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Abstract: The problem of multimodal clustering arises whenever the data are gath-
ered with several physically different sensors. Observations from different modalities
are not necessarily aligned in the sense that there is no obvious way to associate or to
compare them in some common space. A solution may consist in considering multi-
ple clustering tasks independently for each modality. The main difficulty with such an
approach is to guarantee that the unimodal clusterings are mutually consistent. In this
paper we show that multimodal clustering can be addressed within a novel framework,
namelyconjugate mixture models. These models exploit the explicit transformations
that are often available between an unobserved parameter space (objects) and each
one of the observation spaces (sensors). We formulate the problem as a likelihood
maximization task and we derive the associatedconjugate expectation-maximization
algorithm. The convergence properties of the proposed algorithm are thouroughly in-
vestigated. Several local/global optimization techniques are proposed in order to in-
crease its convergence speed. Two initialization strategies are proposed and compared.
A consistent model-selection criterion is proposed. The algorithm and its variants are
tested and evaluated within the task of 3D localization of several speakers using both
auditory and visual data.
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Modèles de Ḿelange Conjugúes pour le Clustering de
Données Multimodales

Résuḿe : Le problème de grouper (clustering) des données multimodales se pose
lorsque les données sont acquises avec des capteurs de différentes natures physiques.
Les observations de plusieurs modalités ne sont pas nécessairement alignées dans le
sens qu’il n’y a pas une fa con évidente de les associer et de le comparer dans un même
espace. Une solution possible est de considérer plusieursprocessus de groupement
pour chaque modalité. La principale difficulté d’une telle approche est de garantir la
consistance mutuelle entre les groupements. Dans cet article nous montrons que le
problème peut être formulé dans un cadre nouveau:conjugate mixture models. Ce
dernier exploite les transformations souvent disponiblesentre un espace de paramètres
non observé (les objets) et chacun des espaces observables(les capteurs). Nous for-
mulons le problème comme la recherche du maximum de vraisemblance et nous pro-
posons l’algorithme qui y est associé,conjugate expectation-maximization. Les pro-
priétés de convergence de cet algorithme sont étudiéesen détail. Plusieurs techniques
d’optimisation locales/globales sont proposées afin d’améliorer sa vitesse de conver-
gence. Deux stratégies d’initialisation sont proposéeset comparées, ainsi qu’un critère
de sélection de modèle. L’algorithme et ses variantes sont testés dans le cadre d’une
application de localisation 3D de plusieurs orateurs utilisant des données visuelles et
auditives.

Mots-clés : Modèles de mélange, algorithm EM, fusion multisensorielle, intégration
audiovisuelle, continuité Lipschitz, optimisation globale.
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4 Khalidov, Forbes, & Horaud

1 Introduction

The unsupervised clustering of multimodal data is a key capability whenever the goal
is to group observations that are gathered using several physically different sensors.
A typical example is the computational modeling of biological multisensory percep-
tion. This includes the issues of how a human detects objects thatare both seen and
touched (Pougetet al., 2002; Ernst and Banks, 2002), seen and heard (Anastasioet al.,
2000; King, 2004, 2005) or how a human localizes one source ofsensory input in a
natural environment in the presence of competing stimuli and of a variety of noise
sources (Haykin and Chen, 2005). More generally,multisensory fusion(Hall and Mc-
Mullen, 2004; Mitchell, 2007) is highly relevant in variousother research domains,
such as target tracking (Smith and Singh, 2006) based on radar and sonar data (Naus
and van Wijk, 2004; Coiraset al., 2007), mobile robot localization with laser rangefind-
ers and cameras (Castellanos and Tardos, 1999), robot manipulation and object recog-
nition using both tactile and visual data (Allen, 1995; Joshi and Sanderson, 1999), un-
derwater navigation based on active sonar and underwater cameras (Majumderet al.,
2001), audio-visual speaker detection (Bealet al., 2003; Perezet al., 2004; Fisher III
and Darrell, 2004), speech recognition (Heckmannet al., 2002; Nefianet al., 2002;
Shao and Barker, 2008), and so forth.

