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Abstract: Triangulated meshes have become ubiquitous discrete-surface rep-
resentations. In this paper we address the problem of how to maintain the man-
ifold properties of a surface while it undergoes strong deformations that may
cause topological changes. We introduce a new self-intersection removal algo-
rithm, TransforMesh, and we propose a mesh evolution framework based on this
algorithm. Numerous shape modelling applications use surface evolution in or-
der to improve shape properties, such as appearance or accuracy. Both explicit
and implicit representations can be considered for that purpose. However, ex-
plicit mesh representations, while allowing for accurate surface modelling, su�er
from the inherent di�culty of reliably dealing with self-intersections and topo-
logical changes such as merges and splits. As a consequence, a majority of meth-
ods rely on implicit representations of surfaces, e.g. level-sets, that naturally
overcome these issues. Nevertheless, these methods are based on volumetric dis-
cretizations, which introduce an unwanted precision-complexity trade-o�. The
method that we propose handles topological changes in a robust manner and
removes self intersections, thus overcoming the traditional limitations of mesh-
based approaches. To illustrate the e�ectiveness of TransforMesh, we describe
several challenging applications: surface morphing and 3-D reconstruction.

Key-words: Mesh, surface, manifold mesh, triangulated mesh, mesh evolu-
tion, deformable objects, morphing, 3-D reconstruction.
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Une Méthode de Déformation de Maillage par

Topologie Adaptative pour l'Evolution de

Surfaces, le Morphing et la Reconstruction

Multi-Vues

Résumé : Les maillages triangulés sont devenus les représentations les plus
courantes des surfaces. Dans cet article nous nous intéressons au problème
du maintien des propriétés d'une surface, en termes d'une variété, lorsqu'elle
subit des déformations pouvant causer des modi�cations topologiques. Nous
introduisons un nouvel algorithme d'élimination d'auto-intersections, Transfor-
Mesh, et nous proposons une méthode d'évolution de maillage basée sur cet
algorithme. De nombreuses applications utilisent l'évolution d'une surface a�n
d'améliorer les propriétés de la forme modélisée, comme l'apparence et la pré-
cision. Dans ce but, on peut aussi bien utiliser des représentations implicites
qu'explicites. Cependant, les représentations explicites de maillages, tout en
permettant une modélisation précise, sou�rent de la di�culté inhérente à la
gestion des changements topologiques. Par conséquent, une grande majorité
de méthodes se basent sur des représentations implicites, comme les ensembles
de niveau, qui surmontent ces di�cultés de manière naturelle. Cependant, ce
méthodes utilisent des descripteurs volumiques discrets, ce qui introduit un
compromis précision/complexité. La méthode que nous proposons traite les
changements topologiques de manière robuste et enlève les auto-intersections
du maillage déformé, ce qui résout les limitations bien connues des approches
basées sur des maillages. A�n d'illustrer notre méthode et l'algorithme Trans-
forMesh, nous décrivons plusieurs applications, comme le morphing de surfaces
et la reconstruction 3-D.

Mots-clés : Maillage, surface, variété, triangulation, évolution de maillage,
objet déformable, morphing, reconstruction 3-D.
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4 Zaharescu, Boyer, & Horaud

1 Introduction

In the process of modeling shapes, several applications resort to surface evo-
lution to improve shape properties. For instance, shape surfaces are evolved
so that their appearances are improved, as when smoothing shapes, or so that
they best explain given observations as in image based modeling. The interest
arises in several �elds related to shape modeling: computer vision, computer
graphics, medical imaging and visualization among others. Surface evolution is
usually formulated as an optimization process that seeks for a surface with a
minimum energy with respect to the desired properties. To this aim, surfaces
can be represented in di�erent ways, from implicit to explicit representations,
and deformed in an iterative way during optimization. Polygonal meshes, while
being one of the most widely used representation when modeling shapes, are
seldom used in such evolution schemes. The main reasons for that is the inher-
ent di�culty to handle topological changes and self-intersections that can occur
during evolution.

In this paper, we introduce an intuitive and e�cient algorithm, named Trans-
forMesh, that performs self-intersection removal of triangular meshes, allowing
for topological changes, e.g. splits and merges. The method assumes as input a
proper oriented mesh � a 2-D compact oriented manifold � which experienced
any connectivity preserving deformation. It computes the outside surface of
the deformed mesh. To illustrate the approach and its interests, we propose a
generic surface evolution framework based on TransforMesh and we present two
applications: mesh morphing and variational multi-view 3-D reconstruction.

1.1 Literature Review

As a result of the large interest for surface evolution in many application do-
mains, numerous surface deformation schemes have been proposed over the last
decades. They roughly fall into two main categories with respect to the repre-
sentation which is considered for surfaces: Eulerian or Lagrangian.

Eulerian methods formulate the evolution problem as time variation over
sampled spaces, most typically �xed grids. In such a formulation, the surface,
also called the interface, is implicitly represented. One of the most successful
methods in this category, the level set method [45, 47], represents the interface
as the zero level of a higher dimensional function. A typical function used is
the signed distance of the explicit surface, discretized over the volume. At each
iteration the whole implicit function is moved. The explicit surface is recov-
ered by �nding the 0-level set of the implicit function. A number of methods
have been proposed to extract surfaces from volumetric data [32, 36, 38, 44].
Such an embedding within an implicit function allows to automatically handle
topology changes, e.g. merges and/or splits. In addition, such methods allow
for an easy computation of geometric properties such as curvatures and bene�t
from viscosity solutions - robust numerical schemes to deal with the evolution.
These advantages explain the popularity of level set methods in computer vi-
sion [46] as well as in other �elds, such as computational �uid dynamics [55]
and computer animations of �uids [18]. Nevertheless, implicit representations
exhibit limitations resulting from the grid discretization. In particular, the pre-
cision/complexity trade-o� inherent to the grid has a signi�cant impact on the
computational e�ciency and the proposed narrow-band solutions [1] or octree
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based implementations [39] only partially overcome this issue. In addition, as
shown by Enright et al. [17], the level set method is strongly a�ected by mass
loss, smearing of high curvature regions and by the inability to resolve very
thin parts. Another limitation is that level set methods are not appropriate for
tracking surface properties, such as color or texture, which can be desirable in
many image-based approaches (i.e. motion tracking). Thus, while providing
a solution for the intersection and topological issues within surfaces, implicit
representations introduce a new set of issues for which careful solutions need to
be crafted.

Lagrangian methods propose an approach where surfaces have explicit
representations which are deformed over time. Such representations, meshes for
instance, present numerous advantages, among which adaptive resolution and
compact representation, as well as the ability to directly handle non-geometric
properties over the surface, e.g. textures, without the necessity to reconstruct
the interface. On the other hand, they raise two major issues when evolved over
time, namely self-intersections and topology changes, which make them di�cult
to use in many practical scenarios. This is why non-intersections and �xed
topology were explicitly enforced [26,48]. As a consequence, and in spite of their
advantages, they have often been neglected in favor of implicit representations
which provide practical solutions to such issues. Nevertheless, solutions have
been proposed. McInerney and Terzopoulos [41] introduced topology adaptive
deformable curves and meshes, called T-snakes and T-surfaces. However, in
solving the intersection problem, the authors use a spatial grid, thus imposing
a �xed spatial resolution. In addition, only o�setting motions, i.e. in�ating or
de�ating, are allowed. Another heuristic method was proposed by Lauchaud et
al. [37] for mesh deformations. Merges and splits are performed in near boundary
cases: when two surface boundaries are closer than a threshold and facing each
other, an arti�cial merge is introduced; a similar procedure is applied for a split,
when the two surface boundaries are back to back. Self-intersections are avoided
in practice by imposing a �xed edge size. A similar method was also proposed
by Duan et al. [15]. Alternatively, Pons and Boissonat [49] proposed a mesh
approach based on a restricted 3-D Delaunay triangulation. A deformed mesh is
obtained by triangulating the moved vertices and assuming that the tetrahedra
categorization, i.e. inside and outside, remains after the deformation. While
being a robust and elegant solution, it nevertheless relies on the assumption
that the input mesh is su�ciently dense such that the Delaunay triangulation
will not considerably change its layout.

