approach we describe, it is straightforward
to use any other dichromatic reflection model.

We assume that Ii(x) is equal to the radiance of the sur-
face S at point X = Π−1

i,S (x), in the direction of the ith cam-
era. Thus, the images Ii can be decomposed as

Ii = Iid + Iis + Iia, (1)

where Iid , Iis , and Iia are images containing the diffuse,
specular, and ambient reflection components of Ii , respec-
tively.

Diffuse reflectance is caused by the random scattering of
light and it is independent of the viewing direction. By using
the cosine law, this image component is described as

Iid(x) =
nil∑

j=1

vLij
(X)

(
ρd(X)Lij (n(X) · lij )

)
, (2)

where ρd(X) ∈ R
c is the diffuse albedo at point X and n(X)

is the normal vector to the surface S at X.
Specular reflectance is caused by the surface reflection,

as with a mirror. This component is expressed as

Iis(x) =
nil∑

j=1

vLij
(X)

(
ρs(X)Lij (n(X) · hij (X))αs(X)

)
, (3)

where hij (X) is the bisector of the angle spanned by X,
the optical center of the ith camera and the j th illuminant.
ρs(X) ∈ R

c and αs(X) ∈ R
+ are the specular albedo and the

shininess parameter at point X.
The ambient illumination is assumed to be uniform in the

scene and modeled as

Iia(x) = ρd(X)Lia, (4)

where ρd(X) is the diffuse albedo at X, defined above, and
Lia is the intensity of the ambient illumination, defined in
Sect. 2.2.

By combining the diffuse, specular, and ambient re-
flectance, we get the image formation equation as

Ii(x) =
nil∑

j=1

vLij
(X)Lij (X,n(X)) + ρd(X)Lia, (5)

where

Lij (X,n(X)) = L
d
ij (X,n(X)) + L

s
ij (X,n(X))

= Lijρd(X)
(
n(X) · lij

)

+ Lijρs(X)
(
n(X) · hij (X)

)αs(X)
. (6)

In the sequel, in order to simplify the notations, we denote
R = (Rd,Rs), where Rd = ρd and Rs = (ρs, αs).

2.4 Modeling the Background

For most works on multiview stereo, the cost functionals
used attain their global optimum when the modeled surface
shrinks to an empty set, inducing a minimal surface bias.
This bias may be avoided as suggested by Yezzi and Soatto
(2003) and Gargallo et al. (2007), by modeling the back-
ground of the scene, in addition to only the foreground ob-
jects. The choice of a background model is dictated by sce-
narios and applications. For example, in Yezzi and Soatto
(2003), Jin et al. (2004), the background is characterized by
its radiance which is constrained to be constant or strongly
regular. On the other hand, when the background is quite
irregular, one can assume to have background images, i.e.
images captured by the same cameras, but without the fore-
ground objects in the scene. In this work, we assume that,
in addition to the input images I , we have these background
images Ĩ = {Ĩ1, . . . , Ĩnc }.2 We also define ĨiF and ĨiB , anal-
ogously to IiF and IiB .

3 Bayesian Formulation of the Problem

From a probabilistic point of view, the goal of this work is to
estimate the shape S and the reflectance R of the foreground
surface Ω , that maximize P(Ω|I ) for given input images I .
By Bayes’ rule, the problem is then formulated as

P(Ω|I ) = P(I |Ω)P (Ω)

P (I)
∝ P(I |Ω)P (Ω)

= P(I |S,R)P (S,R)

= P(I |S,R)P (S)P (R) (7)

under the assumption that S and R are independent. Here,

2Another possibility is when the input are silhouette images, i.e. im-
ages where the foreground has already been segmented and the rest
of the images been “painted” uniformly in some discriminative color.
In this case, the background images are defined simply as completely
uniform images of that color.
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P(I |Ω) = P(I |S,R) is a likelihood and P(S) and P(R)

are priors on shape and reflectance respectively.

3.1 Likelihood

When the camera calibration (i.e. the Πi ) and illumina-
tion conditions are given, we can produce synthetic images
Īi (Ω) corresponding to the input images Ii , by rendering
the current estimate of Ω . The correct estimate of Ω will
produce the same images, modulo noise and unmodeled ef-
fects of course. This allows us to measure the quality of the
current estimate by comparing input images with rendered
ones as in Schultz (1994), Yu et al. (2004). When assuming
an independent identical distribution (i.i.d.) of measurement
errors, the likelihood can be expressed as

P(I |Ω) ∝
nc∏

i=1

exp
( − ξi(Ω)

)

=
nc∏

i=1

exp
( − ξ(Ii, Īi (Ω))

)
, (8)

where ξi(Ω) = ξ(Ii, Īi (Ω)) is a function of Ω , measuring
the dissimilarity between two images Ii and Īi .

3.2 Prior on Surface Shape S

A usual and plausible prior for the surface shape S concerns
its area.3 The prior can be expressed as

P(S) ∝ exp
( − ψ(S)

)
. (9)

Here, ψ(S) is the monotonic increasing function of the sur-
face area

∫
S
dσ where dσ is the Euclidean surface measure.

3.3 Prior on Reflectance R

R is composed of two components, R = (Rd,Rs). Here, un-
fortunately, reliably estimating specular reflectance for all
surface points with only a uniform prior on its parameters,
is very difficult unless there are observations of specular re-
flections for every surface point. For that reason, we need
some specific prior on specular reflectance to be able to in-
fer it in spite of the lack of such rich observations.4

It is physically valid to assume that specular reflectance
varies smoothly within each homogeneous surface patch, i.e.
that is made of the same material. This assumption is clearly
reasonable in real life applications and in common scenes.