When the data originates from a single object, finding the best estimates for the
object’s characteristics is usually referred to as apure fusiontask and it reduces to
combining multisensor observations in some optimal way (Beal et al., 2003; Kushal
et al., 2006; Smith and Singh, 2006). For example, land and underwater robots fuse
data from several sensors to build a 3D map of the ambient space irrespective of the
number of objects present in the environment (Castellanos and Tardos, 1999; Majumder
et al., 2001). The problem is much more complex when several objects are present
and when the task implies their detection, identification, and localization. In this case
one has to consider two processes simultaneously:(i) segregation(Fisher III et al.,
2001) which assigns each observation either to an object or to anoutlier category and
(ii) estimationwhich computes the parameters of each object based on the group of
observations that were assigned to that object. In other words, in addition to fusing
observations from different sensors, multimodal analysisrequires the assignment of
each observation to one of the objects.

This observation-to-objectassociation problem can be cast into a probabilistic frame-
work. Recent multisensor data fusion methods able to handleseveral objects are based
on particle filters (Checkaet al., 2004; Chen and Rui, 2004; Gatica-Perezet al., 2007).
Notice, however, that the dimensionality of the parameter space grows exponentially
with the number of objects, causing the number of required particles to increase dra-
matically and augmenting computational costs. A number of efficient sampling proce-
dures were suggested (Chen and Rui, 2004; Gatica-Perezet al., 2007) to keep the prob-
lem tractable. Of course this is done at the cost of loss in model generality, and hence
these attempts are strongly application-dependent. Another drawback of such mod-
els is that they cannot provide estimates of accuracy and importance of each modality
with respect to each object. The sampling and distribution estimation are performed

INRIA



Mixture Models for Multimodal Data 5

in the parameter space, but no statistics are gathered for the observation spaces. Re-
cently (Hospedales and Vijayakumar, 2008) extended the single-object model of (Beal
et al., 2003) to multiple objects: several single-object models are incorporated into
the multiple-object model and the number of objects is selected by an additional hid-
den node, which thus accounts for model selection. We remarkthat this method also
suffers from exponential growth in the number of possible models.

In the case of unimodal data, the problems of grouping observations and of asso-
ciating groups with objects can be cast into the framework ofstandard data clustering
which can be solved using a variety of parametric or non-parametric techniques. The
problem ofclustering multimodal dataraises the difficult question of how to group
together observations that belong to different physical spaces with different dimen-
sionalities, e.g., how to group visual data with auditory data? When the observations
from two different modalities can bealignedpairwise, a natural solution is to consider
the Cartesian product of two unimodal spaces. Unfortunately, such an alignment is not
possible in most practical cases. Different sensors operate at different frequency rates
and hence the number of observations gathered with one sensor can be quite different
from the number of observations gathered with another sensor. Consequently, there
is no obvious way to align the observations pairwise. Considering all possible pairs
would result in a combinatorial blow-up and typically create abundance of erroneous
observations corresponding to inconsistent solutions.

Alternatively, one may consider several unimodal clusterings, provided that the
relationships between a common object space and several observation spaces can be
explicitly specified.Multimodal clusteringthen results in a number of unimodal clus-
terings that are jointly governed by the same unknown parameters characterizing the
object space.

The original contribution of this paper is to show how the problem of clustering
multimodal datacan be addressed within the framework of mixture models (McLach-
lan and Peel, 2000). We propose a variant of the EM algorithm (Dempsteret al., 1977;
McLachlan and Krishnan, 1996) specifically designed to estimate object-space param-
eters that are indirectly observed in several sensor spaces. The convergence proper-
ties of the proposed algorithm are thoroughly investigatedand several efficient imple-
mentations are described in detail. The proposed model is composed of a number of
modality-specific mixtures. These mixtures are jointly governed by a set of common
object-space parameters(which will be referred to as thetying parameters), thus in-
suring consistency between the sensory data and the object space being sensed. This
is done using explicit transformations from the unobservedparameter space (object
space) to each of the observed spaces (sensor spaces). Hence, the proposed model is
able to deal with observations that live in spaces with different physical properties such
as dimensionality, space metric, sensor sampling rate, etc. We believe that linking the
object space with the sensor spaces based on object-space-to-sensor-space transforma-
tions has more discriminative power than existing multisensor fusion techniques and
hence performs better in terms of multiple object identification and localization. To the
best of our knowledge, there has been no attempt to use a generative model, such as
ours, for the task of multimodal data interpretation.

