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Cyclorotation Models for Eyes and Cameras
Miles Hansard and Radu Horaud

Abstract—The human visual system obeys Listing’s law, which
means that the cyclorotation of the eye (around the line of sight)
can be predicted from the direction of the fixation point. It is
shown here that Listing’s law can conveniently be formulated in
terms of rotation matrices. The function that defines the observed
cyclorotation is derived in this representation. Two polynomial
approximations of the function are developed, and the accuracy
of each model is evaluated by numerical integration over a range
of gaze directions. The error of the simplest approximation for
typical eye movements is less than half a degree. It is shown that,
given a set of calibrated images, the effect of Listing’s law can be
simulated in a way that is physically consistent with the original
camera. This condition is important for robotic models of human
vision, which typically do not reproduce the mechanics of the
oculomotor system.

Index Terms—Biological control systems, robot kinematics,
visual system.

I. INTRODUCTION

THIS PAPER uses geometric and numerical methods to
explore a kinematic property of human eye-movements.

The objective is to model the rotation of the human eye in
terms of the standard camera model from computer vision
[1]. This paper is motivated by the need to use real image
data in computational models of the human vision. It will be
shown, in particular, that the images from a standard robotic
camera mounting can be made compatible with the observed
orientations of the human eye. This result means that subse-
quent geometric analysis of the images will be consistent with
the behavior of the oculomotor system. The results described
here provide a foundation for further development of both
monocular and binocular models of biological vision [2]–[4].

A. Visual Orientation

There are several types of human eye movements, including
those that are used to stabilize the retinal image during motion
of the head and those that are specific to binocular vision [5].
This paper, however, is chiefly concerned with saccadic eye
movements, which are used to fixate visual targets in the scene.

The fixation of a target point defines the direction but not
the complete orientation of the eye, because the orientation
includes the “cyclorotation” around the ray that joins the optical
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center1 to the target, as well as the direction. In geometric
terms, the direction can be specified by a suitable choice of two
spherical angles, e.g., elevation and azimuth. The orientation
involves a third angle, which accounts for the cyclorotation
or “torsion” around the line of sight. Listing’s law, as will be
explained, describes the observed relationship between visual
direction and orientation.

The complete orientation of the eye can consistently be
determined from the gaze direction as follows. Suppose that
the visual target is represented, with respect to a reference
direction, by elevation and azimuth angles α and β. Then,
the cyclorotation γ can be treated as a function γ(α, β). This
relation is the principle behind Donders’ law [5], [6], which
states that the actual torsion of the eye is determined by the
gaze direction so that the final orientation is fully determined
by the visual target. Note, however, that Donders’ law does not
actually define the function γ(α, β).

B. Ocular Kinematics

Donders’ law asserts that torsion is consistently determined
by the oculomotor system but does not make any further
predictions. A more specific model can be formulated by noting
that, given an initial orientation, the subsequent angles and axes
of rotation can be used to predict the final torsion.

Hence, the actual cyclorotation function γ(α, β) can be
derived from a geometric model of visual orientation. This fact
is the principle behind Listing’s law, which quantifies Donders’
law as follows: There exists a unique reference orientation
such that any other observed orientation of the eye can be
obtained by a single rotation around an axis perpendicular to
the reference direction [5], [6]. It follows that, although the
axis of rotation depends on the target direction, it must lie in
Listing’s plane, which is itself perpendicular to the reference di-
rection. The unique reference orientation of the eye is called the
primary position. The reference direction, which is determined
by experiment, is approximately straight ahead. It follows that
Listing’s plane is approximately parallel to the face [7]. Note
that Listing’s law does not determine the rotational movement of
the eye; rather, it states that the observed torsion is compatible
with a particular choice of rotation.

Listing’s law is applicable if the head is upright and static
and if the fixation point is distant. The torsion, in these con-
ditions, can be predicted with an accuracy of around 1◦ [5],
[7]. Listing’s law can be extended to describe the case in which
the eye moves from a general (i.e., nonprimary) position. The
rotation axes remain coplanar in this case, but the plane is

1It will be assumed that the eye has a fixed center of rotation and that this
point coincides with the optical center [5].
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Fig. 1. Two eyes fixate a point p in the scene, which is shown here from the
back left. The rotation of one eye (here, the left), with optical center e, will be
analyzed with respect to the coordinate system {x, y, z}. The vectors x and
z correspond to the interocular and straight-ahead directions, respectively. The
vector v corresponds to the visual direction of p from the left optical center e.
Note that the left and right visual directions lie in a common epipolar plane.

no longer orthogonal to the initial direction [6], [8]. Most of
the relevant experimental literature is concerned with primate
vision, although support for Listing’s law has also been found
in other species, including chameleons [9].

Donders’ law can be justified with respect to the kinematics
of the eye, i.e., cyclorotation is not a component of visual
direction, and thus, the oculomotor control problem can be
simplified by removing this degree of freedom. Experimental
evidence suggests that the human eye is not mechanically
constrained to behave this way. For example, irregular torsion
is observed in eye movements that occur during sleep [10]. The
particular form of Listing’s law has been justified with respect
to both “motor” and “visual” criteria. For example, it has been
shown that the law is related to the minimization of muscular
effort, total cyclorotation, and binocular disparity [4], [6], [11].