3In this case, a minimal surface that may be characterized as the surface
of minimal area under given boundary conditions will be sought.
4We will discuss some special cases that do not need any specific prior
on the surface reflectance in Sect. 5.3.3.

It is, however, also very difficult to partition Ω according
to the types of materials. In this work, we use the diffuse
reflectance of the surface as a soft constraint to partition Ω

and define the prior on the surface reflectance as

P(R) ∝ exp
( − ω(R)

)
, (10)

where ω(R) is a function of the intrinsic gradient of the dif-
fuse and specular reflectance of a surface. This function is
defined below, in Sect. 4.3.

4 Description of the Cost Functions

Based on the derivations in Sect. 3, the problem is formu-
lated as

P(Ω|I ) ∝ P(I |Ω)P (Ω) = P(I |S,R)P (S,R)

= P(I |S,R)P (S)P (R)

∝
nc∏

i=1

exp
( − ξi(Ω)

) × (
exp

( − ψ(S)
))

× (
exp

( − ω(R)
))

, (11)

and it can be expressed in terms of cost functions as

Etotal(Ω) = Edata(Ω) + Eshape(S) + Erefl(R)

=
nc∑

i=1

ξi(Ω) + ψ(S) + ω(R). (12)

Maximizing the probability (11) is equivalent to minimizing
the total cost (12).

4.1 Data Cost Function

The current estimate of Ω gives a segmentation of each
input image Ii into foreground IiF and background IiB

and we can synthesize ĪiF according to the image forma-
tion model of Sect. 2. As for ĪiB , it is generated according
to the available background model. In this paper, as men-
tioned in Sect. 2.4, we use actual background images, i.e.
ĪiB = ĨiB . Also, as suggested by Yezzi and Soatto (2003),
the similarity measure between observed and rendered im-
ages, ξi(Ω) = ξ(Ii, Īi ), is then rewritten as

ξ(Ii, Īi ) = ξF (IiF , ĪiF ) + ξB(IiB, ĪiB)

= ξF (IiF , ĪiF ) + ξB(IiB, ĨiB)

= ξF (IiF , ĪiF ) − ξF (IiF , ĨiF )

+ ξF (IiF , ĨiF ) + ξ(IiB, Ĩi)

= ξ̂F (IiF , ĪiF ) + ξ(Ii, Ĩi ), (13)
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where ξ̂F (IiF , ĪiF ) = ξF (IiF , ĪiF ) − ξF (IiF , ĨiF ).5 Since
ξ(Ii, Ĩi ) is independent of Ω , the data cost function is writ-
ten as

Edata(Ω) =
nc∑

i=1

ξ̂F (IiF , ĪiF ) + C, (14)

where C = ∑nc

i=1 ξ(Ii, Ĩi ) is constant.

4.1.1 Similarity Measure

When computing ξ , any statistical correlation between color
or intensity patterns such as the sum of squared differences
(SSD), cross correlation (CC), or mutual information (MI)
can be used. In any case, ξ can be expressed as the integral
over the image area as

ξ(Ii, Īi ) =
∫

πi

ei(x)dσi, (15)

where dσi is the surface measure and ei(x) is the contribu-
tion at x to ξi . The data cost function is then given as

Edata(Ω) =
nc∑

i=1

∫

πiF

êi(x)dσi + C, (16)

where êi (x) = ei(Ii(x), Īi (x)) − ei(Ii(x), Ĩi (x)). We adopt
the derivations proposed in Pons et al. (2005) for ξi , ei , and
∂2ei .

4.1.2 Decoupling Appearance from Surface Normal

As shown in (5), surface appearance (i.e., the data cost func-
tion) is dependent on both the surface normal and the posi-
tion, and this makes the problem hard to solve and unstable.
To resolve this problem, we introduce an auxiliary photo-
metric unit vector field v satisfying ‖v‖ = 1 as in Jin et al.
(2004), which is used for the computation of surface appear-
ance. The vector field v is estimated in alternation with all
other parameters, i.e. shape and reflectance. Equation (6) is
written in terms of v as

Lij (X,v(X)) = Lijρd(X)
(
v(X) · lij (X)

)

+ Lijρs(X)
(
v(X) · hij (X)

)αs(X)
, (17)

which is independent of n(X). To penalize the deviation be-
tween the actual normal vector n and the photometric nor-
mal vector v, we add a new term

Edev(Ω) = τ

∫

S

χ(X)dσ = τ

2

∫

S

‖n(X) − v(X)‖2dσ

5Note that (13) is valid only when ξ(Ii , Īi ) can be expressed as in (15).

= τ

∫

S

(1 − (n(X) · v(X))) dσ, (18)

to the cost function, where τ is a control constant.

4.2 Shape Area Cost Function

By using the area of a surface for the prior, the shape area
cost function is simply defined as

Eshape(S) = ψ(S) = λ

∫

S

dσ, (19)

where λ is a control constant.