RR n° 7117



6 Khalidov, Forbes, & Horaud

In Section 2 we formally introduce the concept ofconjugate mixture models. Stan-
dard Gaussian mixture models (GMM) are used to model the unimodal data. The
parameters of these Gaussian mixtures are governed by the object parameters through
a number of object-space-to-sensor-space transformations (one transformation for each
sensing modality). Through the paper we will assume a very general class of transfor-
mations, namely non-linear Lipschitz continuous functions (see below). In Section 3
we cast the multimodal data clustering problem in the framework of maximum likeli-
hood and we explicitly derive the expectation and maximization steps of the associated
EM algorithm. While the E-step of the proposed algorithm is standard, the M-step im-
plies non-linear optimization of the expected complete-data log-likelihood with respect
to the object parameters. We investigate efficient local andglobal optimization meth-
ods. More specifically, in Section 4 we prove that, provided that the object-to-sensor
functions as well as their first derivatives are Lipschitz continuous, the gradient of the
expected complete-data log-likelihood is Lipschitz continuous as well. The immediate
consequence is that a number of recently proposed optimization algorithms specifically
designed to solve Lipschitzian global optimization problems can be used within the M-
step of the proposed algorithm (Zhigljavsky andŽilinskas, 2008). Several of these
algorithms combine a local maximum search procedure with aninitializing scheme to
determine, at each iteration,goodinitial values from which the local search should be
performed. This implies that the proposed EM algorithm has guaranteed convergence
properties. Section 5 discusses several possible local search initialization schemes,
leading to different convergence speeds. In Section 6 we propose and compare two
possible strategies to initialize the EM algorithm. Section 7 is devoted to a consistent
criterion to determine the number of objects. Section 8 illustrates the proposed method
with the task of audiovisual object detection and localization using binocular vision
and binaural hearing. Section 9 analyses in detail the performances of the proposed
model under various practical conditions with both simulated and real data. Finally,
Section 10 the paper and provides directions for future work.

2 Mixture Models for Multimodal Data

We considerN objectsn = 1 . . .N . Each objectn is characterized by a parameter
vector of dimensiond, denoted bysn ∈ S ⊆ Rd. The sets = {s1, . . . , sn, . . . , sN}
corresponds to the unknowntying parameters. The objects are observed with a number
of physically different sensors. Although, for the sake of clarity, we will consider two
modalities, generalization is straightforward. Therefore, the observed data consists
of two sets of observations denoted respectively byf = {f1, . . . , fm, . . . , fM} and
g = {g1, . . . , gk, . . . , gK} lying in two different observation spaces of dimensionsr
andp, fm ∈ F ⊆ R r andgk ∈ G ⊆ Rp.

One key ingredient of our approach is that we consider the transformations:
{

F : S → F

G : S → G
(1)

INRIA
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that mapS respectively into the observation spacesF andG. These transformations are
defined by the physical and geometric properties of the sensors and they are supposed
to be known. We treat the general case when bothF andG are non-linear.

An assignment variable is associated with each observation, thus indicating the ob-
ject that generated the observation:A = {A1, . . . , Am, . . . , AM} andB = {B1, . . . , Bk,
. . . , BK}. Hence, the segregation process is cast into a hidden variable problem. The
notationAm = n (resp. Bk = n) means that the observationfm (resp. gk) was
generated by objectn. In order to account for erroneous observations, an additional
N + 1-th fictitious object is introduced to represent an outlier category. The notation
Am = N + 1 (resp.Bk = N + 1) means thatfm (resp.gk) is an outlier. Note that we
will also use the following standard convention: upper caseletters for random variables
(A andB) and lower case letters for their realizations (a andb). The usual conditional
independence assumption leads to:

P (f, g|a, b) =

M
∏

m=1

P (fm|am)

K
∏

k=1

P (gk|bk). (2)

In addition, all assignment variables are assumed to be independent, i.e.:

P (a, b) =

M
∏

m=1

P (am)

K
∏

k=1

P (bk). (3)

As discussed in Section 10, more general cases could be considered. However, we
focus on the independent case for it captures most of the features relevant to the conju-
gate clustering task and because more general dependence structures could be reduced
to the independent case via the use of appropriate variational approximation techniques
(Jordanet al., 1998; Celeuxet al., 2003).