The methods proposed by Aftosmis et al. [2] and Jung et al. [33] are also
related to our work. The algorithm in [2] recovers the outside surface obtained
from self-intersecting meshes. The output mesh is obtained by identifying facets,
or part of facets, which are on the exterior. The algorithm [33] uses the same
idea, applied in the context of mesh o�setting. As explained below in detail, we
generalize these approaches to the more general situations of any mesh defor-
mation.

As a hybrid method, the recent work of Wojtan et al. [58] is representa-
tive, where the topological changes to the mesh are handled by �rst identifying
merging or splitting events at a particular grid resolution, and then locally cre-
ating new pieces of the mesh in the a�ected cells using a standard isosurface
creation method. The topologically simpli�ed portions of the mesh are stitched
to the rest of the mesh at the cell boundaries. While the authors present very
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6 Zaharescu, Boyer, & Horaud

convincing results, they acknowledge some limitations, such as the restriction
to a particular grid cell size, as well as some topological concerns related to
matching exactly the extracted isosurface to the original mesh, among others.

In addition to the two above categories it is worth to mention also Solid
modeling methods that provide practical tools to represent and manipulate
surface primitives. Methods in this domain fall into two categories: Construc-
tive Solid Geometry (CSG) [20,30] and Boundary Representation (B-Rep) [7,10].
CSG methods represent shapes as a combination of elementary object shapes
based on Boolean operations. Alternatively, B-Rep methods adopt the more
natural approach to represent the object boundary using vertices, edges and
facets [3, 52]. Each representation has its advantages. While Boolean opera-
tions on CSG objects are straightforward, a lot of computational e�ort is re-
quired to render CSG objects [24, 51]. On the other hand, it is much more
di�cult to implement Boolean operations on boundary representations (multi-
resolution surfaces) [8, 43], whereas interactive rendering is trivial. While these
methods propose solution for computing Boolean operations of surfaces, to the
best of our knowledge they do not deal with any extension needed to address
self-intersecting meshes. Generally, the methods are more concerned with the
rendering of the resulting geometry than with the generation of correct mani-
folds in the case of self-intersections.

1.2 Contributions

In this paper we propose a novel topology-adaptive self-intersection removal
method for triangular meshes as well as an associated e�cient algorithm, Trans-
forMesh, with guaranteed convergence and numerical stability. We generalize
previous work in this area [2, 33] to any topology changes resulting from mesh
deformation, including merges, splits, hole formations, and hole losses, e.g. Fig-
ure 7. The main contribution is that given an input mesh with self-intersections,
the algorithm provides a 2-D compact oriented manifold that represents the out-
side skin of the input mesh. Such an input mesh is typically obtained by applying
arbitrary deformations to its vertices, as is often the case with such techniques
as surface evolution, surface morphing, or multi-view 3D reconstruction.

The vast majority of the mesh-based surface deformation algorithms avail-
able today are based on topology-preserving methods. Alternatively, we propose
a topology-adaptive mesh evolution method that is entirely based on Trans-
forMesh. Such topology-adaptive scheme is more general and hence better
adapts to challenging applications such as 3D reconstruction using multiple
images and non-rigid surface tracking.

Recent image-based reconstruction methods [53] make use of surface evolu-
tion to obtain accurate 3D models. Our approach contributes in this �eld by
providing an e�cient unconstrained mesh-based solution that allows for facets
of all sizes as well as for topology changes, with the goal of increasing precision
without sacri�cing complexity. The robustness and �exibility of the proposed
framework is also validated in the context of mesh morphing, showing several
topologically challenging examples.

The remainder of this article is organized as follows. Section 2 provides
some background concepts on which our method resides. Section 3 describes in
detail the TransforMesh algorithm. Various aspects of the algorithm, such that
the topological changes that it can handle, convergence, numerical stability
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and time complexity are detailed in section 4. Section 5 describes the mesh
evolution algorithm based on TransforMesh. Mesh morphing is described in
section 6. Section 7 describes how our methodology is plugged into the task of
3D reconstruction. Finally, we conclude in section 8.

TransforMesh is available as an open-source software package (OSS) under
a general public licence (GPL) at http://mvviewer.gforge.inria.fr/.

2 Background

Before we introduce the TransforMesh algorithm we precise the context within
which it applies. We assume an initial mesh representing the surface of a real
object to be deformed into a self-intersecting input mesh from which the Trans-
forMesh algorithm extracts an output mesh. More precisely, we assume that
the initial mesh represents a compact oriented 2-D manifold with possibly sev-
eral components and we expect the output mesh to do the same. Consequently
both initial and output meshes should satisfy the following properties: every
edge belongs to exactly two �at faces; every vertex is surrounded by a single
cycle of edges and faces; faces are oriented and do not intersect except at edges
and vertices. The deformation that the initial mesh underwent can then be any
transformation that preserves the mesh graph structure, i.e. its connectivity.
Hence any vertex displacement �eld that preserves edges is acceptable. Note
that this excludes displacements that fuse neighboring vertices.

The TransforMesh algorithm relies on the identi�cation of outside or exterior
faces on the deformed input mesh. An exterior face on an oriented mesh is a
boundary face that delimits interior and exterior regions and that is oriented
towards an exterior region, i.e. its normal points outward. To further identify
regions delimited by the mesh as interior or exterior we need a rule. Tradition-
ally, interior and exterior regions are de�ned with an even-odd parity rule. Such
rule simply consists of counting the number of intersections of a ray, emanating
from a point, with the delimiting primitive. If this number is odd, the point
belongs to an interior region, if not, the point is on the exterior. While e�cient,
this rule originally applies to simple primitives, e.g. simple closed curves in 2D
and closed surfaces in 3D, and does not correctly handle more complex prim-
itives in particular self-intersecting primitives. In that case, the winding rule
allows regions to be better di�erentiated by using the primitive's orientation.
This appears to be crucial when operating topological changes, such as merge
and split, over regions.

The winding number of a point p with respect to an oriented primitive is
the number of times the primitive winds or cycles around p. Cycles are counted
positively or negatively depending on their orientations around the point. p is
then outside when its winding number is 0, inside otherwise. Figure 1 depicts
this principle in 2D.

To compute this number, two strategies can be followed. A �rst strategy
consists in computing the total signed angle, solid angle in 3D, made by a ray
from the point under consideration to another point traveling along the primi-
tive [12]. The sum will be equal to 0 for a point on the exterior and a multiple
of 2π, 4π in 3D, for a point on the interior. Another strategy considers a ray
from a point and its intersections with the primitive [19]. Each intersection is
assigned a value +1 or −1 according to the sign of the dot product of the ray
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8 Zaharescu, Boyer, & Horaud

Figure 1: Interior and exterior regions delimited by an oriented primitive. A
point is on the exterior when it belongs to a region with a winding number wn
equal to 0, on the interior otherwise.

p

wn = 1

Figure 2: The winding number at p can be obtained by summing the dot product
signs with face normals along any ray from p.

direction with the normal to the primitive at the intersection. If this sign is
negative the value is −1 and +1 otherwise, see Figure 2. The sum of these
values will be 0 only for a point on the exterior. We use this strategy to verify
whether a face is on the exterior. We take a ray from the center of the face
towards its normal direction and we sum the values −1 and +1 obtained at the
intersections with other faces along the ray. The face is on the exterior when
this sum is 0.

We call then a valid face a face fully on the exterior without intersections
with other faces and a partially valid face a face divided by intersections into
sub-parts, some of which being on the exterior. Notice that valid faces can
be found inside the mesh, as independent connected components may appear
inside the mesh as a result of self-intersections. Although these components are
valid parts of the resulting mesh, they are usually not considered in evolution
processes that do rely on criteria applying on exterior surfaces only, distance or
photo-consistency for example.

