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Gradient Flows for Optimizing Triangular Mesh-based Surfaces:

Applications to 3D Reconstruction Problems dealing with Visibility
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Abstract This article tackles the problem of using varia-

tional methods for evolving 3D deformable surfaces. We

give an overview of gradient descent flows when the shape

is represented by a triangular mesh-based surface, and we

detail the gradients of two generic energy functionals which

embody a number of energies used in mesh processing and

computer vision. In particular, we show how to rigorously

account for visibility in the surface optimization process.

We present different applications including 3D reconstruc-

tion from multiple views for which the visibility is funda-

mental. The gradient correctly takes into account the visi-

bility changes that occur when a surface moves; this forces

the contours generated by the reconstructed surface to match

with the apparent contours in the input images.

Keywords Triangle Mesh-based Surface · Gradient

Descent Flow · Surface Evolution · Variational Methods ·

Shape Gradient ·Visibility · 3D Reconstruction ·Multi-view

Stereovision

1 Introduction

Variational methods are commonly used in computer vision

and computer graphics to compute, improve and process sur-
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INRIA Rhône-Alpes, Perception team, LJK – Grenoble, France

Tel.: +33 4 76 61 54 47

Fax.: +33 4 76 61 54 54

E-mail: Emmanuel.Prados@inrialpes.fr

face interfaces. Such approaches consist of defining an en-

ergy whose minimum is reached by the surface of the ob-

ject of interest. In particular, this framework has been widely

used in 3D reconstruction problems, see for example [5,13,

15,22,23,24,26,29,35,40,41,46,47,49]. In mesh process-

ing, geometric flows have been extensively used in different

applications such as texture synthesis [2], mesh denoising

[9,30] and shape matching [12].

This article focuses on the optimization of 2D surfaces

of R
3 represented by triangle meshes, via gradient descent

methods. We rigorously establish and detail the gradient flows

of some generic energies which encompass a large number

of energies used in computer vision and for which the nor-

mal to the surface and the visibility appear in their formu-

lation. We demonstrate the interest of this contribution by

illustrating it via several applications, in particular applica-

tions in 3D reconstruction from multiple calibrated cameras.

1.1 Considered Energies: from Weighted Area Functionals

to Functionals that account for Visibility

In this paper, we first consider the following generic energy:

E(S) =

∫

S

g(x,n(x))ds , (1)

where S is a 2D surface embedded into R
3. Here g : R

3 ×

S
2 → R is a scalar function defined on the surface that even-

tually depends on the normal n to the surface S; S being the

unit sphere of R
3. ds is the element of area of the surface.

This generic energy is very classical and is called a weighted

area functional. It has already been studied in the literature

in the continuous framework, see in particular [16,17,42].

A number of energies proposed in the computer vision, im-

age processing and mesh processing literature are particular

cases of this energy.
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In this paper we are also considering more complex fam-

ilies of energies. Generally in inverse problems, all rests on

a priori knowledge (models, regularizations etc) and the data

fidelity. A common solution to inverse problems is provided

by minimizing some criteria which compares the real in-

put data to some synthetic data generated by the models.

Also, to be complete, the comparisons must be done on the

data space. In particular, as explained in [15,39], in 3D re-

construction problems from image data, a natural solution

would be a surface such that the images generated from

the model are more similar to the observed images (i.e. the

data). This naturally leads to formulate the problem as the

minimization of an error measure between the observed and

predicted values of pixels, carried out over all pixels in all

input images. This thus brings us to minimize some energy

of the form [15,39]:

E(S) =

∫

I

g
(

π−1
S

(p), n(π−1
S

(p))
)

dp , (2)

where I is the set on which data is defined (the set of all pix-

els in the image, in the case of the 3D reconstruction prob-

lems from images), and π−1
S

(p) is the point of the surface

corresponding to p (the surface point which is viewed in

pixel p, in the 3D reconstruction problems from images). In

the case where π−1
S

(p) does not reproject onto the surface

S, π−1
S

(p) is a point on the background B. dp is the area

measure on the sensor. g gives the error measure for the data

point p. Such functionals are generally called reprojection

errors. One of the major properties in image formation, also

one of the major problems in computer vision, is that only

visible (i.e. unoccluded) elements are present in the image.

Functionals (2) can then be rewritten as an integral over the

surface (instead of the image) by counting only the visible

points [34,39,47]. This gives, by a simple change of vari-

ables:

E(S) =

∫

S∪B

g(x,n(x)) · n(x) νS(x) ds . (3)

This involves adapting the measure on the surface [39] and

the expression of g which directly depends on the projection

model being used. In most cases, e.g. for orthographic, per-

spective or linear pushbroom cameras, we have g(x,n) =

−g(x,n)k(x)d(x), where k(x) is a specific scalar func-

tion of x and d(x) is the projection vector of x according

to the camera. For example, for a perfect pinhole camera

model, the adequate g is given by g(x,n) = −g(x,n) 1
x3

z
x,

see [34,39,47]. For a linear pushbroom camera, we have

g(x,n) = −g(x,n) 1
v·d(x) dz(x)d(x), where d(x) is the

vector joining x and the optical center of the sensor at cor-

responding time; v is a vector depending on the speed of the

satellite, see [18]. In (3), B is the surface behind S that cor-

responds to the background (i.e. the points on the data set

which do not correspond to any point of the surface model

of the object of interest). νS(x) is the visibility function

νS : R
3 7→ R

3 such that:

νS(x) =

{

1 if x is visible from the camera,

0 otherwise.
(4)

Fig. 1 Banana Shape seen from a vantage point (See [14]). The energy

defined over the image explains the visibility interface ∂νS (in red) of

the surface S.

Finally, by using the separation technique proposed by

[47], we can rewrite energy (3) as an integral over only the

visible surface:

E(S) =

∫

S

g(x,n(x)) · n(x) νS(x) ds . (5)

To obtain g from g, we refer the reader to Section 5.3.2 and

especially Equation (49), as well as [47], which comprehen-

sively details this step. Figure 1 illustrates the case of an

energy defined over a visible volume.

Let us emphasize that handling properly the visibility

term is a non-trivial undertaking. In particular, this is one

of the major difficulties in the stereovision problem. Previ-

ous works cope with this difficulty more or less elegantly.

Most often the authors approximate the visibility in some

pre-processing steps which can be completely prior to the

whole algorithm or else inside the iterations of the mini-

mization process [3,13,20,22,34,39,50].

Only recently, some authors [15,47] manage to rigor-

ously and fully account for visibility in the optimization pro-

cess. In their recent work, Yezzi and Soatto [47] (for convex

surfaces) and Gargallo et al. [15] (in the general case) pro-

vide the exact gradient of the reprojection error. This compu-

tation is done in the mathematical framework of continuous

(smooth) surfaces as used in [42]. This work has shown that

a proper handling of the visibility automatically forces the

apparent contours generated by the reconstructed surface to

perfectly match with the apparent contours in the observed

data. This makes the use of additional energy terms like bal-

looning [44], visual hull [19,37] or contours unnecessary

and significantly reduces the minimal surface bias present

in many other problem formulations.

In this paper, we rigorously minimize energies (1) and

(5). But contrary to the works [15,47] which deal with con-

tinuous surfaces, here we consider triangle mesh-based sur-

faces.
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1.2 Gradient Descent Optimization

Energy (5) is rather difficult to optimize. In particular, the

complexity is due to the dependency on the normal and the

visibility term. There exist several tools to minimize energy

functionals. Recent methods, such as graph-cuts for exam-

ple, allow us to find global minimum. At the present time

these global optimization techniques are limited to rather

simple energies [28] and, based on the current state-of-the-

art, it seems extremely difficult to apply them for minimiz-

ing energies such as (5). Recent advances also allow such

minimization via total variation and convex relaxation meth-

ods [24,26], however it is difficult to apply those methods

for functionals depending on the surface normal. The recent

work of [27] allows to take the normal into account but is

not directly applicable to general energy functionals like (1)

and (5). Taking the normal into account in the minimization

allows to produce high quality 3D models [31]. In this pa-

per we compute the derivatives of the generic functionals (1)

and (5) which allow us to minimize it via gradient descents

[6,13,16,42], see Section 2.

1.3 Triangle Mesh-based Representation

Surface representation based on polyhedral and especially

triangular meshes are the most commonly used in graphics.

Moreover, the design of graphics hardware makes triangu-

lar meshes the most natural way to represent surfaces in a

number of applications. In the variational framework, this

type of discrete representations leads to the Lagrangian set-

ting. Lagrangian methods are generally contrasted with Eu-

lerian approaches which are mainly based on the level set

representation [32]. During the last decades, Eulerian meth-

ods have become very popular mainly because they allow

us to naturally deal with topological changes. In particu-

lar, this last setup has been extensively used for 3D recon-

struction problems [5,13,15,22,23,25,29,35,40,41,46,49].

Nevertheless, recent advances in mesh processing allow La-

grangian methods to enjoy the same facilities [33,51]. In

other respects, in the Eulerian methods, the gradient is com-

puted in the continuous framework. Technically, computing

the gradient in the continuous framework is more compli-

cated than in a discrete framework, since the first one re-

quires functional analysis when the second one only needs

differential calculus. Furthermore, in practice in Eulerian

approaches, one finally needs to discretize the continuous

gradient flow since the level set function is also discretized

on a grid. Also, this discretization (which is usually obtained

using discrete differential operators [30] or finite element

modeling [11]) is sometimes difficult to obtain, as we can

see for example in Sections 3 and 4. By directly considering

discrete surfaces, this last step is not necessary in our case.