Next we define the following probability density functions,for all n = 1 . . .N, N+
1, for all fm ∈ F and for allgk ∈ G:

P F

n (fm) = P (fm|Am = n), (4)

P G

n (gk) = P (gk|Bk = n). (5)

More specifically, the likelihoods for an observation to belong to an objectn are
Gaussian distributions whose meansF(sn) andG(sn) correspond to the object’s pa-
rameter vectorsn mapped to the observations spaces by the transformationsF and
G:

P F

n (fm) = N (fm; F(sn),Σn), (6)

P G

n (gk) = N (gk; G(sn),Γn), (7)

with:

N (fm; F(sn),Σn) =
1

(2π)r/2|Σn|1/2
exp

(

−1

2
‖fm −F(sn)‖2

Σn

)

, (8)

RR n° 7117



8 Khalidov, Forbes, & Horaud

where the notation‖v−w‖2
Σ

stands for the Mahalanobis distance(v−w)⊤Σ
−1(v−

w) and⊤ stands for the transpose of a matrix. The likelihoods of outliers are taken as
two uniform distributions:

P F

N+1(fm) = U(fm; V ), (9)

P G

N+1(gk) = U(gk; U), (10)

whereV andU denote the respective support volumes. We also define the prior prob-
abilitiesπ = (π1, . . . , πn, . . . , πN+1) andλ = (λ1, . . . , λn, . . . , λN+1):

πn = P (Am = n), ∀m = 1 . . . M, (11)

λn = P (Bk = n), ∀k = 1 . . .K. (12)

Therefore,fm andgk are distributed according to two (N + 1)-component mixture
models, where each mixture is made ofN Gaussian components and one uniform
component:

P (fm) =
N
∑

n=1

πnN (fm; F(sn),Σn) + πN+1U(fm; V ), (13)

P (gk) =

N
∑

n=1

λnN (gk; G(sn),Γn) + λN+1U(gk; U). (14)

The log-likelihood of the observed data can then be written as:

L(f, g, θ) =

M
∑

m=1

log

(

N
∑

n=1

πnN (fm; F(sn),Σn) + πN+1U(fm; V )

)

+

+

K
∑

k=1

log

(

N
∑

n=1

λnN (gk; G(sn),Γn) + λN+1U(gk; U)

)

(15)

where:

θ = {π1, . . . , πN , πN+1, λ1, . . . , λN , λN+1, s1, . . . , sN ,Σ1, . . . ,ΣN ,Γ1, . . . ,ΓN}
(16)

denotes the set of all unknown parameters to be estimated using a maximum likelihood
principle.

The graphical representation of our conjugate mixture model is shown in Figure 1.
We adopted the graphical notation introduced in (Bishop, 2006) to represent similar
nodes in a more compact way: theM (resp. K) similar nodes are indicated with
a plate. The two sensorial modalities are linked by thetying parameterss1, . . . sN

shown in between the two plates.

INRIA
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M K

λ1, . . . , λN , λN+1

Γ1, . . . ,ΓNGk

Bk

F m s1, . . . , sNΣ1, . . . ,ΣN

π1, . . . , πN , πN+1 Am

Figure 1: Graphical representation of the conjugate mixture model. Circles denote
random variables, plates (rectangles) around them represent multiple similar nodes,
their number being given in the plates.