INRIA
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3 The TransforMesh Algorithm

The TransforMesh algorithm removes self-intersection and adapts to topological
changes in triangular meshes using an intuitive geometrically-driven solution. In
essence, the approach preserves the surface consistency, i.e. 2-D manifoldness,
by detecting self-intersections and considering the subset of the original surface
that is still outside. In order to identify the corresponding faces in the mesh, the
method consists in �rst �nding an initial seed face that is fully on the exterior,
using the winding rule presented in the previous section, and then propagating
the exterior label over the mesh faces by means of region growing. Figure 3
illustrates the algorithm, the di�erent steps are detailed in the following.

Input triangular mesh: 

A manifold mesh that is deformed
and presents self−intersections

Initialization:

1. Compute triangle intersections

2. Triangulate partially valid triangles
using constrained 2D Delaunay

Main loop:

1. Find seed (valid) triangles

2. Propagate exterior region over:

2.2 Neighboring partially valid triangles

2.1 Neighboring valid triangles

 
Output triangular mesh: 

Stitch triangles into a manifold mesh

(1) (2.1) (2.2)

(1) (2)

(2.1)

Input Mesh

Figure 3: Overview of TransforMesh.

3.1 Self Intersections

The �rst step of the algorithm consists of identifying self-intersections, i.e. edges
along which triangles of the mesh intersect.

This information will later on be needed in the computations, since it de-
limits the outside regions. In the general situation, one would have to perform
O(n2) checks, with n the number of triangles, to verify all triangle intersections,
which can become expensive when the number of facets is large. In order to de-
crease the computational time, we use a bounding box test to determine which
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10 Zaharescu, Boyer, & Horaud

bounding boxes (of triangles) intersect, and only for those perform a triangle
intersection test. We use the fast box intersection method implemented in [34]
and described in [61]. The complexity of the method is then O(n log3(n)).

3.2 Valid Region Growing

The second step of the algorithm consists of identifying exterior triangles in the
mesh. A valid region growing approach is used to propagate validity labels on
triangles that composed the outside of the mesh. Alternatively, it can be viewed
as a "painting" procedure, as it was originally described in [2]. Following this
idea, we present here the sub-steps of the region-growing procedure. First, in
the Seed-triangle �nding step, valid triangles are sought as starting triangles
without intersections that reside on the exterior. In the next Valid triangle ex-
pansion step this information is propagated by expanding on neighboring valid
triangles until triangles with intersections are reached. The Partially valid trian-
gle traversal step details then how to traverse the valid sub-parts of intersection
triangles as well as how to cross from one intersecting triangle to the other.
The local sub-parts are triangulated using a constrained 2-D Delaunay trian-
gulation. The underlying idea that guides this step is to propagate the normal
information from the seed triangles using the local geometry.

Seed-triangle �nding A seed-triangle is de�ned as a non-visited valid tri-
angle, found using the winding rule previously introduced. In other words, a
seed-triangle is a triangle that is guaranteed to be on the exterior. This triangle
is crucial, since it constitutes the starting point for the valid region growing. If
found, the triangle will be marked as valid; otherwise, we assume that all out-
side triangles are identi�ed and the algorithm jumps to the next stage (section
3.3). We have adopted the e�cient AABB tree implementation described in [4]
for the ray-to-triangles intersection test.

Valid triangle expansion Region growing over valid triangles is simply per-
formed by checking neighbors of a valid triangle and stopping on the intersec-
tions: if the neighboring triangle is non-visited and has no intersections, then
it is marked as valid; if the neighboring triangle is non-visited and has intersec-
tions, then it is marked as partially valid together with the entrance segment
and direction, corresponding in this case to an oriented half-edge.

Partially-Valid triangle traversal In this step proper processing of regions
containing intersections is ensured, with local geometry being generated. Let
t be a partially valid triangle as marked during the valid triangle expansion
step. We have previously calculated all the intersection segments between this
triangle and all the other triangles. Let St = {sti} represent all the inter-
section segments between triangle t and the other triangles. In addition, let
Ht = {htj |for j = 1..3} represent the triangle half-edges. A constrained 2-D tri-
angulation performed in the triangle plane, using [27], ensures that all segments
in both St and Ht appear in the new triangular mesh structure and that prop-
agation can be achieved in a consistent way. A �ll-like traversal is performed
from the entrance half-edge to adjacent triangles, stopping on constraint edges,
as depicted in Figure 4.

INRIA
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(a) Triangle intersections

Entrance
edge

Intersection 
Segments

TD1

TD3

TD2

Exit constraint
segment

Exit constraint
segment

Exit constraint
segment

Exit constraint
segment

(b) Partially valid triangle traversal

Figure 4: Partially valid triangle traversal. (a)The intersections with all other
triangles are computed for each intersecting triangle. (b) close-up of the bot-
tom triangle in (a). The local geometry is re-de�ned using a constrained 2-D
Delaunay triangulation that ensures the presence of the original triangle edges
and the intersection segments. The traversal starts at the entrance edge and
stops on constraint edges thus marking TD1, TD2 and TD3 as valid.

Choosing the correct side of continuation of the "�ll" like region growing
when crossing from a partially valid triangle to another is a crucial aspect in en-
suring a natural handling of topological changes. The correct orientation is cho-
sen such that, if the original normals are maintained, the two newly formed sub-
triangles would preserve the water-tightness constraint of the manifold. This
condition can also be casted as follows: the normals of the two sub-triangles
should be opposing each other when the two sub-triangles are "folded" on the
common edge. A visual representation of the two cases is shown in Figure 5.
The triangles on the other side of the exit constraint edges will be marked as
valid appropriately, based on whether they contain any intersections or not.

Note that it is possible to visit a partially valid triangle multiple times, de-
pending on whether there are multiple isolated (non-connected) exterior com-
ponents. However, each sub-triangle formed by the local re-triangulation is only
visited once. The simplest example to image is a cross, formed out of two inter-
secting parallelepipeds. There will be intersecting triangles appearing on both
sides.

3.3 Triangle Stiching

The region growing algorithm described previously will iterate until there are no
more unmarked triangles to visit. At this stage, what remains to be done is to
stitch together the 3-D triangle soup (G queue) in order to obtain a valid mesh
which is manifold. We adopt a method similar in spirit to [25,54]. In most cases
this is a straight forward operation, which consists of identifying the common
vertices and edges between facets, followed by stitching. However, there are
three special cases, in which performing a simple stitching will violate the mesh
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Incoming

Outgoing

(a)

Outgoing

Incoming

(b)

Figure 5: The 2 partially valid triangle crossing cases.

constraints and produce locally non-manifold structures. The special cases,
shown in Figure 6, arise from performing stitching in places where the original
structure should have been maintained. We adopt the naming convention from
[25], calling them the singular vertex case, the singular edge case and the singular
face case. All cases are easily identi�ed by performing local operations.

Singular vertex case (Figure 6(a)). A vertex is shared by two or more dif-
ferent regions. In this case, the manifold property stating that for each manifold
point, there is a single neighborhood, does not hold. The algorithm to detect
these cases proceeds simply by checking that all facets incident to a vertex are
within one neighborhood. The steps are: starting from a facet of v, mark it
visited and do the same with its non-visited neighbors that are also incident to
v (neighboring triangles are chosen based on the available mesh connectivity);
the process is repeated until all the neighboring facets are processed; if by doing
so we exhausted all the neighboring facets, vertex v is non singular, otherwise it
is singular, so a copy of it is created and added to all the remaining non-visited
facets. The process is repeated until all the incident facets are visited.

Singular edge case (Figure 6(b)). An edge is shared by two or more di�erent
regions, hence the manifold property does not hold. Such cases are detected and
repaired by the singular vertex detection step, which will correctly identify and
duplicate the two vertices that form the singular edge.