Now, let us note that Langragian methods may be clas-

sified into two different approaches: The first strategy con-

sists in 1) formulating the problem with continuous surfaces

and computing the gradient in the continuous framework,

then 2) discretizing the continuous gradient in order to ap-

ply it to the discrete surface. The second strategy consists

in 1) formulating directly the problem with the discrete sur-

face representation, then 2) computing the exact gradient of

the formulated energy. Clearly, the second strategy is bet-

ter than the first one: in fact in the first strategy we do not

know if finally in practice the discrete representation min-

imizes something; in the best case, we do not know which

exact energy the computed solution really minimizes since it

does not necessarily corresponds to the representation. Also,

surprisingly, a number of works follow the first strategy, see

for example [3,10,51]. In particular, the gradient is com-

puted using normal velocities whereas the second approach

may have tangential components which leads to more co-

herent flow. In this paper, we follow the second strategy

as other authors: for example, Slabaugh and Unal [38] who

deal with surface segmentation, Eckstein et al. [12] who are

interested in shape matching, or Vu et al. [45] who proposes

a complete multi-view stereovision algorithm. We also use

the similar strategy presented by Debreuve et al. [7] who

deal with discrete parametric active contours for segmenta-

tion or Dziuk and Elliott [11] using finite element modeling

on evolving surfaces. More exactly, we detail the exact gra-

dient flow of energy (1) in which the surface S is explicitly a

discrete surface based on triangular meshes, and also extend

it to visibility-driven energies (5).

1.4 Contributions

In this article, we first give an overview of gradient descent

flows with deforming surfaces, when represented by trian-

gular surface meshes. Here, the gradient is the one of the

energy defined with the discrete surface; we do not need

to approximate and discretize it when we finally evolve the

surface. Even though the visibility plays a key role in com-

puter vision, until now it has been managed more or less

elegantly. It is clearly a key difficulty in the field, which has

been recently solved in the theory of continuous surfaces

[14,15]. Here, we show how to rigorously deal with the vis-

ibility in the framework of discrete surface representations

and we give the gradient flow of generic energies which en-

compasses a large class of energies used in computer vision

(see Section 4).

We then illustrate the presented results by giving the gra-

dient of commonly used functionals in computer vision and

graphics, and we emphasize the 3D reconstruction applica-

tions for which the visibility is fundamental; we thus show

in Section 5 how one can apply mesh evolution techniques to
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3D reconstruction applications from multiple views. In par-

ticular in Section 5.3 we focus on the multi-view stereovi-

sion problem and we propose a successful algorithm which,

since it fully accounts for visibility, automatically aligns con-

tour generators with image contours.

This article generalizes our previous conference paper

[8] in which the considered energy does not depend on the

normal. This allows us to present here a larger spectrum of

applications including multi-view shape from shading and

multi-view photometric stereo (see Section 5.5).

2 Gradient Flows

In this section, we are interested in minimizing energy func-

tionals defined on surfaces with respect to the surface repre-

sentation. Whatever surface representation one chooses, the

energy minimization should be consistent with it in order to

be sure the energy minimized is the right one. It has been

common to minimize such energy by performing gradient

descent. Computing an adequate gradient corresponding to

the representation of the surface is not trivial, and the follow-

ing gives a way for computing generalized gradient flows for

an energy E(S), where S is a 2-dimensional surface in R
3,

g is a differentiable scalar function and n is the Gauss map

for S.

In the following, we explain how to obtain such gradi-

ents firstly in the theory of continuous smooth surfaces, and

finally using triangular meshes.

2.1 Gradient Descent in the Continuous Case

Let M denote the set of all admissible 2D-manifolds embed-

ded in R
3, and S ∈M . Let v be a vector in the tangent space

of M , denoted by TF M , associated with an inner product

〈·, ·〉F . Let E(S) : M → R be a surface functional as de-

fined previously (1) such that its Gâteaux Derivative in the

direction v can be expressed as : DE(S,v) ≡
d

dτ
E(S +

τv)
∣

∣

∣

τ=0
. Then the gradient of E at S is the unique vector

∇ME(S) ∈ TF M such that DE(S,v) = 〈∇ME(S),v〉F
for all v ∈ TF M . See for instance Solem and Overgaard

[42] for a more detailed explanation.

Then, the gradient descent flow of an energy E(S) as the

form:






S(0) = S0 ,

∂S(t)

∂t
= −∇ME(S(t)) .

(6)

2.2 Gradient Descent for Polyhedral Meshes

In practice, we often deal with discrete representations of

the surface. Also whichever this representation is, comput-

ing exactly the gradient of the energy including directly the

discrete representation of the surface is much more suitable

than computing the gradient in an ideal continuous frame-

work (with continuous surfaces) and then discretizing the

continuous gradient accordingly to the discrete representa-

tion. In fact, the second strategy has two significant draw-

backs. First, the continuous gradient lets often appear terms

that are very difficult to discretize and which sometimes do

even not really make sense in the case of discrete surfaces.

For example the notion of surface curvature on mesh rep-

resentation has a lot of different approximations. Second,

since the discrete object we are practically handling is not

deformed following the exact gradient but by an approxima-

tion of it, finally, we do not exactly know what we are mini-

mizing. In this paper, we then compute the exact gradient of

the energy including directly the discrete representation of

the surface in the same way as [11,12].

Let the mesh X = {x1 . . .xn} be the piecewise planar

polyhedral representation of S. Vertices of X are denoted

by xk and S is deformed by moving vertices xk. We de-

note by φk : S → R the piecewise linear, interpolating

basis function such that φk(xk) = 1 and φk(xi) = 0 if

i 6= k. Then any point x on the surface S can be defined

such that ∀x ∈ S, x =
∑

k xkφk(x), where we also have

∀x ∈ S,
∑

k φk(x) = 1.

Let the set {Vk} be a parametrized vector field defined

on all the vertices xk of the mesh X representing the sur-

face deformation. {Vk} can be naturally extended on S by

a piecewise linear vector field on S. For convenience, we

denote this extension V : V(x) =
∑

k Vkφk(x).

Then, evolving X, by moving its vertices xk following

Vk is equivalent to deform the surface S by the dense de-

formation following V.

Fig. 2 Local evolution of a surface point xk under induced velocity

Vk used to compute the gradient.

The gradient of the energy is computed using shape gra-

dient [7]. We consider the evolution of this energy accord-

ing to the deformation V. In other words, we assume that

the vertices xk[t] of X[t] are moving according to xk[t] =

x0
k+tVk (See Figure 2). The method for computing the gra-

dient of E(S) consists in computing the directional deriva-

tive of E(S[t]) for this deformation and then in rewriting

it as a scalar product of V, i.e. as 〈V,G〉, G being inde-

pendant of V. The obtained vector G is called the gradient

and the energy necessarily decreases when deforming the
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surface according to its opposite direction −G. Indeed, for

xk[t] = x0
k − tGk, we have

[E ◦ S]′(0) = −〈G,G〉 ≤ 0,

see [12].

Let us recall now that, as underlined by [6,12], the no-

tion of gradient depends on the underlying scalar product. In

this work we will only consider the L2 inner product which

has the advantage of taking into account the area of the tri-

angles contrarily to the pointwise scalar product, which is

necessary if the surface is not a regular mesh. Let A = {ak}
and B = {bk} be vector fields on the mesh X. Let a and b

be their linear extension on the whole surface S. Then their

L2 scalar product is:

〈A, B〉L2 =

∫

S

〈a(x), b(x)〉ds

=

∫

S

〈

∑

k

akφk(x),
∑

k

bkφk(x)

〉

ds

= AT M B ,

(7)

where M = {mij} is the mass matrix defined by mij =

Id3

∫

S
φi(x)φj(x)ds. In the last line of Equation (7), A and

B are the matricial representations of the vector fields. They

are column vectors containing successively ak and bk vec-

tors. Then the gradient becomes:

∇E(X) = M−1 ∂E

∂X
(X) , (8)

where

∂E

∂X
(X) =

[

∂E

∂x1
(X)

∂E

∂x2
(X) . . .

∂E

∂xn

(X)

]′

corresponds to the gradient associated with the pointwise

inner product < A,B >=
∑

k ak · bk.

One classically approximates M by the diagonal mass

lumping M̃ , where m̃ii is the area of the Voronoi dual cell

of xi times the identity matrix Id3, see e.g. [12]. It follows

that the L2 gradient descent flow is:






X[0] = X0 ,

∂X[t]

∂t
= −M̃−1 ∂E

∂X
(X[t]) .

(9)

2.2.1 Triangle Mesh Representation and Notations

The previous results are valid for any polyhedral represen-

tation. Also in practice and in the following, we will focus

on triangle representation that are easier to understand and

more simple to handle using computers.

Let Sj be the jth triangle of the mesh and xk be a vertex

of Sj . Let us consider the parametrization on the triangle Sj

such that

x(u) = xk + u −−−→xkxk1 + v −−−→xkxk2 , (10)

where xk1 and xk2 are the two other vertices of the triangle

Sj such that (xk,xk1,xk2) is a counter-clockwise triangle.

Here, u = (u, v) ∈ T , where

T = {(u, v)|u ∈ [0, 1] and v ∈ [0, 1− u]} .

Figure 3 illustrates this representation and parametrization.

Too be rigorous, we should write x
j
k(u) instead of x(u),

since the parametrization depends on j and k. Nevertheless,

in order to simplify equations and improve the clarity of the

paper, we remove these indexes in the rest of the paper. In the

following, when we use x(u), the choice of the associated j
and k is directly given by the context. On each triangle Sj ,

we denote by φk the linear interpolating basis function that

verifies φk(x(u)) = (1− u− v) , ∀(u, v) ∈ T .