4.3 Reflectance Discontinuity Cost Function

Based on the assumption on surface reflectance in Sect. 3.3,
we define a discontinuity cost function of surface re-
flectance, which makes the discontinuities of specular re-
flectance generally coincide with the discontinuities of dif-
fuse reflectance, as

Erefl(R) = ω(R) = β

∫

S

f (X)dσ, (20)

where β is a control constant. f (X) is defined as

f (X) = ζ
(
Rd(X)

) × η
(
Rs(X)

)
, (21)

where ζ(Rd(X)) and η(Rs(X)) are defined in terms of the
magnitude of the intrinsic gradients of diffuse reflectance
and specular reflectance respectively as

ζ
(
Rd(X)

) =
(

1 − ‖∇SRd(X)‖2

M

)
, (22)

η
(
Rs(X)

) = (‖∇Sρs(X)‖2 + γ ‖∇Sαs(X)‖2) (23)

where M is a pre-defined constant and ∇S denotes the intrin-
sic gradient defined on S. Here, ζ(Rd(X)) is inversely pro-
portional to the magnitude of the intrinsic gradient of Rd .6

In addition, η(Rs(X)) is proportional to the magnitude of
the intrinsic gradient of ρs and αs .

By using the proposed discontinuity cost function of sur-
face reflectance, surface points that do not have enough
specular observations get assigned specular reflectance in-
ferred from the specular reflectance of neighboring surface
points with similar diffuse reflectance.

6One has to use M ≥ 3 for gray-level images and M ≥ 9 for color
images to make ζ positive.
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4.4 Total Cost Function

By combining the cost functions defined in the previous sec-
tions, the total cost function is given by

Etotal(Ω) = Edata(Ω) + Edev(Ω) + Eshape(S) + Erefl(R)

= C +
nc∑

i=1

∫

πiF

êi(x)dσi + τ

∫

S

χ(X)dσ

+ λ

∫

S

dσ + β

∫

S

f (X)dσ. (24)

Here, it is worthy of notice that Edev(Ω), Eshape(S), and
Erefl(R) are defined over the scene surface while Edata(Ω)

is defined as an integral over the image plane. By the change
of variable

dσi = −di (X) · n(X)

zi(X)3
dσ, (25)

where di (X) is the vector connecting the center of the ith
camera and X and zi(X) is the depth of X relative to the ith
camera, we can replace the integral over the image plane by
an integral over the surface as in Pons et al. (2007):

Edata(Ω) = C −
nc∑

i=1

∫

Si

(
êi (Πi(X))

di (X) · n(X)

zi(X)3

)
dσ

= C −
∫

S

(
nc∑

i=1

vi
S(X)êi (Πi(X))

× di (X) · n(X)

zi(X)3

)
dσ. (26)

As a result, the total cost function (24) is expressed as

Etotal(Ω) = C +
∫

S

(
−

nc∑

i=1

(
vi
S êi

di · n
zi

3

)

+ τχ + λ + βf

)
dσ. (27)

When denoting g(X,n(X)) : R
3 × Ω → R as

g(X,n(X)) =
(

−
nc∑

i=1

(
vi
S êi

di · n
zi

3

)

+ τχ + λ + βf

)
, (28)

Equation (24) is simply rewritten as

Etotal(Ω) = C +
∫

S

g(X,n(X))dσ. (29)

Fig. 1 Overall procedure of the proposed method. It is composed of
three parts: shape update, reflectance estimation, and update of the aux-
iliary vector field v

Here, although the total cost function is an integral over
the surface, it does not suffer from the usual minimal surface
bias mentioned in Sect. 2.4: most functionals used in multi-
view stereo have an empty set as globally optimal surface,
since they do not “explain” all pixels in the input images.
Our approach, like Yezzi and Soatto (2003), takes into ac-
count all pixels in the cost function, not only those covered
by the current estimate of the foreground object’s shape, us-
ing both the estimated foreground and the available back-
ground information.

5 Scene Recovery

Recently, based on graph cuts or convexity, several global
optimization methods have been proposed for the classi-
cal multiview stereovision problem, see Snow et al. (2000),
Paris et al. (2006), Vogiatzis et al. (2007), Kolev et al.
(2007b, 2007a). Nevertheless, because of the presence of
the normal but also of the visibility in the cost function, the
state of the art in optimization does not allow to compute
the global minimum of the energy we have designed in the
previous section. In this work, scene recovery is achieved by
minimizing Etotal via gradient descents.

In other respects, S and R are highly coupled and it is
very complicated to estimate all unknowns simultaneously.
To efficiently solve the problem, we adopt an alternating
scheme, updating S for a fixed R and then R for a fixed S.
This procedure is repeated until Etotal no longer decreases
and S and R no longer change. The overall procedure is
shown in Fig. 1.

5.1 Shape Estimation—Surface Evolution

When assuming that R is given, Etotal is a function of S. In
this work, we derive the gradient descent flows correspond-
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Fig. 2 Shape update

ing to the cost functions respectively. The final gradient de-
scent flow is then given by

St = (
St |data + St |dev + St |shape + Stg|refl

); (30)

where St |data, St |dev, St |shape and St

∣∣
refl are described be-

low. The shape update scheme is shown in Fig. 2. For more
details about gradient descent flows, we refer the inexpe-
rienced reader to Solem and Overgaard (2005) who nicely
detail the geometric formulation of gradient descent in such
a context.

