
Geolocalization using Skylines from Omni-Images

Srikumar Ramalingam1 Sofien Bouaziz1&2 Peter Sturm3 Matthew Brand1

1Mitsubishi Electric Research Lab (MERL), Cambridge, MA, USA
2Virtual Reality Lab, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
3INRIA Grenoble – Rhône-Alpes and Laboratoire Jean Kuntzmann, Grenoble, France

Abstract

We propose a novel method to accurately estimate the

global position of a moving car using an omnidirectional

camera and untextured 3D city models. The camera is ori-

ented upwards to capture images of the immediate skyline,

which is generally unique and serves as a fingerprint for a

specific location in a city. Our goal is to estimate global po-

sition by matching skylines extracted from omni-directional

images to skyline segments from coarse 3D city models.

Our contributions include a sky segmentation algorithm for

omni-directional images using graph cuts and a novel ap-

proach for matching omni-image skylines to 3D models.

1. Introduction and Previous Work

The skyline has long been a source of fascination for

photographers, thought to identify the city as uniquely as

a fingerprint. In this work, we take a step further and in-

vestigate its uniqueness for any given geospatial location.

We propose a simple, robust and fast method to compute

the geospatial location by matching the skyline imaged on

a fisheye image with the skyline synthesized from a coarse

3D model of a large city. In other words, we solve the pose

estimation problem for an omnidirectional camera in the

actual world coordinate system. Pose estimation, although

extremely challenging due to several degeneracy problems

and inaccurate feature matching, is a well researched topic

in computer vision. However most existing solutions are

only proven on the smaller scale of the laboratory setup.

In the last few years, there has been an increasing inter-

est in inferring geolocation from images [18, 25, 24, 8, 6].

In [18], Robertson and Cipolla showed that it is possible to

obtain geospatial localization by matching a query image

with an image database using vanishing vertical direction.

Zhang and Kosecka showed accurate results in the ICCV

2005 computer vision contest (”Where am I?”) using SIFT

features [25]. Jacobs et al. used a novel approach to ge-

(a) (b)

Figure 1. An illustration of our motivating idea. (a) A car auto-

mounted with an omni-directional camera facing towards the sky.

(b) The image captured by the camera with skylines marked. We

match these skylines to those synthesized from 3D city models to

compute the geospatial location.

olocate a webcam by correlating its images with satellite

weather imagery at the same time. Hays and Efros used mil-

lions of GPS-tagged images from the web for georeferenc-

ing a new image [6]. In contrast to most of these approaches

that leverage on the availability of these georeferenced im-

ages, we use coarse 3D models from the web for geospa-

tial localization: like georeferenced images, a large repos-

itory of coarse 3D models already exists for major cities

in the world. Several 3D reconstruction algorithms have

been proposed for the reconstruction of large urban scenes

[23, 2, 4]. Koch and Teller proposed a localization method

using a known 3D model and a wide angle camera for in-

door scenes by matching lines from the 3D model with the

lines in images [10]. In contrast to their work, our work re-

lies only on the skylines for geolocalization. Although, the

idea of using skylines has been explored earlier in [11, 19],

our approach is significantly different from them. An ex-

pensive infrared camera is used in [11] instead of a visible

one. There are several important differences between our

approach and [19]. First, a human user input is required to

extract the skyline in the case of [11], whereas we develop

an automatic algorithm using graph cuts. Second, a hash ta-

ble is precomputed to match the skylines with the 3D model,

whereas our algorithm synthesizes fisheye images on the fly

1



for matching. We show our basic idea of matching skylines

from 3D models and omni-directional images in Figure 1.

Our main goal is to obtain highly accurate geoloca-

tion for an image. It has been shown formally that omni-

directional cameras can give much better accuracy in mo-

tion estimation than perspective cameras [9, 1]. In the

case of small rigid motions, two different motions can yield

nearly identical motion fields for classical perspective cam-

eras, which is not the case for omnidirectional images. Om-

nidirectional cameras have also proven advantageous in ap-

plications such as video conferencing, augmented reality,

and surveillance.

In this work we used a fisheye lens with a field of view of

about 183◦. However, we would like to propose a method

that could work with all kinds of omni-directional cameras.