We denote by Aj the surface area of triangle Sj and by

nj its outward surface normal. Aj and nj can easily be de-

fined with respect to the triangle vertices such that:

Aj =
1

2
|−−−→xkxk1 ∧

−−−→xkxk2| and nj =
−−−→xkxk1 ∧

−−−→xkxk2

2 Aj

,

where the operator ∧ denotes the cross product. Indeed it is

easy to show that the area surface measure on the surface ds

can be written using the parametrization u such that:

ds = 2Aj du . (11)

In the following, we also denote by ej,k the opposite edge of

the vertex xk in the triangle Sj such that ej,k = −−−−→xk1xk2.

Jk represents the set of triangles containing vertex xk

and the set Kj is the set of indexes of the three vertices of

triangle Sj (See Figure 3.).

3 Gradient of Weighted Area Functionals

3.1 Continuous Case

Let S ∈ M be the surface to deform in order to minimize

the following classical weighted area functional (1):

E(S) =

∫

S

g(x,n(x))ds ,

where g is a differentiable scalar function defined all over

the surface. Then using shape gradient as described previ-

ously, one can rewrite the differential of E(S) under a linear

deformation V in order to find the expression of∇E(S). As

used in [15] and shown in [42], the gradient descent flow of

the functional defined in (1) has the form:

∇E(S) = ∇ · (gn + gn) , (12)

where gn is the gradient on the unit sphere S.
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Fig. 3 Local parametrization of the discrete representation of the surface into a triangle mesh. Figure on the left shows the local parametrization

u(u, v) of a surface point. On the right, we show the notations used in the paper where xk is the current vertex of S, Sj is the current facet around

xk and ej,k is the opposite edge of xk in Sj . The gray area represent the set of triangles around xk denoted by Jk.

3.2 Gradient for Triangle Mesh-based Surfaces

In this paragraph, we consider the discretization on the sur-

face and the gradient descent flow described in the previ-

ous section, when the surface is represented by a triangular

mesh. Also we consider the case where the energy functional

to be minimized is:

E(S) =

∫

S

g(x,n(x)) ds

=
∑

j

2 Aj

∫

T

g(x(u),nj) du ,
(13)

where Aj and nj are defined in Section 2.2.1.

Let us focus on the evolution of E(S) under the induced

velocity V on triangle Sj only. We have

E(Sj [t]) = 2 Aj [t]

∫

T

g(x(u)+tV(x(u)),nj [t]) du , (14)

where Aj [t] is the area of the triangle Sj [t] and nj [t] is its

normal at time t. By simple derivation we get

d

dt
E(Sj [t])

∣

∣

∣

t=0
= 2A′j [0]

∫

T

g(x,nj) du

+ 2 Aj

∫

T

∇xg(x,nj) ·V(x) du

+ 2 Aj

∫

T

∇ng(x,nj) · n
′
j [0] du .

(15)

Above, in order to simplify equations, we have removed the
dependency in u by writing x instead of x(u). In the se-
quel, we will use this abuse of notation. In order to rewrite
d
dt

E(Sj [t])
∣

∣

∣

t=0
as a scalar production of V, we use also the

fact that ∀x ∈ Sj , V(x) =
∑

k∈Kj
Vkφk(x), and then use

the expressions of A′j [0] and n′j [0] computed in appendices

A.1 and A.2:

A′j [0] =
d

dt
Aj [t]

˛

˛

˛

t=0
=

1

2

`

nj ∧
−−−−→
xk1xk2

´

·Vk ,

n′j [0] =
d

dt
nj [t]

˛

˛

˛

t=0
=
−−−−→
xk1xk2 ∧Vk −

`

(−−−−→xk1xk2 ∧Vk) · nj

´

nj

2 Aj

.

(16)

It follows that:

d

dt
E(Sj [t])

˛

˛

˛

t=0
=

X

k∈Kj

Vk·

(

nj ∧ ej,k

2Aj

Z

Sj

g(x,nj) ds

+

Z

Sj

∇xg(x,nj)φk(x) ds

−
ej,k

2 Aj

∧

Z

Sj

gn(x,nj) ds

)

,

(17)

where we define gn = ∇ng(x,nj)−〈∇ng(x,nj),nj〉 nj ,

where ∇ng(x,nj) is the gradient of g with respect to the

second variable (i.e. n ∈ R
3).

It then immediately follows that

d

dt
E(S[t])

˛

˛

˛

t=0
=

X

k

Vk ·

2

4

X

j∈Jk

(

Z

Sj

∇xg(x,nj)φk(x) ds

−
ej,k

2Aj

∧

Z

Sj

g(x,nj)nj + gn(x,nj) ds

)#

,

(18)

Finally the part in brackets gives the kth component of
∂E

∂X
and one has to use Equation (9) in order to get the gradient

and optimize the mesh X.

3.3 Comparison of the Continuous Gradient with the

Gradient for Triangle Meshes

By looking at both gradients, one may note similarities. First

it is worth it to notice that the discrete gradient is written

with respect to well defined quantities that can be easily ex-

pressed, such as edges vectors, or triangle area.

On the other hand the continuous gradient has terms

depending on the curvature for instance, which is well de-

fined in the theory of continuous differential surfaces, but

is hard to discretize on mesh representations. By making a

piecewise linear surface assumption, the obtained gradient

directly accounts for those intrinsic properties.

4 Gradient of Functionals defined on Visible Surface

As described in the introduction, computer vision applica-

tions are most likely able to deal with what the camera sees,
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Fig. 4 Geometric representation of the change of visibility when moving the mesh. Contrary to the interior (left), movements of the horizon (right)

strongly affect the movement of the visible interface between visible and occluded volumes by creating a movement of the crepuscular rays.

i.e. the projected image. Such projection imply 3D informa-

tion such as depth and occlusion, and a camera model. An

energy functional can be expressed accordingly as in Equa-

tion (5), where the energy can be defined on the visible in-

terface (See also Figure 1). Often some quantities can be

estimated (it can be for instance color, photometric normals,

reflectance, etc) and used to compare them with data in the

input images. In the sequel we denote such energies repro-

jection error functionals. As shown for example in [15,48],

an accurate Bayesian formulation of computer vision prob-

lems (as e.g. in 3D reconstruction) yields the minimization

of some reprojection error functionals instead of classical

weighted area functionals.

Let us then consider the energy functional (5)

E(S) =

∫

S

g(x,n(x)) · n(x) νS(x) ds .

In this section, we compute the gradient of this functional

with respect to the shape S.

In practice, the direction of the 3D vector g corresponds

to the direction of the viewing ray. Thus the reprojection er-

ror functionals generally verify g(x,n∂V(x)) · n∂V(x) = 0

for all points x on the horizon of the visibility interface (∂V

being the visibility interface and n∂V its normal, see Fig-

ure 1). Then, by Gauss’ divergence theorem, we can rewrite

E(S) as an integral over R
3, see [14,15].

E(S) =

∫

∂V

g(x,n∂V(x)) · n∂V(x) ds

= −

∫

R3

∇ · g(x,n(x)) νS(x) dx .

(19)

Let S[t] be a variation of S such that S[t] = S+ t V . By
the product rule, the derivative of the energy with respect to

t is

d

dt
E(S[t])

˛

˛

˛

t=0
= −

Z

R3
∇ ·

d

dt

“

g(x,n[t](x))
”˛

˛

˛

t=0
νS(x) dx

−

Z

R3
∇ ·

“

g(x,n(x))
” d

dt
νS[t](x)

˛

˛

˛

t=0
dx .

(20)

For notation simplicity we have denoted S = S[0], n =

n[0].

In Section 4.2.1, we write the first integral of Equation (20)

linearly with respect to V. We then describe the correspond-

ing part of the gradient of E(S). We denote it Gnorm.

In the second integral of Equation (20), the normal does not

depend on t. Thus, this term is the derivative of a quantity

(which does not depend on S and does not vary in time) in-

tegrated over the visible volume. In other words, the second

term of Equation (20) is the derivative (with respect to the

shape S) of an energy

Ẽ(S) =

∫

R3

f(x)νS(x) dx ,

where f(x) does not depend on S;

f(x) = −∇ ·
(

g(x,n(x))
)

.

It is the derivative of a scalar field integrated over a visible

volume.

Until now all equations are valid for both the continuous

case and the discrete case. In order to find the gradient ex-

pression, the idea is to see what happens to the energy under

an induced velocity on the surface. In the continuous case

under a continuous vectorial field V , and under a piecewise

linear vectorial field V defined by the discrete field {Vk}

in the other case. In both cases we have the following geo-

metric interpretation of the changes in the energy when the

surface is deforming.
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Since this energy Ẽ(S) is an integral over the visible

volume, its variations are only due to the variations of the

visible volume. Also, as illustrated by Figure 4 (reduced to

the 2D case for simplicity), when the vertex xk is moving

according to Vk we have to separate two cases:

1. when all the triangles adjacent to xk are visible, the vari-

ation of the visible volume is just the sum of the tetra-

hedron formed by the adjacent triangles and the moved

point xk + Vk (see Figure 4, left). The corresponding

gradient computation is detailed in Section 4.2.2. By re-

placing f(x) by −∇ · g(x,n(x)), this gives a second

part of the gradient of E(S) ; we denote it Gint.

2. when xk is generating occluding contours in images, i.e.

when it is a horizon point, its movement affects the vis-

ibility of other points located behind it (called termina-

tor points). So the variation of the visible volume is the

sum of the first case term, plus the volume swept out by

the crepuscular rays generated by the horizon movement

(see Figure 4, right). The corresponding gradient com-

putation is detailed in Section 4.2.3. Again, by replacing

f(x) by −∇ · g(x,n(x)), this gives a third part of the

gradient of E(S) that we denote it Ghoriz .

Now let us first remind the expression of the gradient in

the continuous case (Section 4.1) and then compute it when

using triangle meshes (Section 4.2).