5.1.1 Gradient Descent Flow for the Data Cost

As shown in (26), the data cost is a function of the visibil-
ity of a surface point, which is dependent on the whole sur-
face shape, not only on the normal at the considered point.
To correctly handle visibility for non-convex objects, self-
occlusions of the foreground object must be taken into ac-
count, i.e. parts of the surface that occlude other parts of it
from cameras. This is done according to Yezzi and Soatto
(2003) and Gargallo et al. (2007) (which extends the work
of Solem and Overgaard 2005), by writing St |data as

St |data =
nc∑

i=1

(
− vi

S(êi − ê′
i )

z3
i

(
dt

i∇ndt
iδ(di · n)

)

+ vi
S

z3
i

((
∂2êi∇ Īi

) · di

))
. (31)

Here di is, as defined in Sect. 4.4, the vector connecting the
center of the ith camera and a surface point X, and δ(·) is
the delta function. Hence, the term δ(di · n) in the above
expression is non-zero exactly at horizon points, i.e. points
on (self-)occluding contours of the foreground. Let X′ be
the terminator of a horizon point X as shown in Fig. 3 (for
more details see Gargallo et al. 2007; Gargallo 2008). ê′

i is a
similarity measure computed using the radiance of X′ in the
direction of the ith camera and the intensity at the image po-
sition corresponding to X and X′ (cf. Sect. 4.1.1). Hence, the

Fig. 3 Horizon point X and its terminator point X′. X′ is used to con-
sider visibility changes. See Gargallo et al. (2007) for details

first term of the sum in (31) accounts for what happens to the
likelihood when the visibility of non-convex objects changes
due to the surface evolution. When a horizon point has no
terminator point on the foreground surface itself, ê′

i = 0 be-
cause the terminator point is from the background. ∇ Īi is
expressed by using (5) as

∇ Īi =
nil∑

j=1

{(∇vLij
)Lij + vLij

(∇Lij )} + (∇ρa)Lia, (32)

where

∇Lij = ∇L
d
ij + ∇L

s
ij , (33)

and

∇L
d
ij = Lij (∇ρd)(v · lij ) + Lijρd

(∇(v · lij )
)
, (34)

∇L
s
ij = Lij (∇ρs)(v · hij )

αs + Lijρs

(∇(v · hij )
αs

)
. (35)

This gradient descent flow includes both the variation re-
lated to the camera visibility changes (the first term in (31))
and the variation related to the image changes (the second
term in (31)), which also includes the variation due to the
light visibility changes. Here, it is worthy of notice that the
gradient descent flow for the data cost is not dependent on
the image gradient, which is sensitive to image noise, but on
the shape/reflectance estimation.

5.1.2 Gradient Descent Flows for the Normal Deviation
Cost and the Shape Area Cost

Similarly as in Jin et al. (2004, 2008), the gradient descent
flow for the normal deviation cost St |dev (originating from
Edev(Ω)) is

St

∣∣
dev = (−2τH + τ(∇ · v)) , (36)

where H is the mean curvature. Also St |shape (from
Eshape(S)) is the mean curvature flow as

St

∣∣
shape = −2λH. (37)
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Fig. 4 Photometric unit vector update

5.1.3 Gradient Descent Flow for the Reflectance
Discontinuity Cost

Due to the complexity of the discontinuity cost function
of surface reflectance, it needs more attention to derive the
gradient descent flow. By using the derivation in Jin et al.
(2003), we get the following equation for surface evolution.

St |refl = −2β

(
1

M
m(ρd)η(Rs) − (m(ρs)

+ γm(αs))ζ(Rd)

)
. (38)

Here,

m(ρs) = (
II

(∇Sρs × n
) + ‖∇Sρs‖2H

)
, (39)

m(αs) = (
II
(∇Sαs × n

) + ‖∇Sαs‖2H
)
, (40)

m(ρd) = (
II

(∇Sρd × n
) + ‖∇Sρd‖2H

)
, (41)

where II(t) is the second fundamental form for a tangent
vector t with respect to n.

5.2 Photometric Unit Vector Field Update

The computed gradient descent flows minimize the total cost
with respect to given reflectance and v. We then update the
photometric unit vector field v to minimize the total cost
with respect to given shape and reflectance. The v that min-
imizes the total cost satisfies the equation,

∂g

∂v
=

(
−

nc∑

i=1

vi
S∂2êi

∂Īi

∂v
di · n
zi

3

)
+ (−τn) = 0. (42)

Here, ∂Īi

∂v is given as

∂Īi

∂v
=

nil∑

j=1

vLij
Lij

(
ρd lij + ρsαs

(
v · hij

)αs−1 hij

)
. (43)

We can update v by performing gradient descent using the
following PDE:

∂v
∂t

=
(

−
nc∑

i=1

vi
S∂2êi

∂Īi

∂v
di · n
zi

3

)
+ (−τn). (44)

However, because we have to keep ‖v‖ = 1, we can not use
(44) directly. Since v ∈ S

2, v can be expressed in spherical
coordinates as [cos θv sinφv, sin θv sinφv, cosφv]T where θv

and φv are the coordinates of v. Therefore, we update θv and
φv to update v. As before, the θv and φv that minimize the
total cost satisfy the following two equations by the chain
rule.

∂g

∂θv

= ∂g

∂v
· ∂v
∂θv

= 0, (45)

∂g

∂φv

= ∂g

∂v
· ∂v
∂φv

= 0. (46)

Here, ∂v
∂θv

and ∂v
∂φv

are given as

∂v
∂θv

=
⎡

⎣
− sin θv sinφv

cos θv sinφv

0

⎤

⎦ ,
∂v
∂φv

=
⎡

⎣
cos θv cosφv

sin θv cosφv

− sinφv

⎤

⎦ .