It is useful, as previously explained, to think of Donders’
law as a rule γ(α, β) that associates a cyclorotation angle γ
with each visual direction (α, β) such that the complete orien-
tation of the eye is given by the following three angles: 1) α;
2) β; and 3) γ(α, β). To derive the form of this function from
Listing’s law, it is first necessary to define the parameterization
of visual direction. Here, the angles α and β will be assigned
to the elevation and azimuth of the target, respectively. This
pair is the “Helmholtz” coordinate system [4], [6], [12]–[14],
in which the visual direction swings in a plane that contains the
interocular axis; the plane itself rotates around the interocular
axis, as shown in Fig. 1.

This azimuth−elevation scheme is the natural choice due to
four related reasons. First, it means that torsion can be measured
with respect to a reference plane, defined by the two optical
centers and the fixation point, which is intrinsic to the viewing
configuration. There is no need for an external definition of
“horizontal” and “vertical”. Second, the elevation of any visual
direction can be adjusted without affecting the azimuth. This
case is desirable with respect to the measurement of eye move-
ments, because the straight-ahead azimuth is easily defined
(by making the visual direction orthogonal to the interocular
axis), whereas the straight-ahead elevation is more difficult to
determine [5]. Third, the geometry of binocular vision can more
readily be described in Helmholtz coordinates, because each
elevation plane contains corresponding epipolar lines in the

left and right images [15]. Fourth, the definition of γ(α, β) is
simple and symmetric in the Helmholtz coordinate system (see
Section VI). The alternative definition in “Fick” coordinates [5],
[16], where α and β are the longitude and latitude, respectively,
is less concise.

C. Robotic Systems

The Helmholtz scheme is also the natural configuration for
an active binocular robot head [17], [18], because the left and
right pan motors can be fixed parallel to each other such that
the visual axes are coplanar. It follows that, as the cameras
converge, the axes will (ideally) intersect in space. Hence,
binocular fixation can mechanically be approximated. This type
of robot does not obey Listing’s law, as will be shown in
Section V. However, to simulate the human vision with such a
system, the method in Section IX can be used to appropriately
cyclorotate the original images. This paper, to simulate human
vision, provides an alternative to the mechanical implementa-
tion of Listing’s law [19], [20]. Robot heads of the latter type
are, compared with the Helmholtz configuration, more difficult
to construct and control [17].

D. Gaze Tracking

Listing’s law is also relevant to the design of gaze-tracking
systems [21], [22]. For example, greater accuracy can be
achieved by accounting for the small angular difference be-
tween the line of sight (defined in relation to the fovea) and the
optical axis of the eye [5], [23]. If the latter can be estimated,
then the plane that contains the two rays can be obtained from
Listing’s law. The line of sight is at a fixed angular offset, in
this plane, from the optical axis [24]. Listing’s law can also be
used to relate the direction of gaze to the projection of the iris
in a calibrated video of the eye [25].

E. Geometric Models

The mathematical expression of Listing’s law depends on the
representation of the relevant eye movements. The 3-D rotation
group can be parameterized in several different ways [26].
The quaternion [8], [12], [14], rotation vector [27], [28], and
geometric algebra [29] parameterizations, which are closely
related, are particularly well suited to the modeling of ocular
kinematics. It is also possible to represent a rotation by a pair
of reflections, which leads to a more geometric interpretation
of Listing’s law [30]. This paper emphasizes the computational
aspects of Listing’s law, which is formulated here in terms of
rotation matrices. The matrix representation has the advantages
of being both mathematically familiar and computationally
convenient. Furthermore, it can immediately be combined with
standard projection models from the computer vision literature.
This result is useful for geometric analysis of the retinal image
in relation to Listing’s law, as described in Section IX.

F. Novel Contributions

This paper describes new results in the representation, ap-
proximation, and simulation of Listing’s law. Primarily, a

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on September 22, 2009 at 04:46 from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HANSARD AND HORAUD: CYCLOROTATION MODELS FOR EYES AND CAMERAS 3

new derivation of the torsion function γ(α, β) is made in
Sections IV–VI. There are two objectives here. First, Listing’s
law will be expressed in terms of rotation matrices so that it can
readily be incorporated into the standard camera model of com-
puter vision [1]. Second, these rotation matrices will be suitable
for the analysis of binocular vision. This objective means that
the results that were obtained here provide a foundation for
further analysis of binocular kinematics [2].

Two approximations (one of which has previously been used,
e.g., [4]) of the Listing cyclorotation are made in Section VII.
The advantage of these approximations is that they dispense
with the trigonometric functions in the exact formula, which
makes it easier to incorporate cyclorotation into theoretical
models of oculomotor control [3], [4]. The aforementioned
results are visualized by stereographic projection. The objective
of the visualization is to understand the pattern of cyclorotation
across the visual field.

A procedure for the numerical integration of ocular torsion
is introduced in Section VIII, where it is used to estimate
the accuracy of the aforementioned approximate cyclorotation
models. This numerical evaluation is complementary to the
analytic approach that has been taken elsewhere [11]. The
objective is to establish the range of visual directions over
which the approximate models can be used. This evaluation
also justifies the approximations that have been used in previous
work (e.g., [3] and [4]).