Singular triangle case (Figure 6(c)). A triangle is shared by two or more
di�erent regions, hence the manifold property does not hold. Such cases are
detected and repaired by the singular vertex detection step, which will correctly
identify and duplicate the three vertices that form the singular triangle.

Given that the original input mesh does not contain any of the above singular
simplex scenarios, they rarely occur in practice. Note however that there are
situations where creases are formed on the mesh, usually when inverting mesh
regions, that can degenerate into singular cases.

INRIA
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(a) Singular vertex (b) Singular
edge

(c) Singular face

Figure 6: Special cases encountered while stitching a triangle soup.

4 Algorithm Analysis

Having introduced the algorithm in the previous section, we discuss in this
section some of its most important aspects, including the handling of topological
changes, the guarantee to obtain a valid mesh given a valid input mesh, the
numerical stability and the time complexity.

4.1 Topological Changes

A nice feature of the algorithm is to correctly handle topological changes that
result from the modi�cation of the local geometry, i.e. faces that appear and
disappear. We consider compact surfaces and in the general case, topological
changes that can occur are: merge, split, hole formation and hole loss. They
are depicted in Figure 7. Note that in 3D hole cases correspond to situations
where a connected component is inside another connected component and that
topological changes where handles appear or disappear are covered by the merge
and split cases (see Figure 11 for examples). The partially valid triangle crossing
technique described earlier in Section 3.2 and detailed in Figure 5 ensures a
natural handling of these topological changes that plagued most of the mesh
approaches until now. The merge case scenario, shown in Figure 7(a), coincides
in spirit with the union Boolean set operation ∪∗. Less intuitive is the split
operation, which will typically occur during a mesh evolution process, when
certain parts will thin out up to the moment when some triangles from opposite
sides will cross each other. Such a case is depicted in Figure 7(b), in a mesh
morphing scenario, where the initial surface has 1 connected component and
the destination 2 connected components. The 2 other examples, hole formation
and loss, are less frequent. While handled by the algorithm, we do not account
for them in practice since, as mentioned earlier, inside valid faces are usually
not considered in surface evolution processes.

4.2 Guarantees

Given that the input mesh is a 2-D compact oriented manifold that has been
deformed by a motion �eld and assuming exact computations (see section 4.3),
TransforMesh will recover 2-D compact oriented manifold components. The
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(a) Merge (b) Split

(c) Hole formation (d) Hole loss

Figure 7: Topological changes (2-D simpli�ed view).

number of components depends on the number of seed triangles detected. The
algorithm will always �nish, because it does not revisit already traversed sub-
parts. In addition, it is guaranteed to always �nd the exterior surface, since it
starts from a valid seed triangle, thus on the exterior, and it always rests that
way, by propagating the normal information. The computed output is manifold
by construction, since it traverses a valid input manifold and accounts for the
manifold violations with the degenerate cases. It is compact, since the original
input surface has no border and the algorithm does not build any, i.e. there is
always a way outside a triangle intersection.

In addition, the 2-D manifold correctness is guaranteed by identifying and
correcting all the possible 2-D manifold neighborhood violations when perform-
ing triangle stitching (singular vertex, singular edge and singular facet).

The algorithm preserves the geometry of the input mesh, with the exception
of the self-intersection areas, where local triangulations rede�ne the geometry.

4.3 Numerical Stability

The numerical stability is critical, in order to be able to guarantee that the
output is valid. It is ensured by using exact arithmetic predicates when com-
puting intersections, as well as disambiguating the boundary cases. The special
boundary cases between two intersecting triangles are:

1. the intersection reduces to a point;

2. the intersection is a segment that lies on one of the original triangle edges;
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3. the intersection is a 2-D polygon, i.e. the two triangles are co-planar.

We disambiguate the above boundary cases using the simulation of simplic-
ity technique of virtual perturbations [16]. It involves inducing a small vertex
perturbation locally, which will force the triangle-triangle intersection into one
of the classical cases: either the two triangles do not intersect or their inter-
section is a segment that does not lie on one of the original triangle edges. In
practice, when such boundary situations occur, mesh o�setting is performed for
that purpose. The choice of using the simulation of simplicity technique to han-
dle boundary cases is motivated by the targeted application, mesh evolution,
where such boundary situations rarely occur and where the explicit handling of
all special cases would penalize the algorithm. We note, however, that there are
applications, e.g. CAD applications, where such situations can occur, as shown
in Figure 8. In that case, one could advantageously consider the approach
proposed by Mäntylä [40], which treats all the possible scenarios explicitly, to
disambiguate boundary cases. Other remarks are in order:

(a) Input (b) Output

Figure 8: Two inverted cylinders example. Examples of a boundary case testing
numerical stability and the solutions provided by the algorithm.

� The �rst boundary case -when the intersection is a point- can alternatively
be dealt with by considering the regularized intersection operation ∩∗, thus
assuming that there is no intersection between the triangles.

� Others numerical stability issues related to �xed numerical precision, e.g.
newly computed intersection segments might not be strictly co-planar with
the original triangles, are handled by using exact geometrical predicates.
See 4.6 for implementation details.

� In practice, triangles having near-zero area are also eliminated, should
they occur, by using two mesh operations: edge collapse and edge �ip.

4.4 Time Complexity

The overall time complexity of the algorithm depends on the number n and rel-
ative sizes of facets and it is of O(n log3(n)) expected time (the average case).
This complexity is dominated by the number of operations required to deter-
mine intersections. Each triangle requires O(log3 n) tests, thanks to the fast box
intersection method used, described in [61] and implemented in [34]. The com-
plexity of the method is O(n logd(n)+k) for the running time and O(n) for the
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space occupied, d the dimension (3 in the current case), and k the output com-
plexity, i.e., the number of pairwise intersections of the triangles. In practice,
more than 80% of the running time is spent computing the self-intersections.
Typically, the running time for performing the self-intersections test is under
1 second for a mesh with 50, 000 facets on a 2.6 GHz Intel Core2Duo, with no
multi-threading, and where exact arithmetic is used for triangle intersections
and where the self-intersections are in the range of 100.

4.5 Comparison with a Static Algorithm

Alternatively, one could use the valid triangle test, described in Section 2, in
order to devise another static algorithm, which will test all the existing triangles
and sub-triangles obtained from local Delaunay triangulations. The method will
only choose the triangles that reside on the exterior, after which it will proceed
to the �nal triangle stitching step.

However, this static algorithm would take considerably longer time, since it
requires the same initial time O(n log3 n) to compute all the triangle intersec-
tions and local Delaunay triangulations, followed by the additional time required
for the valid triangle test, which is not negligible. Nevertheless, it should be no-
ticed that this static algorithm is much simpler to implement than the proposed
one and could be of interest in some applications, e.g. for validation purposes.

4.6 Implementation Details

In our implementation we have made use of CGAL (Computational Geometry
Algorithms) C++ library [9], which provides guaranteed implementations for
various algorithms. We have used the following CGAL modules: N-dimensional
fast box intersections, 2-D constrained Delaunay triangulation, AABB trees,
triangular meshes and support for exact arithmetic kernels.