(47)

So, we update v by updating θv and φv by performing gra-
dient descent using the following two PDEs:

∂θv

∂t
=

((
−

nc∑

i=1

vi
S∂2êi

∂Īi

∂v
di · n
zi

3

)
+ (−τn)

)

·
⎡

⎣
− sin θv sinφv

cos θv sinφv

0

⎤

⎦ (48)

and

∂φv

∂t
=

((
−

nc∑

i=1

vi
S∂2êi

∂Īi

∂v
di · n
zi

3

)
+ (−τn)

)

·
⎡

⎣
cos θv cosφv

sin θv cosφv

− sinφv

⎤

⎦ . (49)

5.3 Reflectance Estimation

Here, we estimate R for fixed S and v, still minimizing
the total cost function. Since Edev and Eshape do not de-
pend on R at all, we seek an optimal R by minimizing
(Edata(Ω) + Erefl(R)). Since it is complex to estimate dif-
fuse and specular reflectance at the same time due to the
high coupling between them, we alternatively estimate sur-
face reflectance components one by one while assuming that
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Fig. 5 Reflectance estimation

the rest are given and fixed. We repeat the procedure until
they no longer change. Figure 5 shows the whole scheme
we have used for the reflectance estimation. Below, we are
detailing the intermediate steps.

5.3.1 Diffuse Reflectance Estimation

For given S and Rs , we estimate ρd that minimizes the cost

Edata + Erefl =
∫

S

((
−

nc∑

i=1

vi
S êi

di · n
zi

3

)

+ β

(
1 − ‖∇Sρd‖2

M

)
η
(
Rs

)
)

dσ. (50)

Here, ρd that minimizes the total cost function will satisfy
the Euler-Lagrange equation

−
nc∑

i=1

vi
S∂2êi

∂Īi

∂ρd

di · n
zi

3
+ 2β

M
η
(
Rs

)
�Sρd = 0, (51)

where �S denotes the Laplace-Beltrami operator defined on

the surface S and ∂Īi

∂ρd
is given as

∂Īi

∂ρd

=
nil∑

j=1

vLij
Lij

(
v · lij

) + Lia. (52)

We solve the PDE by performing gradient descent using the
following PDE:

∂ρd

∂t
=

(
−

nc∑

i=1

vi
S∂2êi

∂Īi

∂ρd

di · n
zi

3

)
+

(
2β

M
η
(
Rs

))
�Sρd.

(53)

5.3.2 Specular Reflectance Estimation

We then estimate Rs = (ρs, αs) for given S and Rd in the
same manner. ρs that minimizes the total cost function will
satisfy the Euler-Lagrange equation
(

−
nc∑

i=1

vi
S∂2êi

∂Īi

∂ρs

di · n
zi

3

)
− 2β

(
�Sρs

)
ζ
(
ρd

) = 0, (54)

where ∂Īi

∂ρs
is given as

∂Īi

∂ρs

=
nil∑

j=1

vLij
Lij

(
v · hij

)αs . (55)

We again solve the PDE by performing gradient descent us-
ing the following PDE to get the solution of (54).

∂ρs

∂t
= −

nc∑

i=1

(
vi
S∂2êi

∂Īi

∂ρs

di · n
zi

3

)
− 2β

(
�Sρs

)
ζ
(
ρd

)
. (56)

αs is estimated in the same manner by solving the PDE as

∂αs

∂t
= −

nc∑

i=1

(
vi
S∂2êi

∂Īi

∂αs

di · n
zi

3

)
− 2βγ

(
�Sαs

)
ζ
(
ρd

)
,

(57)

where ∂Īi

∂αs
is given as

∂Īi

∂αs

=
nil∑

j=1

vLij
Lijρs

(
v · hij

)αs ln
(
v · hij

)
. (58)

5.3.3 Case of a Single-Material Surface

When dealing with a surface that has uniform specular re-
flectance Rs , it is possible to set ρs(X) = ρs and αs(X) = αs
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Fig. 6 Result for the “dino”
image set (16
images)—Lambertian surface
case (static illumination and
varying viewpoint)

for all surface points. In this case, the discontinuity cost
function of surface reflectance, Erefl(R), can be excluded
because f (X) in (21) is zero everywhere on the surface.
Hence, the gradient descent flow is then given by

St = (
St |data + St |dev + St |shape

)
, (59)

and the PDE used for the estimation of ρd , (53), is simplified
to

∂ρd

∂t
= −

nc∑

i=1

vi
S∂2êi

∂Īi

∂ρd

di · n
zi

3
. (60)

In addition, ρs and αs are computed by performing gra-
dient descent using the following PDEs.

∂ρs

∂t
=

∫

S

(
−

nc∑

i=1

vi
S∂2êi

∂Īi

∂ρs

di · n
zi

3

)
dσ, (61)

∂αs

∂t
=

∫

S

(
−

nc∑

i=1

vi
S∂2êi

∂Īi

∂αs

di · n
zi

3

)
dσ. (62)

6 Experiments

6.1 Implementation

We have implemented the gradient descent surface evolution
in the level set framework in which the topological changes
of surfaces are handled automatically (Osher and Sethian
1988; Sethian 1999; Osher and Fedkiw 2002). The proposed
method starts with the visual hull obtained by rough silhou-
ette images to reduce computational time and to avoid local
minima. We also adopt a multi-scale strategy. 640×480 or
800×600 images were used as inputs and the simple L2-
norm was used to compute the image similarity, e. The cam-
era and light visibility were computed using OpenGL z-

buffering.7 In all experiments, we detected saturated pixels
by thresholding the intensity against Ith = 253, and ignored
them in all further computations.