3 Generalized EM for Clustering Multimodal Data

Given the probabilistic model just described, we wish to determine the parameter
vectors associated with the objects that generated observations in two different sen-
sory spaces. It is well known that direct maximization of theobserved-data log-
likelihood (15) is difficult to achieve. The expectation-maximization (EM) algorithm (Demp-
steret al., 1977; McLachlan and Krishnan, 1996) is a standard approachto maximize
likelihood functions of type (15). It is based on the following representation, for two
arbitrary values of the parametersθ andθ̃:

L(f, g, θ) = Q(θ, θ̃) + H(θ, θ̃), (17)

with Q(θ, θ̃) = E[log P (f, g, A, B; θ) | f, g; θ̃], (18)

and H(θ, θ̃) = −E[log P (A, B | f, g; θ)|f, g; θ̃], (19)

where the expectations are taken over the hidden variablesA andB. Each iterationq
of EM proceeds in two steps:

• Expectation. For the current valuesθ(q) of the parameters, compute the condi-
tional expectation with respect to variablesA andB:

Q(θ, θ(q)) =
∑

a∈{1...N+1}M

∑

b∈{1...N+1}K

P (a, b|f, g; θ(q)) log P (f, g, a, b; θ)

(20)

• Maximization. Update the parameter setθ(q) by maximizing (20) with respect
to θ:

θ(q+1) = argmax
θ

Q(θ, θ(q)) (21)

It is well known that the EM algorithm increases the target functionL(f, g, θ) in
(15), i.e., the sequence of estimates{θ(q)}q∈N satisfiesL(f, g, θ(q+1)) ≥ L(f, g, θ(q)).
Standard EM deals with the parameter estimation of a single mixture model, and a

RR n° 7117



10 Khalidov, Forbes, & Horaud

closed form solution for (21) exists in this case. When the maximization (21) is diffi-
cult to achieve, various generalizations of EM are proposed. The M step can be relaxed
by requiring just an increase rather than an optimum. This yieds Generalized EM
(GEM) procedures (McLachlan and Krishnan, 1996) (see (Boyles, 1983) for a result
on the convergence of this class of algorithms). The GEM algorithm searches for some
θ(q+1) such thatQ(θ(q+1), θ(q)) ≥ Q(θ(q), θ(q)). Therefore it provides a sequence of
estimates that still verifies the non-decreasing likelihood property although the conver-
gence speed is likely to decrease. In the case of conjugate mixture models, we describe
in more detail the specific forms of the E and M steps in the following sections.

3.1 The Expectation Step

Using (3)-(12) the conditional expectation (20) can be decomposed as:

Q(θ, θ(q)) = QF (θ, θ(q)) + QG(θ, θ(q)), (22)

with

QF(θ, θ(q)) =

M
∑

m=1

N+1
∑

n=1

α(q)
mn log

(

πnP (fm|Am = n; θ)
)

, (23)

QG(θ, θ(q)) =

K
∑

k=1

N+1
∑

n=1

β
(q)
kn log

(

λnP (gk|Bk = n; θ)
)

, (24)

whereα
(q)
mn andβ

(q)
kn denote the posterior probabilitiesα(q)

mn = P (Am = n|fm; θ(q))

andβ
(q)
kn = P (Bk = n|gk; θ(q)). Their expressions can be derived straightforwardly

from Bayes’ theorem,∀n = 1 . . .N :

α(q)
mn =

π
(q)
n N (fm;F(s

(q)
n ),Σ

(q)
n )

N
∑

i=1

π
(q)
i N (fm;F(s

(q)
i ),Σ

(q)
i ) + V −1π

(q)
N+1

, (25)

β
(q)
kn =

λ
(q)
n N (gk; G(s

(q)
n ),Γ

(q)
n )

N
∑

i=1

λ
(q)
i N (gk;G(s

(q)
i ),Γ

(q)
i ) + U−1λ

(q)
N+1

. (26)

INRIA
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andα
(q)
m,N+1 = 1 −

N
∑

n=1
α

(q)
mn andβ

(q)
k,N+1 = 1 −

N
∑

n=1
β

(q)
kn . Using (6)-(10) the expres-

sions above further lead to:

QF(θ, θ(q)) = − 1

2

M
∑

m=1

N
∑

n=1

α(q)
mn

(

‖fm −F(sn)‖2
Σn

+ log((2π)r |Σn|π−2
n )
)

−

− 1

2

M
∑

m=1

α
(q)
m,N+1 log(V 2π−2

N+1), (27)

QG(θ, θ(q)) = − 1

2

K
∑

k=1

N
∑

n=1

β
(q)
kn

(

‖gk − G(sn)‖2
Γn

+ log((2π)p|Γn|λ−2
n )
)