Finally, in Section IX, an algorithm for the simulation of
Listing’s law is presented. The proper way of simulating oc-
ular torsion, given a set of calibrated images, has previously
not been addressed. Here, the objective is to understand how
cyclorotation relates to the extrinsic and intrinsic parameters of
the camera [1].

G. Organization of the Paper

This paper is organized as follows. Section II introduces
the necessary notation and defines the primary position of the
eye. A useful visualization procedure based on stereographic
projection is described in Section III. Matrix representations of
Listing and Helmholtz orientation are developed in Sections IV
and V, respectively. The Listing cyclorotation is derived in
Section VI. Approximations of the cyclorotation are developed
in Section VII. The accuracy of each approximation is evaluated
in Section VIII. It is shown in Section IX that, given a set
of images, the preceding results can be used to simulate the
effects of ocular torsion. Section X contains the conclusion of
this paper.

II. SCENE COORDINATES

Each scene point p = (x, y, z)� is represented in a head-
fixed coordinate system, as illustrated in Fig. 1. The origin is
located at the rotational center of the left eye, e = (0, 0, 0)�,
which is assumed to coincide with the optical center [5]. The
axes of the coordinate system are {x,y,z}, with x and y
being parallel to the coronal (“face”) plane. The vector x
points rightward along the interocular axis (according to the
subject’s point of view), whereas y points downward. The

coordinate system is right handed, and thus, it follows that z is
perpendicular to the coronal plane and points out into the scene.
It will be assumed that, when the eye is in the primary position,
z is aligned with the visual axis. The plane that is perpendicular
to x intersects the eyeball in a great circle, which, in the primary
position, defines the vertical meridian of the eye. The plane that
is perpendicular to the y axis defines, in the primary position,
the horizontal meridian of the eye. It will be assumed that these
meridians are fixed on the eye (not in the head).

The target point is p, which lies in a visual direction repre-
sented by the unit vector

v = p/d (1)

where d = |p| is the Euclidean distance to p. The target point
is fixated by a rotation of the primary line of sight z onto the
target direction v. This instance will be expressed as

Rz = v (2)

where R is a 3 × 3 rotation matrix. If the target point lies in
either the horizontal plane {x,z} or the vertical plane {y,z},
then the eye is in the secondary position after the rotation. The
fixation of a generic scene point leaves the eye in the tertiary
position [5].

It will be assumed, in the following sections, that the eye
begins in the primary position z and rotates to fixate the target
point p. If the eye begins in a nonprimary position, then it can
be shown that Listing’s plane is rotated in space by half the
angle of the initial direction [7], [30]. This case will not be
analyzed here.

Several different coordinate conventions have been used in
the literature (e.g., [6], [8], and [12]). The aforementioned
system was chosen for two reasons. First, it is consistent with
the computer vision literature, in which z is usually the optical
axis. Second, it is convenient in the binocular case, which
emphasizes the family of planes that contain the interocular
axis. Here, the convention of x that points rightward is kept
for these planes.

III. STEREOGRAPHIC PROJECTION

The orientation of the eye is visualized in this paper by stere-
ographic projection [5], [6]. This procedure, which is illustrated
in Fig. 2, is defined as follows. The eyeball is represented by
the unit sphere S located at e. The stereographic center of
projection s0 = (0, 0,−1)� is fixed in the head, at the back
of the eye-socket. A projection plane T is fixed in space
perpendicular to the z-axis. Now, consider a landmark on the
eyeball, with coordinates (vx, vy, vz)�; this point, together with
s0, defines a ray. The intersection of the ray with the plane T
defines the stereographic projection (ξ, η) of the landmark.
For example, if T passes through the center of S, then the
projection is

(ξ, η) =
(vx, vy)
1 + vz

. (3)

Any point other than s0 can be mapped to the plane this
way. In particular, the entire forward hemisphere of visual
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Fig. 2. Stereographic projection. A schematic of the procedure for construct-
ing Figs. 4, 5, 7, and 8. The eyeball, which is centered at the point e, is
shown from the back left, as shown in Fig. 1. The stereographic plane T is
perpendicular to the head-fixed z-axis. The eye fixates a scene point p; the
corresponding vector v points into the page. A reference cross, which is fixed
to the cornea, is projected onto T . The center of projection s0 is fixed in the
head, at the back of the eye.

directions {v : |v| = 1, vz ≥ 0} is mapped to the unit disc,
which is centered at (0, 0)� in T .

The orientation of the eye will be visualized by projecting
a notional cross, which is marked on the cornea of the eye
and aligned with the pair planes that contain the horizontal and
vertical retinal meridians. If the eye rotates to fixate a point p,
then the cross will take coordinates (vx, vy, vz)�, which can be
projected to (ξ, η) by (3). The procedure is illustrated in Fig. 2,
where, for clarity, the plane T is shown in front of the eyeball
(the principle is the same).

The stereographic projection preserves several properties of
the underlying rotation group [26]. This case means that the
procedure gives an effective visualization of ocular orientation,
as shown in Figs. 4 and 5. For example, consider the “spokes”
of parallel crosses that appear in Fig. 5(a); these spokes corre-
spond to geodesic paths through the space of orientation. The
eye directly moves from the central point, with no additional
rotation of the cross.

It should be emphasized that, in this paper, stereographic pro-
jection is used only for visualization. It is not used to describe
the retinal projection of the scene. Indeed, the stereographic and
optical centers of projection, s0 and e, respectively, are quite
distinct (see Fig. 2).