4.1 Gradient in the Continuous Case

The differential of the energy (5) in the case of continuous

surfaces is the work of Gargallo [14] and is:

∇ ·
(

gn · n + g
)

νS − xt∇n (g − g′)δ(x · n)νS , (21)

where δ is a Dirac distribution function and g′ is the value of

g at the terminator of the current point. In the presence of a

discrete surface, terms like the curvature ∇n are difficult to

handle and have to be approximated. The following section

shows that by computing the gradient with respect to the true

representation of the surface, one can use a new formulation

using intrinsic surface properties.

4.2 Gradient for Triangle Meshes

Here, we derive the exact gradient (with respect to the shape)

of these functionals in the case where the surface is repre-

sented by a triangular mesh. Here, contrary to our previous

conference article [8], the function g may also depends on

the normal of the surface.

Then we can summarize the way gradient descent is per-

formed in that case. The variation of an energy that depends

on the visibility and the surface normal can be decomposed

into three different cases. The three terms are:

1. the one due to the change in the normal Gnorm (Equa-

tion (25)) that corresponds to Section 4.2.1,

2. the term due to the movement of points on the fully vis-

ible areas Gint (Equation (30)) of Section 4.2.2,

3. and finally the term due to the movement of points on

occluding contours Ghoriz (Equation (36)) that makes

global (in the sense on the whole surface) changes of the

energy (Described in Section 4.2.3).

4.2.1 Term due to the Variation of the Normal

In this section, we are going to rewrite the first integral term

appearing in equation (20), linearly with respect to V. This

will directly give us the first term of the gradient of E(S)

defined in (5). First, using Gauss’ divergence theorem again,

let us rewrite it as an integral over the surface. This gives:

−

∫

R3

∇ ·
d

dt
g(x,n[t](x))

∣

∣

∣

t=0
νS(x) dx

=

∫

S

d

dt
g(x,n[t](x))

∣

∣

∣

t=0
· n(x) νS(x) ds

=
∑

j

∫

Sj

d

dt
g(x,nj [t])

∣

∣

∣

t=0
· nj νS(x) ds

=
∑

j

∫

Sj

(Dng(x,nj)n
′
j [0]) · nj νS(x) ds ,

(22)

where Dn is the differential with respect to the second vari-

able and where n′j [0] is the derivative of the normal nj [t] of

the triangle Sj [t] at time t = 0. Here we have assumed that

the reprojection error functional verifies
(

d

dt
g(x,n∂V [t](x))

)

· n∂V(x) = 0

for all points x on the horizon lines of the visibility interface;

it is generally the case in practice, see [14,15].
The computation of n′j [0] is detailed in appendix A.2.

We have

n′j [0] =
1

2Aj

0

@

0

@

X

k∈Kj

ej,k ∧Vk

1

A−

0

@(
X

k∈Kj

ej,k ∧Vk) · nj

1

Anj

1

A .

(23)

So
∫

R3

∇ ·
d

dt
g(x,n[t](x))

∣

∣

∣

t=0
νS(x) dx

=
∑

j

∫

Sj

n′j [0] ·Dng(x,nj)
T nj νS(x)ds

=
∑

k

Vk ·
[

∑

j∈Jk

(−1)
ej,k

2 Aj

∧

∫

Sj

Pnj⊤(Dng(x,nj)
T nj) νS(x) ds

]

,

(24)
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where Pnj⊤(Dng(x,nj)
T nj) is the projection on the or-

thogonal plane to nj of Dng(x,nj)
T nj . ej,k is defined

in appendix A.1. Roughly ej,k is the opposite edge of the

vertex xk in the triangle Sj . Finally, writing the previous

expression on the mesh parametrization x(u) yields: which

can be rewritten as :

Gnorm
k =

∑

j∈Jk

ej,k ∧

∫

T

Pnj⊤(Dng(x(u),nj)
T nj) νS(x(u)) du. (25)

4.2.2 Term Due to the Tetrahedra of the Visible Adjacent

Triangles

In this paragraph, let us focus on the variation of the energy

caused by the variation of the visible volume corresponding

to the tetrahedra formed by the visible adjacent triangles of

vertex xk and xk + Vk. (See Figure 2)

In the sequel, we denote Sj the jth triangle of the mesh.

Following the variation of the energy caused by the visible

adjacent triangles of xk, we have

Ẽ(S[t])−Ẽ(S[0]) =
∑

j

̟j,Vk

∫

V ol[j,V,t]

f(x) dx +. . . ,

(26)

where V ol[j,V, t] is the volume of the tetrahedron formed

by the vertices of the visible triangle Sj and the point xk +

Vk. (See Figure 2) The sign ̟j,Vk
specifies if matter has

been added to or removed from the object volume and it is

equal to the sign of nj · Vk, where nj is the outward sur-

face normal of triangle Sj . The dots part ”. . . ” on the right

of equation (26) is null except if the vertex xk is a horizon

point, which means that this point is on the occluding con-

tour; this additional part will be detailed in the next para-

graph.

Now, we parametrize the volume V ol[j,V, t] by the point

x(u, v, w) = x(u, v) + w tVk, where x(u, v) = x(u)

parametrizes the triangle Sj as defined previously and shown

in figure 3; The local parametrization is such that u(u, v) ∈

T = {(u, v) | u ∈ [0, 1] and v ∈ [0, 1 − u]} and w ∈

[0, 1 − u − v]. By a change of variables, Equation (26) be-

comes

∑

j

̟j,Vk

∫

T

∫ φk(u)

0

{

f(x(u) + wtVk)

× |det(−−−→xkxk1,
−−−→xkxk2, tVk)|

}

dwdu + . . . (27)

Let Aj be the area of the triangle Sj . It is easy to show that

̟j,Vk
|det(−−−−→xkxk1,−−−−→xkxk2, tVk)| = 2t AjVk ·nj . Then Equa-

tion (27) becomes

2t Vk ·

2

4

X

j

Ajnj

Z

T

Z φk(u)

0
f(x(u) + wtVk) dwdu

3

5+ . . . (28)

It follows that the limit of
Ẽ(S[t])−Ẽ(S[0])

t
when t tends to

zero is

Vk ·



2
∑

j

Ajnj

∫

T

f(x(u))φk(x(u)) du



 . (29)

Now the derivative of the energy can be expressed as a scalar

product between the velocity Vk and a quantity that corre-

sponds to the gradient as explained previously. The part in

square brackets corresponds then to the interior term of the

gradient of E(S) with respect to xk:

Gint
k = 2

∑

j

Ajnj

∫

T

∇·g(x(u),nj) φk(x(u)) du , (30)

where the sum is on all the (completely) visible triangles

containing vertex xk.

4.2.3 Term due the movement of the crepuscular cone

In this section we are then going to compute the additional

term which appears when xk is a horizon point on the oc-

cluding contour. In this case the energy variation during a

surface movement is due to the volume created by the cre-

puscular cones. This movement is not affected by the de-

pendency in n(x) since this is purely due to the visibility

changes.

Let Hk,j be the vector such that [xk,xk + Hk,j ] is the

edge of the triangle Sj generating the horizon. The volume

corresponding to the movement of the horizon can be parametrized

by the points y(u, v) of the triangle {xk,xk + Hk,j ,xk +

v tVk} generated by the movement of the horizon. More

rigorously, it can be parametrized as the set of points x(u, v, r) =

r y(u, v) where y(u, v) = xk + u Hk,j + v tVk; r cor-

responds to the depth of x in the view point direction; r ∈

[1, T(u,v)], where it corresponds to the terminator of xk when

r = T(u,v).

Let us note that y(u, v) depends on t; we emphasize this de-

pendency by denoting yt(u, v). By a change of variable, we

get Ẽ(S[t])− Ẽ(S[0]) =

· · · −
1

2

∫

T

∫

r∈[1,T(u,v)]

{

f(r yt(u, v))

(Hk,j ∧ tVk) ·
yt(u, v)

|yt(u, v)|
r2

}

drdudv , (31)

where ”. . . ” corresponds to the part described in the pre-

vious paragraph. It follows that the limit of
Ẽ(S[t])−Ẽ(S[0])

t

when t tends to zero is the term in Equation (30) plus the

following term

−
1

2

∫

T

∫

[1,Tu]

f(r y(u)) (Hk,j ∧Vk) ·
y(u)

|y(u)|
r2drdudv ,
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(32)

where y(u) = xk + u Hk,j and Tu = T(u,0). Let us denote

L(u) such that

L(u) =

∫

[1,Tu]

f(r y(u))r2dr . (33)

The right-hand part of equation (32) can be rewritten as

−Vk ·
1

2

∫

u∈[0,1]

L(u)

(

y(u)

|y(u)|
∧Hk,j

)

(1− u)du , (34)

where L(u) =
∫

1,Tu
f(r y(u))r2dr. Here we have f(x) =

−∇ · g(x,n(x)). Here we can explicit L(u) as :

L(u) = −

∫

1,Tu

∇g(ry(u)) ·
y(u)

y(u)3z
dr

= −
[

g(T (y(u)))− g(y(u))
] 1

y(u)3z
,

(35)

where we have denoted g(x) = g(x,n)
x

x3
z

and T (y(u)) is

the point located behind y(u) in the direction of the view-

point (i.e. its terminator point).

This gives the third part of the kth component of the gra-

dient of E(S) defined in Equation (5):

Ghoriz
k =

∑

Hk,j

1

2

∫ 1

0

{

(

g (T (y(u)))− g (y(u))
)

×

(

y(u)

|y(u)|4
∧Hk,j

)

(1− u)

}

du , (36)

where the sum is on the edges containing xk and which gen-

erate horizons. Hk,j are the horizon edges around vertex xk.