5 Mesh evolution

A number of methods exist in the literature that deal with deformable surfaces,
such as Kenneth Brakke's Evolver 1, Wojtan and Turk's visco-elastic simula-
tor [59] or the work of Celniker and Gossard on deformable surfaces [13]. Nev-
ertheless, the above mentioned methods are all mesh-based topology preserving.
This might be or not a desired feature of the algorithm, depending on the tar-
get application. It is our goal, in the current section, to introduce an intuitive
generic mesh evolution paradigm that is topology adaptive, based on Trans-
forMesh. The main steps of the algorithm are presented in Figure 9. Within
each evolution iteration, there are four steps. Firstly, a velocity vector �eld ~F
is computed for each vertex of the mesh M. This step is application speci�c.
Secondly, the mesh is deformed using the computed velocity vector �eld ~F and
a small time step t, thresholded by a maximum movement α ·eavg(v), where α is
a user-set threshold (typically between 0.1-0.3) and eavg(v) represents the local
average edge length for a vertex v. Thirdly, TransforMesh is invoked in order
to clean the potential self-intersections and topological problems introduced by
the second step. The fourth step involves mesh optimization, with the goal of

1http://www.susqu.edu/facstaff/b/brakke/evolver/evolver.html
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ensuring good mesh properties. Ideally, a mesh should consist of triangles as
close to equilateral as possible, which allows for better computations of local
mesh properties, e.g. curvatures and normals. To this purpose, a number of
sub-steps are being performed: adaptive remeshing, vertex valence optimization
and Laplacian smoothing. The adaptive remeshing step ensures that all edges
are within a safety zone interval (e1, e2), which is user-de�ned. This prevents
edges from reaching close to zero sizes. In practice, this is obtained through
edge collapse or edge swap operations. The vertex valence optimization step
performs edge swaps in an attempt to ensure an overall vertex valence of 6 [35].
Vertex valence is de�ned as the number of edges shared by a vertex. The ideal
vertex valence of 6 is desirable because, assuming that the manifold is generally
locally planar, it is equivalent to obtaining 60◦ for each of the sharing trian-
gle angles, thus optimizing for equilateral triangles. Alternatively, the vertex
valence can also be improved by performing edge swaps only if it increases the
minimum angle of either triangle adjacent to the edge. The Laplacian smoothing
is attained by computing the discrete mesh Laplacian [14, 42], i.e. the discrete
Laplace-Beltrami operator, ∆v for each vertex v of the mesh. Furthermore, the
mesh is smoothed using v → v−β∆v. These four main steps are repeated until
the mesh has reached the desired �nal state, also application speci�c.

We will present below two examples, one for mesh morphing in section 6,
demonstrating the ability of the algorithm to handle complex surface evolutions,
and the other one for multi-view 3-D reconstruction in section 7. In both cases,
the application speci�c information is detailed in order to compute the vector
�elds ~Fmorphing and ~Freconstruction, which plug directly within the generic mesh
evolution framework presented in Figure 9.

Choosing the correct time step. The currently presented mesh evolution
approach does not make any assumptions about choosing the right time-step.
This parameter is entirely application speci�c. The TransforMesh algorithm
does not have any information about the temporal component. It is therefore
entirely up to the user to choose a meaningful time-step t which will capture
all the temporal dynamics. The only measure proposed in the generic evolution
algorithm is to threshold the maximum vertex movement to α ·eavg(v), in order
to prevent both large jumps and to reduce the number of intersections.

Remeshing. The remeshing step is important and should theoretically
occur at each timestep, due to the fact that some regions can become under-
sampled in areas where the speed vector �eld is divergent or over-sampled in
areas where the speed vector �eld is convergent. More importantly, intersections
can generate poorly shaped triangles, which would probably have an impact on
the local numerical process applied to the mesh that produces the vector �eld.

6 Surface morphing

A straightforward mesh evolution application of our algorithm is surface morph-
ing, that is starting from a source surface SA and evolving it towards a destina-
tion surface SB . This will allow us to test thoroughly various cases of topology
changes. Surface morphing has been widely described in the literature. We will
adopt the method proposed by Breen and Whitaker [11]. We will summarize
the reasoning that leads the surface evolution equation.
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Generic Mesh Evolution using TransforMesh

While Not Finished

1. Compute Velocity Vector Field ~F of velocities for each ver-
tex of the mesh M, using application speci�c information.

2. Evolve MeshM using the vector �eld ~F and a small time-step
t, thresholded by a maximum α · eavg(v), where α is a user-set
threshold (typically set between 0.1-0.3) and eavg(v) is the local
average edge length for a vertex v.

3. Invoke TransforMesh onM in order to clean self-intersections
and topological problems

4. Mesh Optimization

a) Adaptive Remeshing: ensures that all edges are within a
safety zone interval, i.e. ∀e ∈ M, e ∈ [e1, e2], by performing
edge swaps or edge collapses.

b) Vertex Valence Optimization: perform edge swaps such that
each vertex will be shared by 6 triangles [35].

c) Perform Mesh Laplacian Smoothing: each vertex v is up-
dated by v → v − β∆v, where ∆v represents the discrete
mesh Laplacian [14,42].

Figure 9: Generic mesh evolution algorithm using TransforMesh.

6.1 Methodology

Ametric that quanti�es how much two surfaces overlap is de�ned (source surface
SA and destination surface SB). A natural choice of such a metric is the signed
distance function γB of the destination mesh SB ', de�ned as in the level set
literature as being negative inside the shape SB , zero on the surface, and positive
on the exterior. By considering the volume integralMSB

(SA) of any surface SA

with respect to γB (thus SB), one can see that it will achieve the maximum when
the two surfaces overlap. By taking the �rst variation of the metric MSB

(SA)
with respect to the surface SA and a small displacement �eld and di�erentiating
with respect to the vector �eld, one obtains the following evolution equation
using a hill climbing strategy for each vertex x along its normal N(x):

~Fmorphing =
∂S

∂t
= −γB(x)N(x) (1)

The evolution strategy described above will converge to a local minimum.
Given the surface of departure SA and the destination surface SB , SA will
correctly �nd all the connected components of SB that are included in the
original surface SA. If SA represents a surface outside the destination surface
SB , SA will converge to an empty surface. We keep this result in mind when
choosing the initial surface SA.
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6.2 Complexity Issues and Mesh Discretization

SA(t)

N(pt)

pt

β

SA(t+1)

SB

q

N(q)

Figure 10: Mesh Morphing evolution step. The surface SA evolves from time
t to time t + 1 towards SB . If for point p ∈ SA, the closest point in SB is q,
then the point p will evolve along its normal with a magnitude of (p− q) ·N(p),
thresholded by a maximum user set evolution magnitude.

In the general case, in order to calculate an exact distance function γB , one
would have to consider the distance from a query point to the each of the facets
of the mesh (representing the surface SB), keeping the closest distance. This
process will take O(NF ), where NF represents the number of facets. This is a
fairly expensive computation, which will have to be performed at each iteration
throughout the evolution for every vertex.

There exists a large number of methods for computing 3-D distance �elds.
For a recent survey, please consult [31]. As per [31], the methods can be classi�ed
according to two criteria. According to the �rst criterion, they can be:

� Chamfer methods, where the new distance of a voxel is computed from
the distances of its neighbors by adding values from a distance template;

� vector methods where each voxel stores a vector to its nearest surface
point and the vector at an unprocessed voxel is computed from the vectors
at its neighbors by means of a vector template and

� Eikonal solvers, where the distance of a voxel is computed by a �rst or
second order estimator from the distances of it's neighbors.

According to the second criterion, the distances can be propagated throughout
the volume in a:

� sweeping scheme, when the propagation starts in one corner of the vol-
ume and proceeds in a voxel-by-voxel, row-by-row fashion to the opposite
end, typically requiring multiple passes in di�erent directions, or in a

� wavefront scheme, when the distances are propagating from the initial
surface in the order of increasing distances until all voxels are covered.
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For our testing purposes, we propose an approximation/heuristic using the
distance to the closest vertex point, as illustrated in Figure 10. If for a point
p ∈ SA, the closest point from SB is q, the evolution equation for point p is:

γB(p) = (q − p) ·N(p), (2)

where γ was introduced in (1). Note that the vector magnitude will be thresh-
olded to a maximum of α · eavg(p), as per step 2 of the generic mesh evolution
algorithm, described in Figure 9. The distance and sign from a query point are
computed on the �y, as supposed to being stored in a distance �eld 3-D grid.
The computation time is reduced drastically due to the use of proper search
structures. The search time for the nearest neighbor is O(log(NV )), where NV

represents the number of vertices. There is an initial overhead of O(NV log(NV ))
of building the search tree. In practice, we have used the implementation of [28]
available in CGAL. Note that if the target surface SB contains a good enough
mesh resolution, this approximation is very close to the true signed distance
function. Also, if the accuracy of distance �eld computation is of concern, more
exact implementations could be adopted [31].