IV. LISTING ORIENTATION

Listing’s law states that the actual orientation of the eye,
while p is fixated, is consistent with a rotation of the primary
line of sight z = (0, 0, 1)� around a perpendicular axis w. It
follows that, for any target p, the corresponding axis w is in the
plane {x,y}, which, in this context, is Listing’s plane. The axis
is defined as

w =z × v (4)

= sin(φ)(sin θ, cos θ, 0)� (5)

where φ is the angle of rotation (from z to v), and θ is the
direction of the axis in the {x,y} plane, as shown in Fig. 3. The

Fig. 3. Listing coordinates (see Fig. 6). The optical center of the eye is located
at point e = (0, 0, 0)�. The initial gaze direction, with the eye being in the
“primary position,” is along the z-axis. To fixate the point p, a rotation through
angle φ is required. The axis w of the rotation is perpendicular to the {z, v}
plane and in the {x, y} plane. The axis is inclined from the vertical by an
angle θ.

angle θ is in the range 0 ≤ θ < 2π; in particular, if θ = 0, then
w is parallel to y, and the rotated line of sight lies in the {x,z}
plane. The angle φ can unambiguously be recovered from

sin φ =
√

w · w (6)

because of the physical constraint 0 ≤ φ ≤ π/2.
The axis w and angle φ define the Listing rotation, which

will be represented by a 3 × 3 matrix RL. Rodrigues’ equation
[26] is used to compute RL from w and φ, which results in

RL = (XL,yL,zL)

=

⎛
⎝ 1 − λ cos2 θ λ cos θ sin θ cos θ sinφ

λ cos θ sin θ 1 − λ sin2 θ −sin θ sinφ
−cos θ sinφ sin θ sin φ cos φ

⎞
⎠ (7)

where xL, yL and zL are the columns of the matrix, and the
versine

λ = 1 − z · v (8)

= 1 − cos φ (9)

has been introduced for notational convenience. The vector zL

is the rotated line of sight RLz, whereas {xL,yL} are the
rotated retinal axes. Equation (7) is a mathematical expression
of Listing’s law (see Section I-B).

The stereographic coordinates of the Listing rotation are
shown in Fig. 4(a), where the concentric circles are parame-
terized by θ, and the radial spokes are parameterized by φ. The
ocular orientations that result from Listing’s law are illustrated
in Fig. 5(a). Note that the crosses, each of which encodes the
ocular torsion, are parallel in this representation.

V. HELMHOLTZ ORIENTATION

It was shown in the preceding section that the target visual
direction v can be reached by a rotation RL of z around a
variable axis w. To quantify the torsion that is associated with
this rotation, it will be necessary to establish a reference system
of rotations. These rotations will be defined with respect to
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Fig. 4. Stereographic projection of the Listing and Helmholtz coordinate
systems. The track from the origin shows the path of the visual axis as the
eye turns to fixate in the direction θ = 45◦, φ = 65◦. Note that this approach
involves one rotation in (a) and two rotations in (b). A spacing of 10◦ is used
for each family of coordinate lines. (a) Stereographic projection of the Listing
coordinate system (θ, φ) (see Fig. 3). The primary direction is mapped to the
center of the disc; the boundary represents targets at φ = 90◦ eccentricity.
(b) Stereographic projection of the Helmholtz coordinate system (α, β) (see
Fig. 6). The points on the far left and right represent the intersection of the
interocular axis with the eyeball.

the fixed axes {x,y,z}. It is, as described in the Introduction,
convenient to use the Helmholtz rotation, i.e.,

RH = AB (10)

where A represents a rotation around x, and B represents a
rotation around y. The two factors are defined as follows. The
rotation matrix

A =

⎛
⎝ 1 0 0

0 cos α −sin α
0 sin α cos α

⎞
⎠ (11)

is associated with the elevation angle α of the target, and the
rotation matrix

B =

⎛
⎝ cos β 0 sin β

0 1 0
−sin β 0 cos β

⎞
⎠ (12)

Fig. 5. (a) Stereographic projection of Listing orientations, which are plotted
in polar coordinates (θ, φ). Note that the retinal orientations are mutually
parallel in this representation. Solid circles indicate eccentricities of 30◦,
60◦, and 90◦. Some crosses are omitted in the central region for clarity.
(b) Helmholtz orientations, which are plotted in (α, β) coordinates. Note that
the retinal orientations are not mutually parallel in this representation. The
horizontal meridian of each possible orientation lies in an azimuthal plane.

is associated with the azimuth angle β of the target. The azimuth
and the elevation are defined as

tan α = −vy/vz (13)
sinβ = vx/d (14)

where d is the distance to the target, as expressed in (1).
Note that points with positive elevation are above the optical
center (y < 0), whereas points with positive azimuth are at
the right of the optical center (x > 0). The angular ranges
are −π/2 ≤ α ≤ π/2 and −π/2 ≤ β ≤ π/2. The Helmholtz
rotation is illustrated in Fig. 6.