4.2.4 Total Gradient Descent Flow

Finally, as explained in Section 2.2, the gradient descent

flow depends on the choice of an inner product for the gra-

dient. Here we use the L2 gradient that allow to account for

triangle area variations. As described previously and shown

in [6,12], changing the metric can result in more coherent

gradient flows, but this study is out the scope of this paper.

In this case the gradient descent flow for a point xk corre-

sponding to our energy functional defined on a visible do-

main is:







xk(0) = x0
k ,

dxk

dt
= −

1

Ak

{

Gint
k + Ghoriz

k + Gnorm
k

}

.
(37)

5 Applications

This section shows how the gradient descent framework pre-

sented in the previous sections can be used to perform mesh

evolution. In particular several concrete examples that are

commonly used in computer vision and graphics are pre-

sented. For more clarity and comparison purposes, the fol-

lowing examples use the L2-gradient.

In the following examples, the mesh evolution algorithm

that includes the remeshing and the topology changes is done

using the Delaunay topology-adaptive meshes proposed by

[33] written using CGAL [4].

We are performing minimization via gradient descent,

which starts from some initialization. In most examples the

initial shape is the visual hull of the scene, where we as-

sume silhouettes can be easily computed or are given, or that

stereoscopic segmentation [47] can be easily performed. It is

also important to notice that the horizon term is performed

only on existing contour generators, so that the topology has

to be close to the final one, or that contour generators can

be created thanks to the interior term. Also, since it is based

on energy differences one may add more or less importance

to it. In particular in the following experiments, we add a

weight λH to control this amount, which is empirically de-

termined. If λH is too big, the horizon term will make the

contour generators of the surface oscillates around their cor-

responding occluding contours.

Finally, all firgures shown in this section are displayed

using flat shading rendering.

5.1 Mean Curvature Flow

One of the most commonly used gradient flow is the mean

curvature flow, that minimizes the surface area. This energy

is often used to perform mesh smoothing, or more often as a

smoothing energy term. The associated energy functional is

simply

E(S) =

∫

S

ds , (38)

and its associated continuous gradient is ∇E = κ, where κ

is the surface’s curvature.

However, one needs some approximations in order to ap-

ply it to discrete surface representations since notion of dis-

crete curvature is not clear. On triangular meshes, different

approximated flows have been proposed like laplacian ap-

proximation or the umbrella operator. Meyer et al [30] have

computed the discrete gradient flow that minimizes Equa-

tion (38) with respect to the triangle mesh representation. It

is easy to show that the same result can be obtained using

the presented approach. Following Section 2, we have

d

dt
E(S[t])

∣

∣

∣

t=0
=

∑

k

Vk ·
∑

j∈Jk

1

2
nj ∧ ej,k . (39)
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Fig. 5 Evolution of smoothing algorithms on the Stanford Bunny data. From left to right: input noisy data; denoised mesh obtained using the mean

curvature flow (MCF) of Section 5.1; MCF result versus the noisy input (in red); denoised mesh obtained using the normal smoothing algorithm

(NS) of Section 5.2; NS result versus the noisy input (in red). Smoothing the normals help preserving details better than the mean curvature flow

and does not over-smooth the result at concavities and convexities as much as the mean curvature flow. (Color Online)

The evolution of one vertex k then follows

dxk

dt
=

1

Ak

∑

j∈Jk

1

2
ej,k ∧ nj , (40)

where Ak is the area of the neighborhood Jk of vertex k.

Note that this result is exactly the same as the results in [30],

but is just expressed differently. The given formulation can

be useful for applications where edges and surface normals

have been previously computed. Figure 5 illustrates this al-

gorithm on the Stanford Bunny data [1].

5.2 Normal Field Integration

One of the applications is to align a surface with respect to

an external normal field. For instance, in 3D reconstruction,

one recover the surface by integrating photometric normals

[5,20,43]. Let h be a unit vector field in R
3. Integrating this

vector field h such that the surface normals n correspond to

it involves minimizing the following functional

E(S) =
1

2

∫

S

|h− n|
2
ds

=
∑

j

∫

Sj

(1− h · nj) ds .
(41)

As explained in Section 3, it is easy to show that the follow-

ing gradient descent flow is:

dxk

dt
=

1

Ak

∑

j∈Jk

1

2
ej,k ∧

∫

T

(nj − h) du . (42)

5.2.1 Normal Smoothing

As an example we show now that this approach can be easily

applied to normal smoothing with efficiency, and is barely

more time consuming than the mean curvature flow. Let hj

be the weighted average normal of the triangle j and its

neighborhood N j :

hj =

∑

l∈Nj
αl nl

‖
∑

l∈Nj
αl nl‖

, (43)

where the weights αl can be chosen depending on the appli-

cation. It could for instance be the area Al of the triangle l, a

Gaussian weight or more simply one can set αl = 1. There-

fore the energy functional to be minimized can be expressed

as:

E(S) =
∑

j

∫

Sj

(1− hj · nj) ds , (44)

where hj is constant over the surface. Note that we cannot

directly apply the results presented in Section 3.2 to energy

(44) since it depends on the normal at several surface points.

To minimize energy (44), we consider hj to be fixed while

updating the surface. In other words, we alternately update

the surface and the vector field h. The gradient descent flow

corresponding to the normal smoothing energy with respect

to the surface is

dxk

dt
=

1

Ak

∑

j∈Jk

1

2
ej,k ∧ (nj − hj) . (45)

Note the similarity of the above equation with the mean cur-

vature flow (Equation (40)), and the fact that the gradient
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Fig. 6 Evolution of smoothing algorithms on simple cube data. From

top to bottom: noisy input and corresponding original surface; mean

curvature flow smoothing; normal smoothing; median filtering. The red

part corresponds to the input noisy mesh being displayed together with

the results. (Color Online)

flow with respect to the surface is barely more time consum-

ing. Results are shown in Figure 5, where the evolution is

stopped once the noise is no longer visible. The figure also

shows a comparison between the mean curvature flow. In

particular, when displayed with the input noisy mesh, one

may notice the different density of noise in the mesh (shown

in red). Since this is a Gaussian noise, the quantity of noise

should be uniform all over the surface, as it is almost the

case for normal smoothing. However, proportion of the visi-

ble noisy mesh in the mean curvature flow example is much

denser in the convex parts and disappears in concavities.

While mean curvature flow is popular for surface regular-

ization and smoothing, normal smoothing preserve details

better and does not over-smooth as much as the mean curva-

ture flow.

5.2.2 Median Filtering

Similarly, one may choose the external vector field hj to be

the median vector of the neighborhood N j of Sj to perform

median filtering on the mesh. hj can be computed by first

computing the spherical coordinates (θm, φm) of each nor-

mal nm ∈ N j . Then by sorting the spherical coordinates

(θm, φm) along each component, one can obtain the median

normal by getting back to cartesian coordinates. Results on

a noisy cube and comparison with the previous smoothing

algorithms are shown in Figure 6.

5.3 Multi-view Stereovision

In this example, we detail how the gradient defined in Sec-

tion 4 can be used in three-dimensional surface reconstruc-

tion from images.

Multi-view stereo is the problem of recovering the shape

of scenes using cameras, by assuming that matching or cor-

respondences between different views can be obtained (by

usually considering Lambertian constant brightness assump-

tions). Given a set of images of a scene taken from differ-

ent camera positions, the goal is to reconstruct the shape

S, and optionally the appearance, of the object. Since it is

the inverse problem of image rendering, this problem can be

modeled in a Bayesian framework by minimizing the differ-

ence between the images of the reconstructed model and the

observed ones, i.e. the reprojection error. The correct varia-

tional interpretation of the Bayesian analysis yields a min-

imization of some energy functional defined on the images

[15,23,34,39,47] and requires the visibility of the surface

points to be carefully accounted for. Also, only recently,

some authors [15,47] manage to rigorously and fully ac-

count for visibility in the optimization process. These works

have proved the interests of doing so by showing that this

forces the contours generators of the reconstructed surface

to match with the apparent contours in the observed images.

This makes the use of additional energy terms [19,37,44]

unnecessary and significantly reduces the minimal surface

bias.

The multi-view stereovision algorithm we propose here

is based on the same modeling as the one proposed by [15].

As Gargallo et al. we fully account for visibility, and then

acquire the same benefits (matching of the apparent con-

tours and removing the minimal surface bias). The signifi-

cant difference with respect to [15] relies on the surface rep-

resentation. As [47], Gargallo et al. use the Eulerian formu-

lation and implement their algorithm in the level-set frame-

work. Here, we use a triangle mesh-based representation, as

described in the previous sections. Below, we describe the

modeling of the problem and then detail the exact gradient

for our discrete representation obtained by using the results

developed in Section 4.2.
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5.3.1 Modeling of the Reprojection Error

In order to be able to compare the whole observed images

(data) with the images generated by the model, it is cru-

cial to define and model the background. Also, as shown

by [15,47], this allows us to be sure that the estimated fore-

ground surface does not shrink to an empty set (which is

the global optimum for most cost functionals used in other

work). Moreover accounting for the background allows the

contours generated by the recovered object to match with the

occluding contours of the images. Whereas most of the pre-

vious work assumes that the background is known (e.g. sim-

ply modeling it as uniformly black, or by exploiting given

silhouette images), here we also estimate the background

images Bi : Ii → R
3 , under the single assumption that

these images are smooth, similarly as [47]. Here i corre-

sponds to the index of the camera and Ii is its image do-

main.