In the case of su�cient sampling, the current approximation will return a
vertex belonging to the closest triangle where the true projection would be.
Thus, the error bound is the distance between the vertex and the projection.
In practice, however, we do not use the actual distance, but its sign, in order to
establish the direction of the evolution. This makes the current approximation
�t for our purpose. Alternatively, one could easily verify all the incident triangles
to the closest vertex to establish the true distance function, if the application
requires it, keeping in mind that the su�cient sampling condition still applies.

The current heuristic only makes use of the mesh vertices of SB , together
with their associated normals. This has the great advantage of being able to be
applied in the current formulation, not only to meshes, but also to oriented
3-D points. This would allow one to morph an initial mesh SA towards a
set of oriented 3-D points PB . If orientation information is not available, it
can be estimated from neighboring points using principal component analysis
[29]. Alternatively, in the context of multi-view stereo, it can be obtained via a
minimization scheme [23].

6.3 Results

In Figure 11 we present results obtained with four test cases, entitled "Genus 3",
"Thoruses", "Knots In" and "Knots Out". As it can be observed, the algorithm
successfully deals with merge and split operations as well as handling multiple
connected components. The average computation time per iteration on a 2.6
GHZ Intel Core2Duo processor varies between 0.2 to 1.6 seconds, depending on
the number of facets and on the number of intersections. More detailed statistics
are presented in Table 1.

In terms of parameter settings with respect to the generalized mesh evolu-
tion framework depicted in Figure 9 within which we casted the current mesh
morphing algorithm, we considered t = 1 for the timestep, α = 0.2 the average
edge size eavg for maximum movement amplitude and β = 0.1 for the smoothing
term. Additionally, the original meshes had a constant mesh resolution. Hence,
we set the edge thresholds to e1 = 0.7 · eavg and e2 = 1.5 · eavg.
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Figure 11: Mesh morphing examples. Di�erent steps for various test cases. Each
column corresponds to a test case. The �rst row represents the �rst iteration,
whereas the last row represents the last iteration.

Dataset Genus 3 Thoruses Knots In Knots Out

Iterations 54 37 119 430
# Facets 4764.14 6296.33 13244.25 3873.11
# Intersections 33.88 22.67 101.52 4.86
Time (TransforMesh) 0.65 sec 0.81 sec 1.63 sec 0.18 sec
Time (total) 1.42 sec 1.78 sec 3.58 sec 0.89 sec

Table 1: Mesh morphing statistics for di�erent datasets. The reported values
presented in the bottom four rows represent average values accumulated across
the iterations. The running time is recorded on a 2.6 GHz Intel Core2Duo
processor.

Additional results of mesh morphing are presented in Figure 12, with meshes
obtained from 3-D reconstructions from multiple cameras, in the context non-
rigid surface tracking [56].

7 Multi-View 3-D Reconstruction

In this section we explain how our method �ts into the multi-view/image-based
3D reconstruction pipeline. The problem of reconstructing an object from im-
ages gathered with a large number of cameras has received a lot of attention in
the recent past [26, 50, 53, 57, 57]. It is interesting to notice that, until recently,
there were only a handful of mesh-based solutions to the surface reconstruc-
tion problem. This is mainly due to the topological problems raised by existing
mesh-evolution methods. In particular, topological-preserving approaches are
ill adapted to the problem of surface reconstruction. Topological-adaptive al-
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Figure 12: Example of topological changes during mesh morphing in surface
tracking. The source surface S′

t, shown to the left, is the result of a deformation
of the original mesh St at time t such that it matches closely the mesh St+1

at t + 1, shown to the right. The mesh morphing process ensures the proper
handling of topological changes (i.e. the whole formation in the arm region).

gorithms, such as TransforMesh provide a more �exible solution that allows to
better resolve for local details using topological changes.

In [50] the multi-view reconstruction problem is cast into an energy mini-
mization problem using photometric constraints. It is well known that topo-
logical changes may take place during the minimization process, e.g., Figure
15. Surface evolution based on a level-set formulation is proposed in [50]. Our
contribution to this class of reconstruction methods is to extend such surface
evolution approaches to meshes that allow to focus on the shape's surface instead
of a bounding volume.

The method described below was applied both to visual hulls, e.g., [21] and
to sparse point-based 3-D data, e.g., [60]. The former representation constitutes
the initial mesh that needs be improved using photometric information from the
available images. The latter representation can be easily turned into a rough
mesh using [6] for example.

7.1 Methodology

The initial meshed surface corresponds to an extended bounding box obtained
using image silhouettes and a geometric approach that involves cone intersec-
tions in 3-D, i.e., [22]. Such a mesh is only a coarse approximation of the
observed surface. One main limitation of visual hull approaches is that they do
not recover concave regions. The initial surface can be improved by consider-
ing photometric information in the images. The underlying principle is that,
with a correct geometry, and under the Lambertian surface assumption, the
mesh should be photo-consistent, i.e., its projections in the images should have
similar photometric information [5].

The photometric constraints are casted into an energy minimization frame-
work, using a similarity measure between pairs of cameras that are close to each
other, as proposed by Pons et al. [50]. The problem is solved in practice via
gradient descent. Eimg is the derivative of the local photoconsistency term, in
the normal direction, that can be computed using several methods. To compute
such a derivative, we use one of the most e�cient approaches [50], based on the
normalized cross-correlation. The evolution equation is in this case:
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~Freconstruction =
∂S

∂t
= Eimg(x)N(x). (3)

In [50] the surface evolution is implemented within the level-set framework.
We extended it to meshes using the TransforMesh algorithm. The level-set
solution performs surface evolution using a coarse-to-�ne approach in order to
escape from local minima. Traditionally, in level-set approaches, the implicit
function that embeds the surface S is discretized evenly on a 3-D grid. As a side-
e�ect, all the facets of the recovered surface are of approximately equal triangle
size. In contrast, mesh based approaches do not impose such a constraint and
allow facets of all sizes on the evolving surface. This is particularly useful
when starting from rough surface estimates, such as visual hulls, where the
initial mesh contains triangles of all dimensions. In addition, the dimension of
visual facets appears to be a relevant information since regions where the visual
reconstruction is less accurate, i.e. concave regions on the observed surface,
are described by bigger facets on the visual hull. Thus, we adopt an approach
in which bigger triangles are processed �rst, until they are stabilized, then the
whole process is repeated at a �ner scale.

The mesh evolution algorithm depicted in Figure 9 requires a number of
parameters to be set in advance. In the case of 3-D reconstruction we used the
following parameter settings in all our examples: t = 0.001 for the time step,
α = 0.1 and eavg for the maximum movement amplitude and β = 0.1 for the
smoothing term. The meshes have an adaptive mesh resolution. As mentioned
earlier, we ran the algorithm at di�erent scales, starting from scale smax to
smin = 1 in λ =

√
2 decrements. For each scale si, the input images and camera

matrices are downscaled accordingly. The appropriate edge size interval is set
to e1 = edgeSize(1, 1) e2i = edgeSize(5, i), where edgeSize(p1, p2) is a function
that computes the desired edge size such that it has p1 pixels using images at
scales p2. The initial scale smax is computed such that the largest edges of
the initial mesh measure 5 pixels when projected into the images at scale smax.
When the �ner scale is reached, new iterations are run by decreasing e2 from
edgeSize(5, 1) to edgeSize(2, 1) in λ =

√
2 decrements.

Temple Ring Temple Sparse Dino Ring Dino Sparse
Acc. Compl. Acc. Compl. Acc. Compl. Acc. Compl.