The explicit form of the Helmholtz matrix RH is obtained
by substituting (11) and (12) into (10) and performing the
multiplication, which results in

RH = (xH ,yH ,zH)

=

⎛
⎝ cos β 0 sinβ

sinα sin β cos α −sin α cos β
−cos α sin β sin α cos α cos β

⎞
⎠ . (15)
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Fig. 6. Helmholtz coordinates (see Fig. 3). The eye turns from the initial
direction z to fixate the point p, as shown in Fig. 3. This motion is represented
as follows. The eye rotates through angle β around the axis y, after which the
{x, z} plane is rotated by angle α around axis x. To match the final Listing
orientation, an initial cyclorotation around z of angle γ would be required.

Note that, by analogy with (7), zH is the rotated line of sight
RHz, whereas {xH ,yH} are the rotated retinal axes.

The stereographic coordinates of the Helmholtz rotation are
shown in Fig. 4(b), where the bottom-to-top curves are param-
eterized by α, and the left-to-right curves are parameterized
by β. Furthermore, note that each left to right curve can be
identified with the intersection of an epipolar plane with the
viewing sphere. The orientations that result from the Helmholtz
rotation scheme are illustrated in Fig. 5(b). It is important to
see that the crosses, compared with Fig. 5(a), are no longer
parallel. Rather, the “horizontal” axis of each cross lies in the
corresponding epipolar plane.

VI. OCULAR TORSION

It has been shown in Sections IV and V that the eye can be
directed to a target p by a Listing rotation RL or by a Helmholtz
rotation RH ; hence

zL = zH = (vx, vy, vz)� (16)

where v is the visual direction of p, as expressed in (1). The
Listing rotation accounts for the observed orientation of the
eye and for the direction. Hence, if Listing’s law is obeyed,
then the vectors xL and yL are aligned with the horizontal and
vertical meridians of the retina. However, the corresponding
Helmholtz axes xH and yH are, in general, cyclorotated around
the common direction v.

The discrepancy can be resolved by introducing a third
rotation matrix, which represents the torsion around the primary
direction z. We have

C =

⎛
⎝ cos γ sin γ 0

−sin γ cos γ 0
0 0 1

⎞
⎠ . (17)

Note that this cyclorotation is counterclockwise from the sub-
ject’s point of view (i.e., looking out along the increasing
z axis). For example, if γ = π/2, then Cy = x. This condition
is consistent with the sense of θ, which is shown by comparing
Figs. 3 and 6.

The Listing rotation RL can now be represented in the
Helmholtz system. The appropriate composition of (10) and

(17) gives the equation

RL = ABC. (18)

The torsion angle γ in (17), which solves (18), must now be
obtained in terms of the Euler angles α and β in (11) and (12).
This derivation will be made in two steps. First, the Listing
meridian yL will be expressed in terms of α and β. Second, the
inclination of this meridian will be computed in the Helmholtz
axes xH and yH .

It is straightforward to express yL in terms of the compo-
nents of zL by inspection of the second and third columns of the
rotation matrix (7). The result, which is written in the notation
of (16), is

yL =

(
−vxvy

1 + vz
,
1 + vz − v2

y

1 + vz
,−vy

)�

(19)

where the fact that sin2 φ = 1 − cos2 φ = (1 + vz)(1 − vz)
has been used. Equation (19) is the crux of the derivation,
because, using the equality (16), the components of v can be
substituted from zH , which is defined in the other coordinate
system (15). Now that both yL and yH are known in terms
of (α, β), the cosine of the torsion angle is easily obtained as
follows:

cos γ =yL · yH

=
cos α + cos2 α cos β + sin2 α cos β

1 + vz

=
cos α + cos β

1 + cos α cos β
(20)

where the identity cos2 α + sin2 α = 1 has been used. This
result is sufficient to define the torsion angle as |γ| < π/2.
However, it is also possible to compute the sine of the angle
as the dot product of yL with the reference axis xH . By a
derivation analogous to (20), we have

sin γ =yL · xH

=
sinα sinβ

1 + cos α cos β
. (21)

The cosine and sine equations (20) and (21) can be combined
to give the final result, i.e.,

tan γ =
sin α sin β

cos α + cos β
. (22)

This equation can be put into a useful half-angle form through
the trigonometric identity tan(μ/2) = tanμ sin μ/(tan μ +
sin μ). With reference to (21) and (22), this relation gives

tan
γ

2
= tan

α

2
tan

β

2
. (23)

The results (22) and (23) were originally obtained by Helmholtz
[6], although the current derivation is different.

The meaning of the torsion formula (22) is illustrated in
Fig. 7(a). Here, the location of each cross is determined by
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Fig. 7. (a) Listing orientations, which are plotted in (αβ) coordinates. Each
orientation has been subject to a cyclorotation γ(α, β), which results in
mutually parallel stereographic crosses, as shown in Fig. 5. (b) The approxi-
mate cyclorotation γ2(α, β), as defined in equation (25), has been used. The
approximation is good for eccentricities of less than 60◦ (i.e., inside the second
gray circle), but some tilting of the crosses is shown in the periphery. See Fig. 8
for a visualization of the difference between (a) and (b).

(α, β), as shown in Fig. 5(b). However, in each direction (α, β),
the eye has been cyclorotated by γ(α, β) in accordance with
(22). The result is that the projected crosses are made mutu-
ally parallel, as shown in the Listing orientation in Fig. 5(a).
Hence, it is shown that Listing’s law has been simulated in the
Helmholtz coordinate system.