For that reason, we chose to use a generic calibration ap-

proach which treats every camera as a mapping between a

pixel and its corresponding projection rays. This general

model has been used in various works [5, 12, 13, 14, 17, 20],

and is best described in [5], where properties other than ge-

ometric ones are also considered. It was recently shown

that the generic calibration algorithm outperforms standard

parametric approaches in the case of very high distortions

[17, 3]. We use the calibration information to synthesize

virtual fisheye views from the 3D model and match these

with real fisheye images. To the best of our knowledge,

we are not aware of any work in vision which synthesizes

omni-directional images from 3D models for pose estima-

tion. The synthesis is done using a pixel shader program

implemented on a Graphics processing unit (GPU) for gen-

erating a large number of fisheye images in real time.

The various buildings blocks of this system are al-

ready novel contributions in their respective domains. First

we propose a graph cuts based algorithm embedded with

parameter learning for robustly detecting sky in omni-

directional images. The most closely related work, which

already gives excellent results, is the geometric labeling

problem to classify a given image into sky, buildings and

ground [7, 16]. However, some of their prior assumptions

do not hold true in our model. First, the camera is not per-

spective. Second, the image is not taken by a person with

the optical axis approximately parallel to the ground. In

fact, the optical axis is perpendicular to the ground. Third,

their algorithm expects the sky to be mostly on the top of the

image. On the contrary, our images always have the sky at

the center of the image. As a result of these differences, we

chose to develop a tailor-made sky detection algorithm for

upward looking omni-directional cameras. We then propose

a novel method to match skylines from omni-directional im-

ages by synthesizing fisheye images using existing 3D mod-

els and calibration information, and its application to geolo-

calization.

2. Overview of our Algorithm

We show the various stages of our algorithm in figure 2.

The first step is to detect the region corresponding to sky

in the omndirectional images. In order to do this we use

a graph cuts based algorithm, which is generally used to

minimize a discrete quadratic pseudo-boolean energy func-

tion. We give the details of the features used to compute

unary and pairwise costs of the energy function. The pa-

rameters of the function are usually fixed manually. As we

expect our algorithm to work at various lighting conditions

and places, we use a parameter learning algorithm to au-

tomatically compute the best set of parameters. The exact

details of the algorithm are shown in section 2.1.

Figure 2. The various stages of our algorithm.

The second stage is the calibration algorithm, which is

used to compute the 3D projection rays corresponding to

every image pixel in the omni-directional image. We also

propose enhancements of the calibration algorithm, using

plumb-line constraints to significantly improve its perfor-

mance, cf. section 2.2. Third, we show a novel method

to synthesize virtual fisheye views at various locations in

a coarse 3D model. This uses pixel shaders executed on a

GPU, and is very fast.

The next stage is the skyline matching algorithm where

we compute the chamfer distance between the synthesized

and real fisheye images. Finally in section 3, we show ex-

perimental results on fisheye images captured in the city of

Boston. We also show a perturbation analysis on the shape

of the skylines to study the robustness of our method and its

superiority over perspective images.

2.1. Sky Detection

Given an omni-directional image, which is circular in the

case of a fisheye model, we want to classify the pixels into

sky and rest. This can be seen as a segmentation problem

with two labels. The features that can be used for this seg-

mentation can vary from simple RGB colorspace compo-

nents to a wide variety of features like gradients, straight

lines, vanishing points, etc. Our approach has two modules:

a parameter learning method and a discrete optimization al-

gorithm. In our problem we use graph cuts, which is both

fast and highly successful in various vision problems like

stereo, segmentation, and image restoration [21]. An energy

function, involving binary variables in unary and pairwise

terms, is represented using a weighted graph whose mini-

mum cut (computed using the maxflow algorithm) yields an

energy-minimizing partition of the variables. The minimum

cut separates the set of nodes in the graph into two sets,



one belonging to a source node and one belonging to a sink

node. Formally, let G = (V, E) be a directed graph with

non-negative edge weights and two special nodes, namely,

the source S and the sink T . The st-mincut algorithm par-

titions the set of vertices in V into two disjoint sets VS and

VT , such that S ∈ VS and T ∈ VT . The special nodes S

and T correspond to sky and rest respectively.