[50] 0.60 99.5% 0.90 95.4% 0.55 99.0% 0.71 97.7%
[23] 0.47 99.6% 0.63 99.3% 0.28 99.8% 0.37 99.2%
[26] 0.52 99.5% 0.75 95.3% 0.45 97.9% 0.60 98.52%
[57] 0.45 99.8% 0.53 99.7%
Us 0.55 99.2% 0.78 95.8% 0.42 98.6% 0.45 99.2%

Table 2: Middleburry 3-D Reconstruction Results. Accuracy (expressed in
milimeters): the distance d (in mm) that brings 90% of the result R within
the ground-truth surface G. Completeness: the percentage of G that lies within
1.25mm of R.
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7.2 Results

We have tested the mesh evolution algorithm with the datasets provided by the
Multi-View Stereo evaluation site [53] 2. The ground-truth is obtained from
laser-scans. Comparative and detailed results are extracted from the Middle-
bury website and are presented in Table 2. The table includes results from
Furukawa and Ponce [23], Pons et al. [50], Vu et al. [57] and Hernandez and
Schmitt [26]; all these methods yield state-of-the-art results. The di�erences
between all these methods are very small, ranging between 0.01mm to 0.1mm.
Some of our reconstruction results are shown in Figure 13 and Figure 14. While
Vu et al. [57] used the same energy functional as part of their 3-D reconstruc-
tion pipeline, their improved results are mostly due to the fact that the mesh
regularization term takes into account photo-consistency.

Figure 14 shows the results obtained with our method when starting with
very rough meshes that correspond to coarse triangulations obtained from a
sparse set of 3-D points. An example of how TransforMeshhandles topological
changes is shown in Figure 15. This �gure shows a typical evolution scenario
where there are more �topological problems� at the beginning; As the algorithm
converges, self-intersections barely occur.

Finally, Figure 16 shows results obtained with the Man-dance sequence pub-
licly available from the Multiple-video database of the PERCEPTION group at
INRIA 3.
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Figure 13: Reconstruction Results for the Middleburry multiview dataset (dino
case and temple case)

8 Conclusion

In this paper, we proposed a geometry-driven self-intersection removal algorithm
for triangular meshes, able to handle topological changes in an intuitive and
e�cient way. Our main contribution with respect to the existing mesh-evolution

2http://vision.middlebury.edu/mview/
3http://4drepository.inrialpes.fr/
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Dino Temple Box Dinosaur

Figure 14: Additional dense reconstruction results. First Row: Sample Input
Image; Second Row: A rough mesh obtained using using PowerCrust [6] from
the sparse 3-D points, reconstructed using [60]; Third Row: the �nal dense
reconstruction after surface evolution.

Figure 15: Example of topological changes during in 3-D reconstruction for the
dinosaur sequence, introduced in Figure 14. The start-up surface, obtained from
triangulated 3-D points via PowerCrust [6] contains several topological errors
(i.e. the extra branch connecting the dinosaur's limbs). They are corrected
during the surface evolution, ash shown in the right most image.
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Figure 16: Results for the Man-dance sequence from INRIA. At each time-step
the mesh is reconstructed from 34 cameras.

methods is to provide a purely geometric mesh-based solution that is correct,
that does not constrain meshes and that allows for facets of all sizes as well as
for topological changes.

The TransforMesh algorithm was plugged into a generic mesh-evolution
framework, thus allowing to address two challenging problems within a topology-
adaptive approach: surface morphing and multi-view image-based 3-D recon-
struction.

We provided both a detailed description of the proposed algorithm as well
as an in-depth analysis of its convergence and performances (numerical stabil-
ity and time complexity). In the case of surface morphing, we showed that
TransforMesh can deal with challenging topological cases.

The 3-D reconstruction method that we described and which is based on
mesh evolution is extremely versatile. The method recovers a correct discrete
surface geometry starting from very coarse approximations, such as visual hulls
or sparse sets of 3-D points. The 3-D reconstruction results are of comparable
quality with state-of-the-art methods recently developed by computer vision
researchers.

INRIA



Topology-Adaptive Mesh Deformation 27

Acknowledgments

We thank Jean-Philippe Pons and Renaud Keriven for providing the source code
for the gradient computation needed by multi-view 3D reconstruction.

References

[1] D. Adalsteinsson and J. Senthian. A fast level set method for propagating
interfaces. Journal of Computational Physics, 118(2):269�277, 1995.

[2] M. Aftosmis, M. Berger, and J. Melton. Robust and e�cient cartesian
mesh generation for component-based geometry. In AIAA Paper 97-0196.,
1997.

[3] A. Agrawal and A. Requicha. A paradigm for the robust design of algo-
rithms for geometric modeling. Computer Graphics Forum, 13(3):33�44,
1994.

[4] P. Alliez, S. Tayeb, and C. Wormser. Aabb tree. In CGAL Editorial Board,
editor, CGAL User and Reference Manual. 3.5 edition, 2009.

[5] S. M. S. amd C. R. Dyer. Photorealistic scene reconstruction by voxel
coloring. International Journal of Computer Vision, 35(2):151�173, 1999.

[6] N. Amenta, S. Choi, and R. Kolluri. The power crust, unions of balls,
and the medial axis transform,. Computational Geometry: Theory and
Applications, 19(2-3):127�153, 2001.

[7] B. G. Baumgart. Geometric Modeling for Computer Vision. PhD thesis,
Standford University, 1974.

[8] H. Biermann, D. Kristjansson, and D. Zorin. Approximate boolean oper-
ations on free-form solids. In Proceedings of SIGGRAPH, pages 185�194,
2001.

[9] C. E. Board. CGAL-3.2 User and Reference Manual, 2006.

[10] I. C. Braid, R. C. Hillyard, and I. A. Stroud. Stepwise construction of
polyhedra in geometric modelling. Mathematical Methods in Computer
Graphics and Design, 1978.

[11] D. E. Breen and R. T. Whitaker. A level-set approach for the metamor-
phosis of solid models. IEEE Transaction on Visualization and Computer
Graphics, 7(2):173�192, 2001.

[12] P. Carvalho and P. Cavalcanti. Point in polyhedron testing using spherical
polygons. In Graphics Gem V, chapter II.2, pages 42�49. Academic Press,
1995.

[13] G. Celniker and D. Gossard. Deformable curve and surface �nite-elements
for free-form shape design. In Computer Graphics, volume 25, pages 257�
266, 1991.

RR n° 7136



28 Zaharescu, Boyer, & Horaud

[14] H. Delingette, M. Herbert, and K. Ikeuchi. Shape representation and image
segmentation using deformable surfaces. Image and Vision Computing,
pages 132�145, 1992.

[15] Y. Duan, L. Yang, H. Qin, and D. Samara. Shape reconstruction from
3D and 2D data using pde-based deformable surfaces. In Proceedings of
European Conference on Computer Vision, volume 3, pages 238�251, 2004.

[16] H. Edelsbrunner and E. Mücke. Simulation of simplicity: A technique to
cope with degenerate cases in geometric algorithms. ACM Transactions on
Graphics, 9(1):66�104, 1990.

[17] D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell. A hybrid particle level
set method for improved interface capturing. Journal of Computational
Physics, 183(1):83�116, 2002.

[18] D. Enright, S. Marschner, and R. Fedkiw. Animation and rendering of
complex water surfaces. In Proceedings of SIGGRAPH, pages 736�744,
2002.

[19] J. Foley, A. V. Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics:
Principles and Practice, second edition. Addison Wesley, 1996.

[20] J. D. Foley, A. van Dam, S. Feiner, and J. F. Hughes. Computer Graphics:
Principles and Practice. Addison Wesley, 1990.

[21] J.-S. Franco and E. Boyer. Exact polyhedral visual hulls. In Proceedings of
the British Machine Vision Conference, volume 1, pages 329�338, Septem-
ber 2003.

[22] J. S. Franco and E. Boyer. E�cient polyhedral modeling from silhou-
ettes. IEEE Transactions on Pattern Analysis and Machine Intelligence,
31(3):414�427� March 2009.

[23] Y. Furukawa and J. Ponce. Accurate, dense and robust multi-view stereop-
sis. In IEEE Transactions on Pattern Analysis and Machine Intelligence,
page to appear, 2009.