Equation (23) shows that the torsion γ will be zero if either α
or β is zero. These “secondary positions” of the eye correspond
to the parallel crosses on the horizontal and vertical meridians
in Fig. 5(b). If α and β are both nonzero, then there are two
qualitative cases. If α and β have the same sign, then γ is
positive, and the resulting cyclorotation is counterclockwise
from the subject’s point of view [see (17)]. These rotations
map each cross in the upper right and lower left quadrants in
Fig. 5(b) onto the corresponding cross in Fig. 7(a). If α and
β have different signs, then γ is negative, and the rotation is
clockwise. These rotations map each cross in the upper left and
lower right quadrants in Fig. 5(b) onto the corresponding cross
in Fig. 7(a).

Consider, for example, the fixation of a distant scene point in
the upper midsagittal plane (i.e., “ahead” and “up”), as shown in
Fig. 1. This fixation means that the elevation is α > 0, whereas
the left and right azimuths are β� > 0 and βr < 0, respectively.
Then, it follows from (23) that, for each eye that obeys Listing’s
law, the nasal half of the horizontal retinal meridian will turn up
out of the Helmholtz elevation plane (for example, see [31] and
[32]). Furthermore, a rotation [see (17)] of the elevation plane
by γ� > 0 around the left visual axis would align it with the
horizontal meridian of the left retina. Likewise, a rotation [see
(17)] of the elevation plane by γr < 0 around the right visual
axis would align it with the horizontal meridian of the right
retina.2

The preceding example of “ahead” and “up” fixation can
also be described in relation to the vertical retinal meridians.
In this case, the upper halves of these meridians turn inward
(nasally) with respect to the head-fixed vertical direction.3 This
instance is commonly referred to as “intorsion” of the vertical
meridians [5].

Note that (18) expresses the Listing rotation RL = ABC
in relation to head-fixed axes x, y, and z. It is straightforward
to transform this expression to an eye-fixed representation, i.e.,
RL = C ′B′A′. The matrices C ′, B′ and A′ can be obtained
from Rodrigues’ formula, with axes B′A′z, A′y, and x,
respectively.

VII. APPROXIMATE MODELS

The Helmholtz torsion equation (22) is valid over the hemi-
sphere of gaze angles α, β ∈ [−90◦, 90◦]. The maximum range
of human eye movements is smaller than this value, and the
typical range is much smaller; an average saccade magnitude of
15◦ has been reported [33]. This result suggests that a simplified
form of the torsion function (22) may be valid in practice.
Moreover, there are three particular reasons for considering
approximate torsion functions: 1) a better understanding of
the exact torsion function can be obtained; 2) the ease with
which the visual system could represent the function γ(α, β) is
established; and 3) the approximations can be used to simplify
the kinematics of the oculomotor system [3], [4].

The Helmholtz torsion function (22), as noted in Section VI,
can be expressed in the half-angle form (23), with tan(γ/2) on
the left-hand side. Recall the truncated Taylor series tan(σ) =
σ + σ3/3 + O(σ5). The half-angle version of this series is
therefore

tan
σ

2
=

σ

2
+

σ3

3 × 23
+ O(σ5).

The corresponding series for tan(α/2) and tan(β/2) are
combined according to (23). The following half-angle approx-
imation is obtained, with discarded terms of total degree 6
(i.e., 3 + 3, 1 + 5, and 5 + 1) and higher:

tan
γ

2
≈ αβ

4
+

α3β

48
+

αβ3

48
. (24)

2For comparison with the literature, these are the “Upper-nasal; Out” cases
in Westheimer’s [12, Tables 1 and 2].

3Westheimer’s “Upper-nasal; In” cases [12].
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Fig. 8. Visualization of the difference between the actual torsion [see
Fig. 7(a)] and the γ2 approximation [see Fig. 7(b)], as plotted in the (αβ)
coordinates. Larger discs represent worse approximations, as can be confirmed
by comparing Fig. 7(a) and (b). Note that the large errors occur in directions
with high absolute elevation |α| and high absolute azimuth |β|. Errors of
less than 0.5◦ are not shown; otherwise, the disc radii are proportional to
|γ2(α, β) − γ(α, β)|. The horizontal and vertical meridians shown are in gray
for reference.

Note that the terms of total degrees 3 and 5 are not in the expan-
sion in (23) due to the saddle-like symmetries of the function.

The inverse tangent can be approximated by the formula
tan−1(στ) = στ + O(σ3τ3), where the total truncation degree
matches that of (23). It follows that the second- and fourth-
degree approximations of γ(α, β) are

γ2(α, β) =
αβ

2
(25)

γ4(α, β) =
αβ

2
+

α3β

24
+

αβ3

24
. (26)

The first of these approximations [see (25)] has appeared
elsewhere (e.g., [4]). It is shown that the approximations are
much simpler than the original function [see (22)]; in particular,
neither trigonometric nor inverse-trigonometric functions are
involved.

The accuracy of the second-degree approximation [see (25)]
is visualized in Fig. 7(b). If the approximation were perfect,
then this plot would be identical to that in Fig. 7(a). It is shown
that, inside the second (60◦) circle, the two plots are visually
indistinguishable. Differences in cyclorotation can, however,
clearly be seen along the outer (90◦) circle. The corresponding
plot of the fourth-order [see (26)] approximation is visually
identical to that in Fig. 7(a). The discrepancy between Fig. 7(a)
and (b) is visualized in Fig. 8. A more formal evaluation will be
made in the following section.