(a) (b) (c)

Figure 3. (a) Original image. (b) Likelihood for the sky. (c) Likeli-

hood for the rest of the image. The brighter values correspond to

higher likelihood.

We briefly introduce the energy function, whose param-

eters we are interested in learning. Let xi ∈ B = {0, 1}
where i = 1, 2, ..n represent boolean random variables. In

our problem, each of these variables could represent the

boolean labels (sky and rest) of the pixels in the omnidi-

rectional image. We use quadratic pseudo-boolean func-

tions for representing our energy functions. These are noth-

ing but energy functions of boolean variables that map a

boolean vector to a real value and thus the name pseudo-

boolean. Let θ denote the parameters in our energy func-

tion. The parameter vector θ consists of the unary terms

θi;a and the pairwise terms θij;ab, where i, j = 1, 2, .., n

and a, b ∈ B. These parameters are also referred to as unary

and pairwise potentials. In contrast to many vision algo-

rithms where these parameters are manually fixed, we com-

pute them automatically. The unary parameter θi;a can be

seen as a pseudo-boolean function f : B → R that gives the

cost when xi = a. Similarly, a pairwise parameter θij;ab is

a quadratic pseudo-boolean function f : B
2 → R that gives

the cost when xi = a and xj = b. The function mapping

partitions to energies is then

E(x|θ) =
∑

i∈V

{θi;0(1 − xi) + θi;1(xi)} +

∑

(i,j)∈E

{θij;00(1 − xi)(1 − xj)

+θij;01(1 − xi)xj + θij;10xi(1 − xj)

+θij;11xixj} (1)

Our goal is to learn the parameters (Θ) automatically for

our problem. We optimize the discriminating power of the

model by estimating parameters that maximize the differ-

ence between ground truth labellings and all other labellings

of a small number of manually labeled examples. Our

method is similar to the maximum-margin network learn-

ing method using graph cuts [22]; we generate “near-miss”

labeling, then estimate a parameter vector that maximizes

the margin separating true labellings from the near misses

in a convex optimization. This is done repeatedly; the pro-

cess converges to an optimal parameter vector in a small

number of iterations. The theoretical properties of our algo-

rithm will be published in a companion paper.

In our current implementation problem we obtain the

unary likelihood for sky and rest using their color values.

We first estimate a Gaussian model for the classes sky and

rest and compute the mean and covariance using manually

segmented ground truth images. For a new test image we

obtain the unary likelihood by computing the Mahalanobis

distance to the sky and non-sky classes as shown in fig-

ures 3(b) and (c). We will reformulate our energy function

by decomposing the unary parameters θi;a as follows:

θi;a = θp
a + liθ

l
a (2)

Once we have the likelihood cost li for every node the unary

parameters θp
a and θl

a are dependent only the label a. Simi-

larly we assume that the pairwise parameters θij;ab are also

independent of the associated nodes i and j and replace

them by θab. Due to the problem nature, we assume that

the pairwise matrix is symmetric. i.e. θ01 = θ10. We de-

note the new parameter vector which we want to learn as

Θ.

Θ =
[

θ
p
0 θl

0 θ
p
1 θl

1 θ00 θ01 θ11

]

(3)

The parameter vector Θ is then estimated via the standard

convex program for linear SVMs, using vectors of unary

and pairwise statistics from true labellings and near miss

labellings as positive and negative examples. In order to

guarantee that the estimated model supports optimal infer-

ence, we augment the convex program with a constraint on

the pairwise terms in the parameter vector that guarantees

submodularity. In the binary case the constraint is simply

θ00 + θ11 ≤ 2θ01 (4)

The submodularity condition is the discrete analogues of

convex functions in continuous domains.

2.2. Calibration

We briefly explain the main idea behind the generic cali-

bration approach [17] (see Figure 4). Three images of a cal-

ibration grid are captured by the general camera that needs

to be calibrated. The images are taken from unknown view-

points. Every image pixel observes three 3D points in dif-

ferent calibration grids. These 3D points are obtained in

three different coordinate systems. However, these points

are collinear if they are expressed in the same coordinate



(a)

(b) (c)

Figure 4. (a) Generic calibration using three calibration grids. (b)

and (c) show an original fisheye image and samples of distortion

corrected regions, obtained using the calibration result.

system. That constraint enables us to compute the motion

between the views and eventually the projection rays for the

image pixels.