[24] J. Goldfeather, J. P. M. Hultquist, and H. Fuchs. Fast constructive-solid
geometry display in the pixel-powers graphics system. In Proceedings of
SIGGRAPH, volume 20, pages 107�116, 7 1986.

[25] A. Gueziec, G. Taubin, F. Lazarus, and B. Horn. Cutting and stitching:
Converting sets of polygons to manifold surfaces. IEEE Transaction on
Visualization and Computer Graphics, 7(2):136�151, 2001.

[26] C. E. Hernández and F. Schmitt. Silhouette and stereo fusion for 3-D
object modeling. Computer Vision and Image Understanding, 96(3):367�
392, 2004.

[27] S. Hert and M. Seel. dD convex hulls and delaunay triangulations. In C. E.
Board, editor, CGAL-3.2 User and Reference Manual. 2006.

[28] G. R. Hjaltason and H. Samet. Ranking in spatial databases. Symposium
on Large Spatial Databases, pages 83�95, 1995.

INRIA



Topology-Adaptive Mesh Deformation 29

[29] H. Hoppe, T. DeRose, T. Duchamp, J. MCDonald, and W. Stuetzle.
Surface reconstruction from unorganized points. In Proceedings of SIG-
GRAPH, 1992.

[30] P. M. Hubbard. Constructive solid geometry for triangulated polyhedra.
Technical Report CS-90-07, Department of Computer Science, Brown Uni-
versity, 1 1990.

[31] M. W. Jones, J. A. Bærentzen, and M. Sramek. 3D distance �elds: A survey
of techniques and applications. IEEE Transactions on Visualization and
Compute Graphics, 12(4):581�599, July/August 2006.

[32] T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual contouring of hermite
data. In Proceedings of SIGGRAPH, 2002.

[33] W. Jung, H. Shin, and B. K. Choi. Self-intersection removal in triangular
mesh o�setting. Computer-Aided Design and Applications, 1(1-4):477�484,
2004.

[34] L. Kettner, A. Meyer, and A. Zomorodian. Intersecting sequences of dD
iso-oriented boxes. In C. E. Board, editor, CGAL-3.2 User and Reference
Manual. 2006.

[35] L. Kobbelt, T. Bareuther, and H.-P. Seidel. Multiresolution shape defor-
mations for meshes with dynamic vertex connectivity. In Proceedings of
Eurographics, pages 249�260, 2000.

[36] L. P. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Seidel. Feature sensi-
tive surface extraction from volume data. In Proceedings of SIGGRAPH,
pages 57�66, 2001.

[37] J.-O. Lachaud and B. Taton. Deformable model with adaptive mesh and
automated topology changes. In Proceedings of the Fourth International
Conference on 3-D Digital Imaging and Modeling, 2003.

[38] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D
surface construction algorithm. Computer Graphics, 21(4):163�169, July
1987.

[39] F. Losasso, R. Fedkiw, and S. Osher. Spatially adaptive techniques for level
set methods and incompressible �ow. Computers and Fluids, 35(10):995�
1010, 2006.

[40] M. Mäntylä. Boolean operations of 2-manifolds through vertex neighbor-
hood classi�cation. ACM Transactions on Graphics, 5(1):1�29, 1986.

[41] T. McInerney and D. Terzopoulos. T-snakes: Topology adaptive snakes.
Medical Image Analysis, 4(2):73�91, 2000.

[42] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr. Discrete di�erential
geometry operators for triangulated 2-dimensional manifolds. In Proceed-
ings of VisMath, 2002.

[43] A. L. Nathan Litke and P. Schröder. Trimming for subdivision surfaces.
Technical report, Caltech, 2000.

RR n° 7136



30 Zaharescu, Boyer, & Horaud

[44] Y. Ohtake, A. Belyaev, and A. Pasko. Dynamic mesh optimization for
polygonized implicit surfaces with sharp features. The Visual Computer,
19:115�126, 2003.

[45] S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces.
Springer, 2003.

[46] S. Osher and N. Paragios. Geometric Level Set Methods in Imaging, Vision,
and Graphics. Springer, 2003.

[47] S. Osher and J. Senthian. Front propagating with curvature dependent
speed: algorithms based on the Hamilton-Jacobi formulation. Journal of
computational Physics, 79(1):12�49, 1988.

[48] J.-J. Park, T. McInerney, D. Terzopoulos, and M.-H. Kim. A non-self-
intersection adaptive deformable surface for complex doundary extraction
from volumetric images. Computer & Graphics, 25:421�440, 2001.

[49] J.-P. Pons and J.-D. Boissonnat. Delaunay deformable models: Topology-
adaptive meshes based on the restricted delaunay triangulation. In Pro-
ceedings of IEEE Conference on Computer Vision and Pattern Recognition,
pages 1�8, Minneapolis, USA, Jun 2007.

[50] J.-P. Pons, R. Keriven, and O. Faugeras. Multi-view stereo reconstruc-
tion and scene �ow estimation with a global image-based matching score.
International Journal of Computer Vision, 72(2):179 � 193, 2007.

[51] A. Rappoport and S. Spitz. Interactive boolean operations for conceptual
design of 3-D solids. In Proceedings of SIGGRAPH, pages 269�278, 1997.

[52] J. Rossignac and A. Requicha. Encyclopedia of Electrical and Electronics
Engineering, chapter Solid Modeling. John Wiley and Sons, 1999.

[53] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski. A com-
parison and evaluation of multi-view stereo reconstruction algorithms. In
Proceedings of IEEE Conference on Computer Vision and Pattern Recog-
nition, volume 1, pages 519�526, 2006.

[54] H. Shin, J. C. Park, B. K. Choi, Y. C. Chung, and S. Rhee. E�cient
topology construction from triangle soup. In Proceedings of the Geometric
Modeling and PRocessing, 2004.

[55] M. Sussman, P. Smereka, and S. Osher. A level set approach for comput-
ing solutions to incompressible two-phase �ow. Journal of Computational
Physics, 114(1):146�159, 1994.

[56] K. Varanasi, A. Zaharescu, E. Boyer, and R. P. Horaud. Temporal surface
tracking using mesh evolution. In Proceedings of European Conference on
Computer Vision, 2008.

[57] H. Vu, R. Keriven, P. Labatut, and J.-P. Pons. Towards high-resolution
large-scale multi-view stereo. In Conference on Computer Vision and Pat-
tern Recognition (CVPR), Miami, Jun 2009.

INRIA



Topology-Adaptive Mesh Deformation 31

[58] C. Wojtan, N. Thurey, M. Gross, and G. Turk. Deforming meshes that
split and merge. In Proceedings of SIGGRAPH, 2009.

[59] C. Wojtan and G. Turk. Fast viscoelastic behavior with thin features. In
Proceedings of SIGGRAPH, 2008.

[60] A. Zaharescu and R. P. Horaud. Robust factorization methods using a gaus-
sian/uniform mixture model. International Journal of Computer Vision,
March 2009.

[61] A. Zomorodian and H. Edelsbrunner. Fast software for box intersection.
International Journal of Compational Geometry and Applications, 12(1-
2):143�172, 2002.

RR n° 7136



Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq

Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex

Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399


	1 Introduction
	1.1 Literature Review
	1.2 Contributions

	2 Background
	3 The TransforMesh Algorithm
	3.1 Self Intersections
	3.2 Valid Region Growing
	3.3 Triangle Stiching

	4 Algorithm Analysis
	4.1 Topological Changes
	4.2 Guarantees
	4.3 Numerical Stability
	4.4 Time Complexity
	4.5 Comparison with a Static Algorithm
	4.6 Implementation Details

	5 Mesh evolution
	6 Surface morphing
	6.1 Methodology
	6.2 Complexity Issues and Mesh Discretization
	6.3 Results

	7 Multi-View 3-D Reconstruction
	7.1 Methodology
	7.2 Results

	8 Conclusion