VIII. NUMERICAL EVALUATION

The exact and approximate torsion functions will now be
compared over a range of visual directions. This comparison
will intuitively be done by moving the eye from the primary
position to a new direction and evaluating the resulting torsion.
This measurement will be averaged over a continuous range of

visual directions. The range of directions will be defined by
putting an upper limit on the eccentricity r of a visual target.
Hence, it is natural to choose a set of Listing directions, with
0 ≤ φ ≤ r, which can be converted to Helmholtz coordinates
and will be used in (25) and (26). The conversion is obtained
by comparing the third columns of the matrices (7) and (15). If,
as before, the eccentricity of the target is in the range 0 ≤ φ ≤
π/2, then

α(θ, φ) = tan−1 sin θ sin φ

cos φ
(27)

β(θ, φ) = sin−1(cos θ sinφ). (28)

It is now straightforward to define a function δ(θ, φ), which is
the torsion value γ and measured in direction (θ, φ) as follows:

δ(θ, φ) = γ (α(θ, φ), β(θ, φ)) . (29)

The functions δ2(θ, φ) and δ4(θ, φ) are similarly defined
from the approximations γ2 and γ4, respectively, [see (25) and
(26)]. The torsion error εk(θ, φ) will also be defined in the
Listing coordinates. This function measures the difference
between the approximate and actual values, i.e., δk and δ,
respectively. We have

εk(θ, φ) = δk(θ, φ) − δ(θ, φ). (30)

The accuracy of the kth-order approximation can be evaluated
by integrating a suitable function of εk over a region of visual
directions (θ, φ). Such integrals can be studied analytically, but
a numerical approach will be preferred here. This choice allows
the integrand and the region of integration to be chosen with
more freedom. In particular, the absolute value of the error can
be integrated.

The notation |g|r0 represents the functional that returns the
average absolute value of a function g(θ, φ), which is computed
over a range of visual directions 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ r.
This notation is defined as

|g|r0 =
1

A(r)

2π∫
0

r∫
0

sin(φ) |g(θ, φ)| dφ dθ (31)

where sin(φ) is the scalar Jacobian. The normalization term
A(r) is the area of the spherical cap, over which the integration
is performed. This term is easily obtained from the formula

A(r) = 2π(1 − cos r). (32)

The integral (31) was evaluated by a standard numerical routine
[34]. Table I shows the results of the evaluation. Each functional
|g|r0 was evaluated for all eye movements up to eccentricity r =
15◦, 30◦, 45◦, 60◦, and 75◦. Note that 0 ≤ φ ≤ 30◦ represents
a “typical” range of human eye movements, whereas 0 ≤ φ ≤
60◦ extends to the maximum physical range. The upper limit
can be reached, by humans, in the downward direction. The first
row of the table gives the mean absolute torsion |δ|r0, which
was evaluated in the Helmholtz system. These values, which
do not seem to have previously been computed, are useful
for gauging the significance of the approximation errors. The
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TABLE I
ABSOLUTE VALUES OF THE ACTUAL TORSION δ(θ, φ) AND

APPROXIMATION ERROR εk(θ, φ) AVERAGED OVER INCREASINGLY

LARGE REGIONS OF THE VIEWING SPHERE

second and third rows of the table give the average errors ε2
and ε4 that are associated with torsion approximations γ2 and
γ4, respectively [see (25) and (26)]. Hence, the relative error of
the approximations can be computed from |εk|r0/|δ|r0.

The principal conclusion is that the second-order approxima-
tion γ2(α, β) = αβ/2 has an average error of 0.02◦ for φ ≤ 30◦

and of 0.4◦ for φ ≤ 60◦. As fractions of the average torsion |δ|r0,
these numbers represent errors of 1.6% and 7.3%, respectively.
Hence, for typical eye movements (φ ≤ 30◦), the second-order
approximation is adequate, given that eye movements can typ-
ically be measured to a precision of around 1◦ [5]. The table
also shows that, for all achievable eye movements (φ ≤ 60◦),
the fourth-order model γ4 is adequate.

IX. SYNTHETIC TORSION

It will now be shown that the results in Sections IV–VII
can be used to synthesize the effect of Listing’s law on images
that have been obtained from a pan−tilt camera mounting.
Moreover, this operation will be performed in a way that is
physically consistent with the original camera, which means
that the synthetic image will match the one that would have
been obtained after the corresponding cyclorotation of the cam-
era. It is important to ensure physical consistency so that sub-
sequent algorithms need not distinguish between the original
and the synthetic images. This requirement cannot, in general,
be satisfied by simply rotating the original images around their
centerpoints. The appropriate image transformation must be
defined in relation to the projection matrix of the camera, as
shown in the following discussion. Note that it is usually more
convenient and faster to extract features (e.g., points and edges)
in the original image and then to transform the coordinates of
the features. This approach avoids the need to resample or crop
the pixel data.