For synthetic data sets, the estimated shape is quantita-
tively evaluated in terms of accuracy and completeness as
in Seitz et al. (2006). We used 95% for accuracy and the
1.0 mm error for completeness. For easy comprehension, the
size of a target object is normalized so that it is smaller than
[100 mm 100 mm 100 mm]. Here, beside the shape eval-
uation, we also evaluated the estimated reflectance in the
same manner. For each point on an estimated surface, we
found the nearest point on the true surface and compute the
distance and reflectance differences, and vice versa. In ad-
dition, we computed the average difference between input
images and synthesized images as

eimage = 1

nc

nc∑

i=1

1

A

∫

πi

∥∥(
Ii(x) − Īi (x)

)∥∥dσi, (63)

where A = ∫
πi

dσi .

6.2 Experimental Results

Due to the generality of the proposed method, it can be
applied to various types of image sets with different cam-
era/light configurations. Here, knowledge of illumination al-
lows to factorize radiance into reflectance and geometry. In
practice, depending on the scenario, that knowledge may
not be required, e.g. for recovering shape and radiance of
Lambertian surfaces with static illumination. In other words,
when images of Lambertian surfaces are taken under sta-
tic illumination, the proposed method can be applied even
without lighting information, assuming that there is only an
ambient illumination. In this case, we do not need to take
care of surface/photometric normals and only Edata(Ω) and

7Light visibility is computed by using virtual cameras located at the
positions of light sources.
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Fig. 7 Result for the “bimba”
image set (18
images)—textureless
Lambertian surface case
(varying illumination and
viewpoint). 95% accuracy
(shape, ρdr , ρdg, ρdb) =
(2.16 mm,0.093,0.093,0.093),
1.0 mm completeness (shape,
ρdr , ρdg, ρdb) = (82.63%,

0.104,0.104,0.104),
eimage = 1.44

Fig. 8 Result for the “sphere” image set (32 images)—
textured Lambertian surface case (static illumination and
varying viewpoint). 95% accuracy (shape, ρdr , ρdg, ρdb) =

(1.06 mm,0.025,0.019,0.017), 1.0 mm completeness (shape,
ρdr , ρdg, ρdb) = (99.74%,0.023,0.017,0.016), eimage = 0.60

Eshape(S) are computed. The intensity conservation assump-
tion (ICA) is valid in all images and the proposed method
works much like the conventional multiview stereo meth-
ods and estimates the shape and radiance of Lambertian sur-
faces. Figure 6 shows the result for the dino image set (Seitz
et al. 2006), for which no lighting information is required.
The proposed method successfully recovers the shape as
well as the radiance.

The proposed method can also be applied to images taken
under varying illumination. Results using images of texture-
less/textured Lambertian surfaces are shown in Figs. 7 to 12.
Figure 7 shows the ground-truth shape of the “bimba” image
set (18 images) of a textureless object, and the estimation
result. The surface has uniform diffuse reflectance and in-
put images were taken under different illuminations. In this
case, the proposed method works as a multiview photomet-
ric stereo method and recovers the shape and the diffuse re-
flectance of each surface point. Here, black points in the esti-
mated model correspond to points that were not visible from
any camera and/or any light source.

Figure 8 shows one of 32 textured input images and the
synthesized image generated using the estimated shape (i.e.,
shading) and reflectance. Based on this result, we can also
synthesize images of the scene for different lighting condi-
tions, as shown in Fig. 9. Results for a more complex object

Fig. 9 Image synthesis—an image of the same scene, for different
lighting conditions

are shown in Figs. 10 and 11. The images synthesized us-
ing the estimation closely resemble input images while the
shading and the reflectance are successfully separated. Fur-
thermore, it is possible to synthesize images under differ-
ent lighting conditions, even from different viewpoints. The
proposed method also recovers concave parts well as shown
in Fig. 12.

We then applied our method to the images of texture-
less/textured non-Lambertian surfaces showing specular re-
flection. Note that, unlike previous methods (Birkbeck et al.
2006; Hernández Esteban et al. 2008), we do not use any
thresholding to filter out specular highlight pixels. The re-
sult for the smoothed “bimba” data set is shown in Fig.
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Fig. 10 Result for the “dragon"
image set (32 images)—textured
Lambertian surface case (static
illumination and varying
viewpoint). 95% accuracy
(shape, ρdr , ρdg, ρdb) =
(1.28 mm,0.090,0.073,0.066),
1.0 mm completeness (shape,
ρdr , ρdg, ρdb) = (97.11%,

0.064,0.056,0.052),
eimage = 1.25

Fig. 11 Synthesized result for
different lighting conditions and
viewed from a viewpoint that is
different from all input
viewpoints. A comparison with
the ground-truth is possible
because this is synthetic data

Fig. 12 Close-up view of the
concave part of the “dragon”
model

13. In this case, the surface has uniform diffuse/specular re-

flectance and each image was taken under a different illu-

mination. Here, we used the method described in Sect. 5.3.3

to estimate the specular reflectance. Although there is high-

frequency noise in the estimated shape, the proposed method

estimates the specular reflectance well—the ground-truth

specular reflectance is (ρs = 0.7, αs = 50) while the esti-
mated one is (ρs = 0.61, αs = 41.8).8