Let Q, Q′ and Q′′ refer to the known points on

the first, second and the third calibration grids respectively.

Let the coordinate system of the first calibration grid be the

reference frame. The pose of the second and the third cali-

bration grids with respect to the first one be given by (R′, t′)

and (R”, t”) respectively. Let O represent the unknown op-

tical center. We stack the three points O, Q and Q′ (after

transforming it to the reference frame) in the following ma-

trix.








O1 Q1 R′

11Q
′

1 + R′

12Q
′

2 + R′

13Q
′

3 + t′1Q
′

4

O2 Q2 R′

21Q
′

1 + R′

22Q
′

2 + R′

23Q
′

3 + t′2Q
′

4

O3 Q3 R′

31Q
′

1 + R′

32Q
′

2 + R′

33Q
′

3 + t′3Q
′

4

O4 Q4 t′4Q
′

4









(5)

The collinearity constraint will force the determinant of any

submatrix, whose size is size 3 × 3, of the above matrix to

vanish. In other words, we obtain four constraints by re-

moving one row at a time. A similar collinearity constraint

can be obtained from the 3D points on first and third cali-

bration grids. Using all these constraints we can extract the

motion variables (R′, t′) and (R”, t”). See [15] for details

on extracting the individual motion parameters. In practi-

cal calibration approaches, it is not possible to extract the

projection rays for every pixel. Homography or bilinear in-

terpolation can be used to compute the projection rays for

other pixels.

2.3. Fisheye Synthesis

In figure 5 we show the various stages in synthesizing a

fisheye image. OpenGL and DirectX pipelines do not sup-

port non-linear projections. In order to synthesize a fish-

eye image we first generate five binary perspective images,

corresponding to the views in the cubemap shown in fig-

ure 5(c). As our algorithm uses 3D coarse models without

any texture, we generate a cubemap simply by rendering

a 3D model colored entirely in white; the resulting binary

image is black in sky regions. We then use our calibrated

ray-table to map the cubemap to a fisheye image, as shown

in figure 5(d). The black region is the predicted shape of

the sky. Some of the fisheye images synthesized at different

places in a 3D model of Boston’s financial center are shown

in figure 5(e).

As the previous section indicated, our ray-calibrated

view synthesis has the advantage that it does not “bake in”

error that would arise from using a parametric lens model.

In addition, a pixel shader program is implemented in GPU

to generate these fisheye images at a very fast rate. This al-

lows us to generate accurate fisheye images on the fly; there

is no need to store images in a large database.

(a) (b)

(c) (d)

(e)

Figure 5. Our algorithm to construct a fisheye image. (a) and (b)

show the 3D model and aerial image of an urban scene where

we synthesize a fisheye image. (c) The cubemap generated from a

given point in the 3D model. Note that in practice, we generate

binary images; the slight shading here is just for visualization. (d)

Fisheye image created from the cubemap. (e) Examples of skylines

extracted from the fisheye images.



2.4. Skyline Matching

Using the graph cut sky detection algorithm we segment

the sky in fisheye images and obtain the skyline as shown in

figure 6(a). The predicted skylines corresponding to differ-

ent locations in the 3D model are obtained using the method

suggested in the previous section. Since the real-image seg-

mentation and the predicted image are both high quality, a

simple chamfer distance suffices to score the skyline match.

During the chamfer matching, we vary the pose parame-

ters of our virtual fisheye camera and obtain new skylines

at various locations in the 3D model. This is done using

a multi-resolution strategy: we start with synthesizing and

matching fisheye images which are distributed at intervals

of 5 meters and refine the location until we have achieved a

positive match that is precise up to several centimeters. We

show some matching results in figure 8.

(a) (b)

Figure 6. (a) The skyline detected in a real fisheye image. (b) The

chamfer distance map of the skyline of (a), with the best match of

synthesized skylines superimposed on it.

3. Experiments

Our real experiments were all carried out in the financial

district of Boston, which is shown in figure 9(b). In all our

real experiments we used a Nikon Coolpix E8 Fisheye lens

with a field of view of 183◦ to capture about 300 images.