Now, let us assume that the scene surface S is Lamber-

tian and the illumination static. Let C : S → R
3 be the

radiance function that associates colors to the points on the

surface. Ideally, the color Ii(p) observed at pixel p of im-

age Ii should be equal to the color C(π−1
i,S(p)) of its back-

projection π−1
i,S(p) onto the surface or, in the case where

p /∈ πi(S), to the color Bi(p) of the same pixel on the

background images (πi denoting the projection associated

with camera i). Thus, the reprojection error of the surface is

Edata =
1

2

∑

i

[

∫

πi(S)

(

Ii(p)− C(π−1
i,S(p))

)2
dp +

∫

Ii−πi(S)

(

Ii(p)−Bi(p)
)2

dp

]

. (46)

Finally, in order to well pose the problem, we use as

a prior on S an additional smoothing area energy. As de-

scribed previously, smoothing the normals gives a better prior

than the commonly used mean curvature flow. It helps not to

over-smooth the surface and to preserve geometric details

better. The considered energy is

ERS =

∫

S

(1− h(x) · n) ds ,

where h is the average normal of the considered surface

point. We also assume that the background images are smooth

by adding the total variation term

ERB =
∑

i

∫

Ii

|∇Bi(p)|dp.

The total variation helps preserving edges and does not over-

smooth the object boundaries. In practice, the background

images can be identified before the surface optimization by

giving the silhouettes or doing some stereoscopic segmenta-

tion.

5.3.2 Minimization of the Total Energy

For optimizing our total energy

Etotal = Edata + λSERS + λBERB , (47)

we perform gradient descents alternately with respect to Bi

and S.

The computation of the gradients with respect to Bi is

classical since it is image-based [47]. For a fixed shape S
and a fixed C, we have

∇Etotal(B) = −
∑

i

[

(Ii −Bi)(1− h) + λB∇ ·
∇Bi

‖∇Bi‖

]

,

(48)

where h is the characteristic function that indicates if u is

covered by the projection of the surface S (h(p) = 1) or

not (h(p) = 0, p being explained by the background); λ

is the smoothness parameter; C(x) is computed by taking

the mean color of the projection in the image Ii where x is

visible.

Let us now detail the gradient of Etotal with respect to

S. Since ERB do not depend on S and ERS is classical [9,

47]), the main point is to compute the gradient of Edata with

respect to S. To apply the results presented in the previous

sections, we first need to rewrite the energy Edata as an in-

tegral over only the visible surface. For simplicity of nota-

tion, we are going to give the gradient for a single camera

and so we remove the dependency on i. For several cam-

eras, the gradient will be the sum of the gradients associated

with each camera.

As explained in the introduction, the first step, to be able

to apply our previous results, is to rewrite the energy as an

integral over the surface instead of the image. This change

of variable implies the geometric model of the camera which

we assume to be a pinhole perspective camera model in this

work. It also involves adapting the measure on the surface

[39] and in counting only the visible points [15,34,47]. This

can be achieved by du = −x·n(x)
x3

z
νS(x)ds where ds is the

classical surface area measure and xz is the depth of x.

Thus, by using the separation technique proposed by [47],

the energy functional becomes (for a single image):

Edata(S) =−

∫

S

gI(x)
x · n(x)

x3
z

νS(x)ds

+

∫

I−π(S)

gB(p)dp ,

=−

∫

S

[gI(x)− gB(π(x))]
x · n(x)

x3
z

νS(x)ds

+

∫

I

gB(p)dp ,

(49)
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where gI(x) is 1
2 [I(π(x))−C(x)]2 and gB(p) is 1

2 [I(p)−

B(p))]2. The right-hand term of equation (49) does not de-

pend on S, so in the following we intentionally omitted it

as it does not contribute to the gradient expression (with re-

spect to S). Hence, denoting g(x) = gI(x)− gB(π(x)) for

convenience, the energy to be minimized with respect to S

is

Edata(S) = −

∫

S

g(x)
x · n(x)

x3
z

νS(x)ds. (50)

Now, the energy functional Edata(S) is of the form of Equa-

tion (5) with

g(x) = −
g(x)

x3
z

x.

The gradient descent flow for the shape is then directly given

by (37)







xk(0) = x0
k ,

dxk

dt
= −

1

Ak

{

Gint
k + Ghoriz

k

}

,
(51)

where Gint
k and Ghoriz

k are respectively obtained from Equa-

tions (30) and (36) where g(x) is replaced by −
g(x)

x3
z

x.

5.3.3 Experiments for the multi-view stereovision

application

We have implemented our algorithm using the Delaunay

topology-adaptive meshes proposed by [33]. The visibility

is computed using OpenGL Z-buffer. The evolution is done

using a multi-resolution scheme and starting from the visual

hull. Horizons are located using the changes of signs of the

dot products of facet normals and viewpoint directions. The

terminator error metric is computed using OpenGL Shader

Language.

As in [15], we first reconstruct three uniformly colored

balls arranged on a plane (20 images of resolution 640 ×

480), see Figure 7. This way we ensure the importance of

the horizon term as the color gradient is null over the surface

except at the interfaces between objects in images (which

correspond to object boundaries). Using only the interior

term (Section 4.2.2), the surface shrinks due to the mini-

mal bias. By using the horizon term only (given in Section

4.2.3), we correctly reconstruct and separate the balls, and

occluding contours correctly reproject in the images. Then

we tested our algorithm on synthetic Lambertian data for the

Stanford dragon mesh (Figure 8) composed of 32 images of

resolution 640 × 480. The result shows the correct recon-

struction of the dragon, even though the texture is smooth

and some parts in shadow are dark (See Table 1). Here the

initial shape was a visual hull automatically computed from

a stereoscopic segmentation algorithm [47].

Fig. 7 The balls sequence. Top row: 4 of 20 input images. Bottom row:

results with the horizon term computed in Section 4.2.3 from different

viewpoints.

Dragon Diffuse images

(Figure 8)

Acc. 95% 0.241mm

Comp. 0.5mm 98.3%

Table 1 Numerical evaluation of the proposed method for the dragon

sequence that shows accuracy at 95% and completeness at 0.5mm fol-

lowing [36]. (compared to ground truth)

templeSparseRing dinoSparseRing

accu. (mm) compl. (%) accu. (mm) compl. (%)

Gargallo [15] 1.05 81.9 0.76 90.7

Gargallo [14] 0.79 96.8 0.50 97.7

Our approach 0.73 95.9 0.89 93.9

Table 2 Results for the temple and dino datasets. For each dataset,

accuracy and completeness scores are given. Results of Gargallo et al.

are shown for comparison purposes.

Finally, we tested our method on the classical Dino (16
images of 640× 480) and Temple (16 images of 640× 480

images) datasets from the Middlebury repository (Figure 9).

The results and a comparison with selected approaches that

motivated our work is presented Table 2. The results of [14,

15] are done in the continuous domain using level set im-

plementation. We refer to the Middlebury benchmark web-

site [36] for evaluation with state-of-the-art reconstruction.

We can see that our method is comparable to state-of-the-

art, but the main contribution here results in giving a unified

framework for photo-consistency optimization that correctly

handle visibility using triangular meshes. Additional terms

like ballooning forces or silhouettes terms can now be under-

stood, by only dealing with the reprojection error criteria.
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Fig. 8 Synthesized dragon sequence. Top row: 4 of 32 diffuse input images. Bottom row: Initial shape; recovered shape by our algorithm; ground

truth model.

5.4 Lambertian 3D Reconstruction using Illumination

In the previous case, the illumination was not taken into ac-

count. In fact the estimated color of the surface compared

to the input images was the estimated radiance of the object

(which was supposed to be Lambertian). However, radiance

contains shading, inter-reflections, cast shadows and other

non-Lambertian phenomena. The illumination adds additional

cues that can be used to estimate surface normals. Consid-

ering this, shading can be used in order to recover the ge-

ometry of textureless regions. This also allows to separate

the surface albedo from the radiance and allows to do more

realistic object relighting.

In this section, we only consider the case of Lamber-

tian surfaces. In particular, this allows to consider the multi-

view Shape From Shading problem (SFS) and the multi-

view Photometric Stereo problem (PS). These problems con-

sist of recovering the 3D shape of a scene by exploiting

the information contained in the shading of the correspond-

ing images. Basically in multi-view photometric stereo, the

images are generated with varying lighting (typically, each

point of the surface must be seen with three different lights).

Whereas in multi-view shape from shading, the lighting is

the same for all the images. The SFS problem is therefore

less well-posed than the PS problem. It then needs some

additional constraints. In SFS, we classically assume that

the reflectance properties are homogeneous over the whole

scene.

A solution to such problems would be a surface S such

that the images generated from that surface are very similar

to the observed images (i.e. the data). This naturally leads to

formulate the problem as the minimization of an error mea-

sure between the observed and predicted values of pixels.

For simplicity, here we are going to consider only Lam-

bertian scenes illuminated by point light sources. This work

can nevertheless be extended to other parametric reflectance

models and to more realistic lighting conditions for exam-

ple as done in [21,49]. For a point x of the surface S, the

radiance equation for the ith image is then

Ii(πi(x)) = ρ(x)





ni
L

∑

l=1

Li
lν

i
l,S(x)(n(x) · lil(x)) + E0





= R(x,n(x),S) .

(52)

Above Li
l and lil are respectively the light intensity color and

the light direction of the lth light in the ith image. νi
l,S(x) is

the visibility of the lth light source of the ith image at point

x according to S. The additional term E0 corresponds to the

ambient lighting.

A natural energy functional to be considered can be written

as :

E(S) =
1

2

∑

i

∫

Ii

(

Ii(p)−R(π−1
i,S(p),n(π−1

i,S(p)),S)
)2

dp,

(53)

see Jin et al. [21] for details.