8Note that small errors in estimated surface normals can cause large
errors in specular reflectance because of its sensitivity to the surface
normal. For instance, 0.7 × (0.98)50(= 0.255) ≈ 0.61 × (0.979)41.8(=
0.251).
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Fig. 13 Result for the smoothed “bimba" image set (36 images)—
textureless non-Lambertian surface case (uniform specular re-
flectance, varying illumination and viewpoint). 95% accuracy (shape,

ρdr , ρdg, ρdb, ρs , αs) = (0.33 mm,0.047,0.040,0.032,0.095,8.248),
1.0 mm completeness (shape, ρdr , ρdg, ρdb, ρs , αs) =
(100%,0.048,0.041,0.032,0.095,8.248), eimage = 1.63

Fig. 14 Result comparison
using the “ellipse” image set (16
images)—textureless
non-Lambertian surface case
(uniform specular reflectance,
static illumination and varying
viewpoint)

Note that most previous methods do not work for im-
age sets taken under varying illumination and, moreover,
they have difficulties to deal with specular reflection even if
the images are taken under static illumination. For example,
Figs. 14 and 15 show some results obtained by the method
of Pons et al. (2007) and our result for comparison. We ran
the original code provided by the authors many times while
changing parameters and used mutual information (MI) and
cross correlation (CCL) as similarity measures to get the
best results under specular reflection. As shown in Figs. 14
and 15, the method of Pons et al. (2007) fails to get a good
shape even when the shape is very simple, while our method
estimates it accurately. Also, with such images, given the
large proportion of overbright surface parts, it seems intu-
itive that the strategy chosen by Birkbeck et al. (2006) and
Hernández Esteban et al. (2008) (who consider bright pix-
els as outliers) might return less accurate results, because it
removes too much information.

We also used real image sets of textured glossy objects,
which were taken by using fixed cameras/light sources,
while rotating the objects as in Birkbeck et al. (2006),

Hernández Esteban et al. (2008)—in this case, each image
has a different illumination and observes specular reflec-
tions. The light position and color were measured using a
white sphere placed in the scene. Figure 16 shows one im-
age among 59 input images, the initial shape obtained using
silhouettes, and the final result. Here, we simply assumed
a single-material surface (i.e. uniform specular reflectance,
but varying albedo). More results using real image sets are
shown in Figs. 17 to 18. (72 × 72 × 72) grids were used
for the “saddog” and “duck” image sets and (64 × 64 × 64)

grids for “bunny”. Although sparse grid volumes were used,
the proposed method successfully estimated the shape of
the glossy object even under specular reflection, while es-
timating the latter. Here, we can see that, although the esti-
mated specular reflectance may not be highly accurate be-
cause of the inaccuracy of lighting calibration, saturation,
and unmodeled photometric phenomena such as interreflec-
tions that often occur on glossy surfaces, it really helps to
recover the shape well.

Finally, we applied our method to the most general
case—images of textured non-Lambertian surfaces with
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Fig. 15 Result comparison
using the smoothed “bimba”
image set (16 images)—textured
non-Lambertian surface case
(uniform specular reflectance,
varying illumination and
viewpoint)

Fig. 16 Result for the “saddog”
image set (59 images)—textured
non-Lambertian surface case
(uniform specular reflectance,
varying illumination and
viewpoint). eimage = 2.45

spatially varying diffuse and specular reflectance and shini-
ness, cf. Fig. 19. Input images were generated under static
illumination (with multiple light sources) while changing
the viewpoint. Figure 19 shows one image among 36 in-
put images, one ground-truth diffuse image, one ground-
truth specular image, ground-truth shading, and our results.
(64 × 125 × 64) grids were used in this case. We can see
that the proposed method yields plausible specular/diffuse
images and shape. However, there is high-frequency noise

in the estimated shape. Moreover, the error in reflectance
estimation is rather larger compared to the previous cases
because of sparse specular reflection observation. This re-
sult shows that, although the proposed discontinuity cost
function of surface reflectance helps to infer the specular
reflectance of all points with sparse specular reflection ob-
servation, reliably estimating specular reflectance for all sur-
face points is still difficult unless there are enough observa-
tion of specular reflections for every surface point.
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Fig. 17 Result for the “bunny”
image set (26 images)—textured
non-Lambertian surface case
(uniform specular reflectance,
varying illumination and
viewpoint). eimage = 5.34

Fig. 18 Result for the “duck”
image set (28 images)—textured
non-Lambertian surface case
(uniform specular reflectance,
varying illumination and
viewpoint). eimage = 2.79

7 Discussion and Further Work

When considering non-Lambertian surfaces under varying
illumination, the core question is how to deal with specular
reflection in shape estimation. As mentioned in the introduc-
tion, one common way is to decouple shape and reflectance
estimation using reflectance invariants or a specular-free im-
age representation as in Yoon and Kweon (2006), Mallick
et al. (2005), Zickler et al. (2008). In this approach, input
images are transformed so that they are free from specu-
lar reflection and the resultant images are then used for sur-
face shape recovery. Reflectance can then be recovered us-
ing the estimated shape. This approach might be less compu-
tationally intensive and more robust/stable than the proposed

method because it is not required to consider the complex
specular reflection during shape estimation. However, it is
strongly limited by the specific lighting configuration—the
transformation is valid only when the illumination condi-
tions have specific properties. While it is also useful to de-
tect specular highlights first and to treat them as outliers as
in Hernández Esteban et al. (2008), Birkbeck et al. (2006),
detecting specular highlights is a hard problem in itself.