We implemented all our programs using C++ and OpenGL

and parallelized the GPU and CPU operations for enhanced

performance. Also, we use a simple multi-resolution strat-

egy as explained in section 2.4.

Table 1 gives the values of the parameters learnt with

the approach described in section 2.1. Figure 7 shows a

few results for the first step of the system, detecting sky

regions in fisheye images. In the following, we comment

on matching and localization performance.

In all of our test images, the match converged to solu-

tions with very low chamfer scores of about 2 pixels (aver-

age distance of points on synthesized skylines, to skylines

extracted in real images).

In order to investigate how uniquely the skylines “finger-

print” their locales, are we selected 16 random locations on

θ
p
0 1

θl
0 -1

θ
p
1 -0.03708

θl
1 -0.0935

θ00 -0.5638

θ01 0.2487

θ11 0.3151

Accuracy (%) 94.2
Table 1. The learned parameters of the energy function shown in

equation (1). Note that the pairwise parameters satisfy the sub-

modularity conditions, as imposed in our learning framework. The

accuracy figure in the last row is the percentage of correctly clas-

sified sky pixels in the training set.

the financial district. For each of these locations we gener-

ated 27 points by translations along X, Y and Z directions,

separated each by 25cm. For the total of 432 images, we

obtained a confusion matrix by computing the chamfer dis-

tance for all possible pairs (cf. figure 9(d)). We observed

that for every point, the first 27 correct matches corre-

sponded directly to its nearby locations. We conducted the

same experiment in Boston’s North End where all the build-

ings are residential and short as shown in figure 9(c). Our

experiments demonstrated that the skyline matching algo-

rithm can be robust even if the buildings are short. Indeed,

the confusion matrix of the North End locations (cf. figure

9(e)) indicates even better location fingerprinting than that

of the financial district.

In order to assess the benefit of omni-directional cam-

eras, we also conducted the same experiment of comput-

ing the confusion matrix with a perspective model in the

financial district. We used a model with a field of view of

90◦ and synthesized images at exactly the same locations

in the financial district (tall buildings) that were chosen for

the fisheye experiment. The confusion matrix (cf. figure

9(f)) indicates very clearly the large number of ambiguities

between different skylines.

4. Conclusion

Our main goal in this work is to assess the suitability

of skylines and omnidirectional image cameras for accu-

rate geospatial localization. Our results clearly demonstrate

that it is possible to outperform GPS measurements in ur-

ban scenes, which are known to be extremely problematic

for commercial GPS units.

Nevertheless, we foresee potential problems due to in-

accurate 3D models and loss of edges due to too much

or too little sunlight or certain weather conditions. How-

ever, we expect to resolve ambiguities in such cases using

other vision algorithms: interest point matching/tracking

between consecutive frames, structure from motion algo-

rithms, Kalman filtering, and other priors based on street



Figure 7. Sky detection results: Original and segmented fisheye images are shown.

map information. It is important to note that the current

GPS systems have been improved and robustified for sev-

eral years by addressing various complicated issues that

even includes theory of relativity.

In a few years, we believe that it is possible to build an

inexpensive, robust and accurate vision based GPS.

Acknowledgments: The authors would like to thank Dr.

Jay Thornton for useful discussions in 2D to 3D registration

and car navigation. Srikumar Ramalingam would like to

thank Prof. Philip Torr for the various discussions in graph

cuts and geometric labeling problems.

References

[1] T. Brodsky, C. Fermüller, and Y. Aloimonos. Directions of

motion fields are hardly ever ambiquous. In ECCV, 1996.

[2] N. Cornelis, K. Cornelis, and L. V. Gool. Fast compact city

modeling for navigation pre-visualization. In CVPR, 2006.

[3] A. Dunne, J. Mallon, and P. Whelan. A comparison of new

generic camera calibration with the standard parametric ap-

proach. MVA, 2007.

[4] D. Gallup, J.-M. Frahm, P. Mordohai, Q. Yang, and M. Polle-

feys. Real-time plane-sweeping stereo with multiple sweep-

ing directions. In CVPR, 2007.

[5] M. Grossberg and S. Nayar. The raxel imaging model and

ray-based calibration. IJCV, 61(2):119–137, 2005.