It will be assumed that the camera and ocular projections can
be approximated by the usual pin-hole model [1]. Furthermore,
it will be assumed that the nodal points of the optics coincide at
the fixed rotational center e = (0, 0, 0)� of the camera, as ex-
pressed in (2). Each scene point q has coordinates (x, y, z)�, as
described in Section II. The perspective projection is obtained
through the 3 × 3 matrix M , which results in homogeneous
“eye coordinates” qE = (xE , yE , zE)�, with corresponding
pixel positions (xE/zE , yE/zE)�. This projection means, with
reference to (2), that

qE = Mq (33)

= SR�q (34)

where R� is the scene-to-eye rotation, and S performs affine
transformation of the image to account for the “intrinsic”
parameters of the camera (as described in the following discus-
sion). Note that the rotation is transposed for consistency with
(2). In particular, it follows from (1) and (2) that the projection
of the fixated point p is Sz. For a perfect pan−tilt mounting,
the rotation R� would have the form B�A� based on (11)
and (12). In practice, the camera matrix M [as expressed in
(33)] can be estimated by standard methods and decomposed
as follows [1]. The matrices S and R� [as expressed in (34)]
are obtained by RQ-factorization4 of M . The first factor can
be written as

S =

⎛
⎝ s11 s12 x0

0 s22 y0

0 0 1

⎞
⎠ . (35)

This matrix contains the pixel coordinates (x0, y0)� of the
principal point (intersection of the optical axis with the image
plane), two scale factors (s11, s22), and a parameter s12 ≈ 0
that allows for a skew between the horizontal and vertical
axes of the sensor. In more detail, s11 = fgx, and s22 = fgy ,
where f is the focal distance of the camera, and the scales
(gx, gy) determine the number of pixels per unit distance in the
horizontal and vertical dimensions.

These intrinsic parameters [see (35)] should not be changed
by a synthetic cyclorotation C� of the image. Note, however,
that the naive procedure C�qE would imply a camera C�SR�

according to the projection model [see (34)]. The matrices C�

and S do not, in general, commute. It follows that S would not
be recovered from the RQ-factorization of the implied camera
(due to the uniqueness of the factorization). For this reason, the
cyclorotated points are properly defined as

q′
E = SC�S−1qE . (36)

This definition, with reference to (34), implies the existence of
a synthetic camera matrix M ′. We have

M ′ =SC�S−1M

=SC�R�.

It is clear from (34) that the matrix M ′ has the RQ-
factorization S · C�B�A� and is therefore consistent with the
original set of intrinsic parameters [see (35)]. In practice, it
may be more convenient to work with “normalized coordinates”
S−1qE , where the effects of the intrinsic parameters have
been undone. In this case, the cyclorotated and normalized
coordinates are simply

q′′
E = C�S−1qE . (37)

The product C�S−1 can first be formed so that a single affine
transformation is applied to the observed feature coordinates
qE . Note that this mapping is a 2-D transformation, depending

4The decomposition M = RQ has an upper triangular factor R and an
orthogonal factor Q. The decomposition is unique if, as is the case in this paper,
M has full rank and R is required to have positive elements on the diagonal.
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only on the intrinsic parameters (35) and the cyclorotation angle
γ. In the special case that the upper left 2 × 2 block of S is a
multiple sI2 of the identity matrix, the procedure (37) simply
translates the principal point (x0, y0)� to (0, 0)� before scaling
and rotating the feature coordinates by s and γ, respectively. In
general, however, s11 
= s22, and s12 
= 0, which mean that the
transformation (37) should be used.

If the cyclorotation angle γ is defined by (22), then the new
coordinates q′′

E (and the Q factor of the implied camera matrix)
are subject to Listing’s law and are physically consistent with
the original camera. Other aspects of biological vision, e.g.,
the nonuniform distribution of photoreceptors on the retina
[35], can be modeled by further transformations of the new
coordinates. It is also possible to adapt the aforementioned
model to a spherical projection, which may be more appropriate
for the human eye; in this case¸ the observed feature coordinates
are (xE/d, yE/d)�, where d = |q| is the distance to the point,
as expressed in (1).

X. DISCUSSION

It has been shown in Sections II–VI that Listing’s law can
be formulated in terms of rotation matrices. This means that the
usual computer vision camera-model (34) can easily be adapted
to the human eye, as shown in Section IX. Two polynomial
approximations of the torsion function γ(α, β) were derived
in Section VII. A procedure for numerical integration over
visual directions was introduced in Section VIII. The average
cyclo-rotation was computed, and the two approximations were
validated. Finally, in Section IX, it was shown that Listing’s law
can be imposed on a suitable set of calibrated images.

There is considerable interest in the relationship between
Listing’s law and other visual processes, such as spatial vision
and stereopsis [2], [4], and [38]. For example; if the binocular
fixation point is relatively close, then Listing’s law must be
modified [36], [37]. Future work will include an extension of
the present analysis to the binocular case [15]. The results pre-
sented here, as described in the introduction, make it possible
to evaluate such models with respect to real images.

The implications of Section VII, with regard to the neural
representation of eye-movements, are also interesting. It is clear
that the cyclo-rotation angle is a slowly-varying function of vi-
sual direction, over the typical range of eye movements. Indeed,
the results of Section VIII show that the observed cyclo-rotation
is effectively proportional the product of the eye’s azimuth
and elevation. This suggests that Listing’s law could be be
represented quite directly in the primate oculomotor system [3].
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