To minimize this energy, we alternately minimize it with

respects to the shape S and to the albedo ρ. For a fixed shape
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Fig. 9 Dino and Temple sequence (input data courtesy of [36]). From left to right: 1 of 16 input images; estimated background images (scaled by

2 for visualization); estimated radiance; estimated mesh seen from a different viewpoint.

S, the optimal albedo ρ(x) is obtained using :

ρ(x) =

∑

i Ii (πi(x)) νS,i(x)
∑

i

(

∑ni
L

l=1 Li
lν

i
l,S(x)(n(x) · lil(x)) + E0

)

νS,i(x)
.

(54)

When we assume that the albedo is homogeneous, the de-

nominators and numerators of the above equation have to

be integrated on the whole surface S. It has to be then mul-

tiplied by the adequate factor corresponding to the camera

model; n(x) · x/x3
z for a pinhole camera.

Now, let us fix the albedo and optimize energy (53) with re-

spects to the shape. To simplify, we are going to neglect the

variations of the visibility of the light sources νl,S(x) when

the shape is deforming. These variations are null almost ev-

erywhere. They are Dirac functions with a support restricted

to the shadow boundaries. In other words, we are neglect-

ing shadow information. Practically in the following, this is

equivalent to assuming that R(x,n,S) does not depend on

S.

In other respects, as previously done in other applications,

let us note that the gradient of the energy (53) is the sum of

the gradients associated with each one of the images. In the

sequel we only compute the gradient associated with one

image. By assuming that the camera is a pinhole, we can

rewrite this energy as:

E(S) =

∫

S

g(x,n(x)) · n(x) νS(x) ds , (55)

where

g(x,n) = −
1

2
(I(π(x))−R(x,n))

2 x

x3
z

(56)

and where

R(x,n) = ρ(x)

(

nL
∑

l=1

Llνl(x)(n · ll(x)) + E0

)

. (57)
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We can then directly use the results of Section 4. The gra-

dient is split into three parts: one for the term depending

on normals, one for the interior term, and a last one for the

horizon term.

For the term depending on normals, we have :

Gnorm
k = −

∑

j∈Jk

ej,k∧

∫

T

Pnj⊤(Dng(x(u),nj)
T nj) νS(x(u))du (58)

where Pnj⊤(Dng(x,nj)
T nj) is the projection of Dng(x,nj)

T nj

on the tangent plane of the surface. It can be re-written as

Dng(x,nj)
T nj−

(

nj ·Dng(x,nj)
T nj

)

nj . Here we have

Dng(x,nj) = ρ(x) (I(π(x))−R(x,nj))

×
x

x3
z

 

nL
X

l=1

Llνl(x)ll(x)T

!

; (59)

x
x3

z

(
∑nL

l=1 Llνl(x)ll(x)T
)

being a 3 matrix, so

Dng(x,nj)
T nj = ρ(x) (I(π(x))−R(x,nj))

×

„

x

x3
z

· nj

«

 

nL
X

l=1

Llνl(x)ll(x)

!

. (60)

The kth component of the interior term is:

Gint
k =

∑

j

Ajnj

∫

T

∇ · g(x(u),nj) φk(u) du , (61)

where the sum is on the set of the (completely) visible trian-

gles Sj containing the vertex xk, and where

∇ · g(x(u),nj) = − (I(π(x))−R(x,n))

×
(

Dπ(x)T∇I(x)−∇xR(x,nj)
)

·
x

x3
z

. (62)

Above, all the terms are explicit at the exception of∇xR(x,nj).

In fact ∇xR(x,nj) = ∇ρ(x)L(x,nj) + ρ(x)∇xL(x,nj)

where we denote L(x,nj) =
∑nL

l=1 Llνl(x)(nj ·ll(x))+E0.

The computation of the term ∇xR(x,nj) and ∇xL(x,nj)

are detailed and discussed in Appendix A.3.

The kth component of the Horizon term is:

Ghoriz
k = −

∑

Hk,j

1

2

∫ 1

0

L(u)

(

y(u)

|y(u)|
∧Hk,j

)

(1− u)du ,

(63)

where L(u) = −
[

h(T (y(u))) − h(y(u))
]

1
y(u)3z

with h =
1
2 (I(π(x))−R(x,n(x)))

2
and T (y(u)) is the terminator

point of y(u).

5.5 Multi-view Normal Integration

In this section, we present an application for integrating sur-

faces from multiple normal maps like for instance the one

of Chang et al.[5] developed in the level sets framework.

Such normals can for instance be obtained via photometric

stereo that uses a single fixed camera and a moving light

source [20,43]. Having different illumination conditions for

one particular view-point allows to estimate the surface nor-

mals. By integrating this normal field, it is possible to re-

cover the 3D geometry of the scene. This can be done us-

ing the previously described method for normal field inte-

gration. However, since photometric stereo is a vision-based

application that allows to recover normals for each pixel in

the image, the energy functional is based on camera model-

ing and therefore the energy can be expressed as a reprojec-

tion error functional. The gradient descent corresponding to

this problem then directly follows the approach presented in

Section 4.

The problem can be solved by minimizing the following

energy functional:

E(S) =
∑

i

∫

I

1

2

(

Ni(p)− n(π−1
S

(p))
)2

dp , (64)

where N(p) is the normal in input image and n(x) is the

normal of the surface S at point x. As the norms of N and n

are equal to 1, for simplicity one can rewrite Equation (64)

for a single image as

E(S) =

∫

I

(

1−N(p) · n(π−1
S

)
)

dp . (65)

Rewriting it as an integral over the visible surface, we

have:

E(S) =

∫

S

(1−N(π(x)) · n(x))
x · n(x)

x3
z

νS(x)ds , (66)

which has a similar form as the one used previously for the

reprojection error with g(x,n) = (1 − N · n). This way

one can use previous results when the energy functional also

depends on the normal. The differential of the energy with

respect to a vertex xk for the term due to the normal is

Vk ·
∑

j

ej,k ∧

∫

Tj

{

(

N − (N · nj)nj

)

x · nj

x3
z

νS(x) φk(x(u))

}

du . (67)

Then, to get the complete gradient, one has to sum (the

gradient corresponding to Equation (67)) with the term due

to the differential of a quantity integrated over a visible vol-

ume (containing the interior term and the horizon term). The
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interior term is null because on the triangle ∇ · nj = 0 and

because (∇N) · x = 0. The Horizon term is:

Vk ·
∑

Hk,j

1

2

∫ 1

0

{

(

nj − n(T (y(u)))
)

·N(u)

y(u) ∧Hk,j

|y(u)| [y(u)]3z
(1− u)

}

du ,

(68)

where T (y(u)) is the terminator of the current point y(u)

(located behind y(u) in the view point direction). Note that

compared to the gradient in the continuous case, we have

here a lower complexity (we are missing the divergence op-

erator and have instead the vectorial product with the oppo-

site edge of the triangle). It is more natural to implement on

triangular meshes than the previous continuous case [14] :

∇
(

(N − (N · n)n)
x · n

x3
z

+ (N − n)2
x

x3
z

)

νS

+
(

(N − n)2 − (N − n′)2
)xt∇nx

x3
z

δ(x · n)νS . (69)

As described previously, this can be extended to multi-

view photometric stereo methods, where normals are esti-

mated using reflectance and lighting conditions. Then it is

possible to integrate this normal field estimated for each im-

age pixel in order to recover the full 3D shape [5,20,43].

In the following, we illustrate the approach with different

example, where we also add a smoothness term . The corre-

sponding energy is:

ERS =

∫

S

(1− h(x) · n) ds ,

where h(x) corresponds to the mean of all the normals view-

ed from each camera at point x. The corresponding gradient

is a straight forward application of Section 5.2.

Figure 10, and 12 illustrates our method on synthetic

examples for multi-view normal field integration. First, we

tested the multiview normal integration algorithm on the

simple Ellipse dataset. By using only the term depending

on the normal, the surface shrinks. The horizon term allows

to constraint the surface such that it matches the image con-

tours. It naturally gives boundary conditions for the normal

integration and allows to start from surfaces that does not

fully contain the object of interest.

The second experiment shown in Figure illustrates the

approach on a CAD designed mesh. The original mesh as

twice more vertices and triangles than the reconstructed one.

Moreover, since we use a coherent gradient descent flow

with respect to the mesh representation, we do not assume

normal velocity like in [3,10], making vertices move to ap-

propriate locations. This makes the recovered triangles nicely

matches image edges even though the mesh resolution is not

very high. Our method can then be used to reconstruct sur-

faces with sharp edges which is, as far as we know, not pos-

sible using implicit surface representations.

Fig. 10 The ellipse sequence. Top row: 3 of 24 input images show-

ing normal maps of the object of interest; Bottom row: Initial surface;

Intermediate result during the evolution; Reconstructed surface.

Fig. 11 The Fandisk sequence. From Top to Bottom rows: 3 of 24
input images showing normal maps of the object of interest; original

CAD model; reconstructed mesh. The last column shows details of the

meshes with the associated triangulation. It shows that the coherent

gradient flow makes triangle edges match with the data.

The third experiment (Figure 12) shows the efficiency

of the proposed method for handling complex surfaces. The

initial surface is the visual hull and a coarse to fine approach

is used for the evolution. Details of the result are well recov-

ered, and the final shape is very similar to the ground truth

even though the input images have low resolution (640 ×
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Fig. 12 The dragon sequence (mesh obtained from Stanford repository [1]). Top row: 4 of 24 input images (640 × 480) showing normal maps

of the object of interest; Bottom row: Initial surface; Reconstructed surface; Ground truth shape. Rendering is performed using ambient vertex

occlusion and flat shading so that it displays the surface without missing any details.

480). Using photometric information, our method can then

be used in order to obtain high quality meshes.