[6] J. Hays and A. Efros. Im2gps: estimating geographic images

from single images. In CVPR, 2008.

[7] D. Hoiem, A. A. Efros, and M. Hebert. Recovering surface

layout from an image. IJCV, 75(1):151–172, 2007.

[8] N. Jacobs, S. Satkin, N. Roman, R. Speyer, and R. Pless.

Geolocating static cameras. In ICCV, 2007.

[9] K.Daniilidis and H.H.Nagel. The coupling of rotation and

translation in motion estimation of planar surfaces. In CVPR,

1993.

[10] O. Koch and S. Teller. Wide-area egomotion estimation from

known 3d structure. In CVPR, 2007.

[11] J. Meguro, T. Murata, H. Nishimura, y. Amano, T. Hasizume,

and J. Takiguchi. Development of positioning technique us-

ing omni-directional ir camera and aerial survey data. In

Advanced Intelligent Mechatronics, 2007.

[12] J. Neumann, C. Fermüller, and Y. Aloimonos. Polydioptric

camera design and 3d motion estimation. In CVPR, vol-

ume 2, pages 294–301, 2003.

[13] T. Pajdla. Stereo with oblique cameras. IJCV, 47(1), 2002.

[14] R. Pless. Using many cameras as one. In CVPR, pages 587–

594, 2003.

[15] S. Ramalingam. Generic imaging models: Calibration and

3d reconstruction algorithms. In INRIA Rhone Alpes, Greno-

ble, France, 2006.

[16] S. Ramalingam, P. Kohli, K. Alahari, and P. Torr. Exact infer-

ence in multi-label crfs with higher order cliques. In CVPR,

2008.

[17] S. Ramalingam, P. Sturm, and S. Lodha. Towards complete

generic camera calibration. In Conference on Computer Vi-

sion and Pattern Recognition (CVPR), 2005.

[18] D. Robertson and R. Cipolla. An image-based system for

urban navigation. In BMVC, 2004.

[19] F. Stein and G. Medioni. Map-based localization using the

panoramic horizon. In IEEE Transactions on Robotics and

Automation, 1995.

[20] R. Swaminathan, M. Grossberg, and S. Nayar. A perspective

on distortions. In CVPR, volume 2, pages 594–601, 2003.

[21] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kol-

mogorov, A. Agarwala, M. F. Tappen, and C. Rother. A com-

parative study of energy minimization methods for Markov

random fields. In ECCV, volume 2, pages 16–29, 2006.

[22] M. Szummer, P. Kohli, and D. Hoiem. Learning crfs using

graph cuts. In ECCV, 2008.

[23] S. Teller, M. Antone, Z. Bodnar, M. Bosse, S. Coorg,

M. Jethwa, and N. Master. Calibrated, registered images of

an extended urban area. IJCV, 2003.

[24] T. Yeh, K. Tollmar, and T. Darrell. Searching the web with

mobile images for location recognition. In CVPR, 2004.

[25] W. Zhang and J. Kosecka. Image based localization in urban

environments. In 3DPVT, 2006.



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 8. Chamfer distance between the skylines from real and synthetic images, for changes in translation and rotation parameters in

(a-c) and (g-i) respectively. The change in shape of the skylines is also studied for small perturbations in translation (X in (d),Y in (e), Z in

(f)) and rotation parameters (Rx in (j), Ry in (k) and Rz in (l)). We use color-coding to display the change in shape of the skylines. The

skylines drawn in blue, green and red show the initial, intermediate and final shapes. One unit in the model space corresponds to 25cms

for translation and 1 degree for rotation. [Best viewed in color]



(a) (b)

(c) (d)

(e) (f) (g)

Figure 9. (a) Aerial image of the financial district of Boston showing the trajectory of our data collection. (b) The computed locations are

shown in the aerial image. (c) 3D model of the financial district, which mainly consists of tall buildings (d) 3D model of Boston’s North

End, where houses are mostly of the same height and residential. Confusion matrices in (e) and (f) are computed using 432 fisheye images

synthesized at various locations in (c) and (d) respectively. (g) Confusion matrix computed for synthesized perspective views with a field

of view of 90◦ at exactly the same locations where the one shown in (d) was computed. [Best viewed in color]