The proposed method uses the Blinn-Phong shading
model to describe specular reflectance, but it is also possible
to use any other parametric reflectance model. The paramet-
ric reflectance model is directly incorporated in the problem
formulation. As a result, the proposed method can be applied
to various data sets, and is not limited by the specific lighting
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Fig. 19 Result for the
“amphora” image set (36
images)—textured
non-Lambertian surface case
(spatially varying specular
reflectance, static illumination,
and varying viewpoint). 95%
accuracy (shape, ρdr , ρdg, ρdb,

ρs, αs) = (0.59 mm,0.041,

0.047,0.042,0.226,12.69),
1.0 mm completeness (shape,
ρdr , ρdg, ρdb, ρs, αs) =
(89.73%,0.042,0.047,0.042,

0.226,12.65), eimage = 1.99

configuration. This is one of the main contributions of the
proposed method. However, some recent studies (Ngan et
al. 2005; Stark et al. 2005) have shown conclusively that, al-
though parametric reflectance models are widely used in the
literature, they are often unable to capture important visual
effects. This is especially true for specular reflectance. As a
result, the proposed method may produce rather inaccurate
results for real images.

Moreover, the proposed method can become less stable
and less accurate as the scenario gets more complex. For
example, it works very well for diffuse images taken under
static illumination, which is the simplest case, because we
do not need to consider the surface normal and the photo-
metric normal of each point. However, when dealing with
non-Lambertian surfaces, the estimates of shape and re-
flectance are rather less accurate. In some aspects, this is nat-
ural because the proposed method deals with many spatially
varying unknowns and estimates them alternatively. As de-
scribed, the proposed method consists of many sub-parts,
which also have alternative loops in them. It suffers from
local minima and the alternative scheme sometimes fails
in practice. In addition, for non-Lambertian cases, the pro-
posed method may produce inaccurate results because spec-
ular reflection can be extremely sensitive to the surface nor-
mal depending on the surface shininess. On the other hand,
when specular reflectance occurs broadly and its magnitude
is small compared to that of diffuse reflectance, the prob-
lem can be ambiguous and the proposed method may return
poor results because it is hard to distinguish the specular re-
flectance from the diffuse one in this case. The accuracy of
specular reflectance estimation depends on the number of

specular reflection observations as well. However, by com-
bining multiple cues, the dependency on the initial shape can
be reduced.

Two other difficulties of the proposed method are com-
putational time and huge memory requirement. In fact, the
proposed method is more computationally expensive than
shape and reflectance decoupling approaches. All sub-loops
should converge at each iteration as shown in Figs. 1, 2, 4,
and 5, and the shape can not evolve much at each itera-
tion because of the stability. Therefore, the proposed method
takes from a few hours to a few days according to the im-
age sets and the initial conditions—the computational time
is in proportion to the resolution of the grid used in the level
set framework, the number of input images, and the num-
ber of light sources. In addition, contrary to previous works,
we rigorously consider camera and light visibility and self-
occlusion. This incurs huge memory requirements, preclud-
ing the use of a dense level set grid. Therefore, we have some
difficulties to deal with complex shaped objects in experi-
ments, which is why we used the smoothed bimba data set
in Fig. 13. In addition, because of the sparseness of the level
set grid, the initial shape given by rough silhouette images is
not accurate, so the initially computed specular reflectance
is not close to the ground truth. However, even when we
use a small number of images, we estimate the specular re-
flectance at each iteration and this improves the accuracy of
the method.

In other respects, the proposed method needs several
user-specified parameters such as τ , λ, and β in (27). These
parameters control the contribution of the individual cost
functions, according to the types of image sets. As a result,
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the overall performance may be biased towards specific pri-
ors according to these parameters.

As a future work, we would like to develop faster, more
stable, and more accurate schemes to overcome these lim-
itations. Also, there is some other room for improvement.
For example, we used the simple L2-norm for computing e,
while it is possible to use other global/robust measures such
as cross correlation or mutual information as in Pons et al.
(2007). It is also possible to change the inner product struc-
ture as proposed by Charpiat et al. (2007). In addition, in this
work, we adopted the Blinn-Phong model to describe spec-
ular reflectance, but it should be relevant to adopt a more
realistic model.

8 Conclusion

In this paper, we have presented a variational method that
recovers both the shape and the reflectance of surfaces using
multiple images, assuming that illumination conditions and
camera calibration are known in advance. Scene recovery is
achieved by minimizing a global cost functional by alterna-
tion. As a result, the proposed method produces a complete
description of scene surfaces.

Contrary to previous works that consider specific scenar-
ios, our method can be applied indiscriminately to a number
of classical scenarios—it naturally fuses and exploits several
important cues (silhouettes, stereo, and shading) and allows
to deal with most of the classical 3D reconstruction scenar-
ios such as stereo vision, (multi-view) photometric stereo,
and multiview shape from shading. In addition, our method
can deal with non-Lambertian surfaces showing strong spec-
ular reflection, which is difficult even in some other state of
the art methods using complex similarity measures.
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