In order to compare ours results to state-of-the-art meth-

ods, we tested our approach on the dynamic photometric

stereo dataset provided by Vlasic et al. [43]. It is composed

of 8 images associated with 8 normal maps. The presented

approach can directly be applied to their dataset by perform-

ing normal integration. Figure 13 illustrates those results.

One of the images shows the shape obtained without using

the horizon term. In this case the surface shrinks toward the

empty set. The result on the right is obtained using the same

flow plus the one of the horizon term, which yields the ex-

pected result. Integrating the normal field gives good high

frequency and details, but is poor for low frequency due to

the integration. In these conditions, mixing multiview stereo

and multiview normal field integration will provide powerful

3D reconstruction algorithms [31,43]. Figure 14 shows the

results obtained by [43] along with ours. In their paper, the

authors compute several normal maps from each view, and

then register and merge the different integrations in order

to obtain the final mesh. In this context they have troubles

in recovering parts where the normal maps contain occlud-

ing contours. Since our approach is surface-based, we can

better exploit the multi-view system in the reconstruction

process and the 3D position of the surface is more accurate

even though both methods nicely recover shape details (note

that there are only 8 images). In fact, Figure 14 also shows

the textured meshes obtained by reprojecting camera images

onto the mesh. This emphasize the fact that even though the

recovered surface of [43] visually looks really nice, they suf-

fer from the integration bias and registration errors which

leads to slightly incorrect 3D positions, as well as incom-

plete surface recovery. For example, the two images seeing

the right ear reproject in different locations, creating a non-

coherent textured surface - other problems are shown in red.

This might result in wrong visual artifacts for relighting pur-

poses. In contrast, our approach naturally takes advantage

of the multi-view information. Also, our approach is purely

image-based and does not use pre or post-processing such as

re-estimating (and smoothing) the normal maps or perform-

ing hole filling like in [43]. Some part like the cap are not

well recovered in our case, mainly due to noise and missing

normals in the input images, but also by the fact we use a

closed surface.

5.6 Discussion

The presented approach offers a general framework to solve

different vision reconstruction problems using deformable

meshes. However the way it is optimized might be improved

since it uses simple L2 gradient descent. One may change

the gradient metric, make the functional convex, change the

optimization algorithm or simply define a more robust cost

measure to improve robustness or speed. In particular the

initialization is important here, and there might be cases

were the minimization fails because of local minima, even

though coarse-to-fine approach (in both images and mesh
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Fig. 13 MIT Sequence (Courtesy of [43]). Top row: 3 of 8 input images and normals (1024 × 1024). Bottom row, from left to right: visual hull;

result using Section 5.5 wihtout using the horizon term; result using Section 5.5 with the horizon term; result of [43].

resolution) significantly help the algorithm. A study of pos-

sible improvements is out the scope of this work but this

paper still provides tools and inspiration for that (for exam-

ple changing the gradient metric for deformable meshes is

a straight forward extension of [12], and [45] already pro-

posed a global error metric based on cross-correlations for

triangle meshes based on [8,34]). This work focuses more

on the modeling part, by explaining the shape directly from

images, rather than reconstructing surfaces under constraints

(i.e. processing time, fast convergence, etc. . . ). The paper

however shows that it can be successfully applied for mesh

refinement in a variety of cases, including geometric flows

that depends on the surface’s normal and/or visibility. More-

over one may adapt its error metric g for concerned appli-

cations - for example adding volumetric flows such as sil-

houettes constraints or edge attachment weight as done in

geodesic active contour methods. In all cases adapting the

metric is straight forward and its minimization via L2 gradi-

ent descent is a direct application of the presented approach.

Finally, in this work we used deformable meshes which im-

ply remeshing (in particular for topology changes) during

the optimization. In this context, adding or removing points

might slightly change the objective functional. One addi-

tional improvement would be to change the remeshing algo-

rithm in order to completely ensure the spatial consistency

in the optimization process, but this is out of the scope of

this paper and is still an open research area.

6 Conclusion

In this paper we compute the shape gradient of general en-

ergy functionals which account for normals and visibility

changes and which embody a number of energies used in

mesh processing and computer vision. Gradient computa-

tion is done directly with respect to the discrete represen-

tation of the surface based on triangular meshes. This al-

lows for coherent gradient flows that tend to place the mesh

vertices to their correct locations and make triangle edges

match with the data. To illustrate the presented approach and

show the advantage of having a coherent gradient flow, we

apply our results to several applications.

In particular we presented a mesh evolution technique

for 3D vision problems, when the cost functional depends

on an image based score and a camera model. For instance,

we show the multiview stereo problem based on the discrete

representation. Contrary to previous works, during the evo-

lution, we correctly deal with visibility changes by express-

ing the exact gradient of the reprojection error functional. In

particular, exactly as in the continuous case [15], this forces

the contour generators of the surface to appear at their cor-

rect location in the images and reduces the minimal surface

bias from which some variational methods suffer.
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A Computation details

A.1 Expression of A′j [0]

We have to explicit A′j [0] linearly in function of the V. The area Aj [t]

of a triangle Sj [t] is Aj [t] = 1
2
‖
−−−−−−−→
xk[t]xk1[t] ∧

−−−−−−−→
xk[t]xk2[t] ‖ where

xk[t], xk1[t], xk2[t] are the vertices of triangle i at time t. For more

convinience, we express the squared area A2
j to avoid squared root

while computing the differential at t = 0. Then we have :

A2
j [t] =

1

4

“−−−−−−−→
xk[t]xk1[t] ∧

−−−−−−−→
xk[t]xk2[t]

”

·
“−−−−−−−→
xk[t]xk1[t] ∧

−−−−−−−→
xk[t]xk2[t]

”

d

dt
A2

j [t]
˛

˛

˛

t=0
=

1

2

`−−−−→
xkxk1 ∧

−−−−→
xkxk2

´

·
`−−−−→
xk1xk2 ∧Vk +−−−−→xk2xk ∧Vk1 +−−−−→xkxk1 ∧Vk2

´

.

Using d
dt

A2
j [t]

˛

˛

˛

t=0
= 2 Aj [0]

d
dt

Aj [t]
˛

˛

˛

t=0
, we get

A′j [0] =
X

k∈Kj

Vk ·

„

1

2
nj ∧ ej,k

«

. (70)

If we move only one vertex at once (meaning Vk1 & Vk2 are null for

vertex k), we have :

A′j [0] =
1

2

`

nj ∧
−−−−→
xk1xk2

´

·Vk . (71)

A.2 Expression of n′j [0]

We have to explicit n′j [0] linearly in function of the V. Considering

nj =
−−−−→
xkxk1∧

−−−−→
xkxk2

2 Aj
, we have :

n′j [0] =
1

2 Aj [0]2

“

(−−−−→xkxk1 ∧
−−−−→
xkxk2)′[0] Aj [0]

−
`−−−−→
xkxk1 ∧

−−−−→
xkxk2

´

A′j [0]
”

.

n′j [0] =
1

2 Aj

“

−−−−→
xk1xk2 ∧Vk +−−−−→xk2xk ∧Vk1 +−−−−→xkxk1 ∧Vk2

−
`

(−−−−→xk1xk2 ∧Vk +−−−−→xk2xk ∧Vk1 +−−−−→xkxk1 ∧Vk2) · nj

´

nj

”

.

So

n′j [0] =
1

2 Aj

0

@

0

@

X

k∈Kj

ej,k ∧Vk

1

A−

0

@(
X

k∈Kj

ej,k ∧Vk) · nj

1

Anj

1

A .

(72)

Therefore n′j [0] is the projection of
P

k∈Kj
ej,k∧Vk on the orthogonal

plane to nj , divided by 2 Aj .

In the case where we consider moving only one vertex at once

(meaning Vk1 & Vk2 are null for vertex k), we have :

n′j [0] =
−−−−→
xk1xk2 ∧Vk −

`

(−−−−→xk1xk2 ∧Vk) · nj

´

nj

2 Aj

. (73)

A.3 Details on the Lambertian Case Using Illumination

All the terms in Equation (62) are explicit at the exception of∇xR(x,nj).
In fact ∇xR(x,nj) = ∇ρ(x)L(x,nj) + ρ(x)∇xL(x,nj) where we

denote

L(x,nj) =

nL
X

l=1

Llνl(x)(nj · ll(x)) + E0 .

In the case of a homogeneous albedo (typically in shape from shading)

we have ∇ρ(x) = 0.

According to (54), for x in Sj , we have ∇ρ(x) =
b∇a− a ∇b

b2
,

where a and b are defined by

a =
X

i

Ii(πi(x))νS,i(x) ,

b =
X

i

0

B

@

ni
L

X

l=1

Li
lνli,S(x)(nj · l

i
l(x)) + E0

1

C

A
νS,i(x)

(74)

and where ∇a and ∇b are

∇a =
X

i

Dπ(x)T∇Ii(πi(x))νS,i(x) ,

∇b =
X

i

0

B

@

ni
L

X

l=1

Li
lνli,S(x)(nj · ∇lil(x))

1

C

A
νS,i(x).

(75)

(We assume here that visibilities are the same for all the points x on the

triangle Sj , or we neglect their variations). For scenes illuminated by

far light sources we have∇li
l
(x) ≈ 0, and so∇ρ ≈ a′/b. Moreover, if

the light sources are same for all the image, then

b = (
X

i

νS,i(x))

 

nL
X

l=1

Ll(nj · ll)νl,S(x) + E0

!

.

Finally, neglecting the variations of the light visibility, we have

∇xL(x,nj) =

nL
X

l=1

Llνl(x)Dll(x)T nj ,

where Dll(x)T is the transposition of the differential of ll (3 × 3 ma-

trix). In the case of far light sources, we have ∇xL(x,nj) ≈ 0.