−

− 1

2

K
∑

k=1

β
(q)
k,N+1 log(U2λ−2

N+1). (28)

3.2 The Maximization Step

In order to carry out the maximization (21) of the conditional expectation (20), its
derivatives with respect to the model parameters are set to zero. This leads to the
standard update expressions for priors, more specifically∀n = 1, . . . , N + 1:

π(q+1)
n =

1

M

M
∑

m=1

α(q)
mn, (29)

λ(q+1)
n =

1

K

K
∑

k=1

β
(q)
kn . (30)

The covariance matrices are governed by the tying parameterss
(q+1)
n ∈ S through

the functionsF andG, ∀n = 1, . . . , N :

Σ
(q+1)
n (s(q+1)

n ) =
1

M
∑

m=1
α

(q)
mn

M
∑

m=1

α(q)
mn(fm −F(s(q+1)

n ))(fm −F(s(q+1)
n ))⊤,(31)

Γ
(q+1)
n (s(q+1)

n ) =
1

K
∑

k=1

β
(q)
kn

K
∑

k=1

β
(q)
kn (gk − G(s(q+1)

n ))(gk − G(s(q+1)
n ))⊤. (32)

For everyn = 1, . . . , N , s
(q+1)
n is the parameter vector such that:

s(q+1)
n = argmax

s
Q(q)

n (s), (33)

RR n° 7117



12 Khalidov, Forbes, & Horaud

where

Q(q)
n (s) = −

M
∑

m=1

α(q)
mn(‖fm −F(s)‖2

Σn(s) + log |Σn(s)|) −

−
K
∑

k=1

β
(q)
kn (‖gk − G(s)‖2

Γn(s) + log |Γn(s)|). (34)

We stress that the covariancesΣn(s) andΓn(s) in (31) and (32) are considered as
functions ofs ∈ S. Hence, at each iteration of the algorithm, the overall update of
the tying parameters can be split intoN identical optimization tasks of the form (34).
These tasks can be solved in parallel. In general,F andG are non-linear transforma-
tions and hence there is no simple closed-form expression for the estimation of the
tying parameters.

3.3 Generalized EM for Conjugate Mixture Models

The initial parameters selection of the proposed EM algorithm for conjugate mixture
models uses the procedureInitialize that is given in Section 6. The maximization step
uses two procedures, referred to asChooseandLocal Searchwhich are explained in
detail in Sections 4 and 5. To determine the number of objectswe define the procedure
Selectthat is derived in Section 7. The overall EM procedure is outlined below:

1. Apply procedureInitialize to initialize the parameter vector:
θ(0) = {π(0)

1 , . . . , π
(0)
N+1, λ

(0)
1 , . . . , λ

(0)
N+1, s

(0)
1 , . . . , s

(0)
N ,Σ

(0)
1 , . . . ,Σ

(0)
N ,Γ

(0)
1 , . . . ,Γ

(0)
N };

2. E step: computeQ(θ, θ(q)) using equations (25) to (28);

3. M step: estimateθ(q+1) using the following sub-steps:

(a) The priors.Computeπ(q+1)
1 , . . . , π

(q+1)
N+1 andλ

(q+1)
1 , . . . , λ

(q+1)
N+1 using (29)

and (30);

(b) The tying parameters.For eachn = 1 . . .N :

• Apply procedureChooseto determine an initial value, denoted bys̃(0)
n ,

as proposed in Section 5;

• Apply procedureLocal Searchto eachQ(q)
n (s) as defined in (34) start-

ing from s̃(0)
n and set the result tos(q+1)

n using the eq. (35) specified
below;

(c) The covariance matrices.For everyn = 1 . . .N , use (31) and (32) to
computeΣ(q+1)

n andΓ
(q+1)
n ;

4. Check for convergence: Terminate, otherwise go to Step 2;

5. Apply procedureSelect, use (62) specified below to determine the bestN ;
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Mixture Models for Multimodal Data 13

This algorithm uses the following procedures:

• Initialize: this procedure aims at providing the initial parameter valuesθ(0). Its
performance has a strong impact on the time required for the algorithm to con-
verge. In Section 6 we propose different initialization strategies based on single-
space cluster detection.

• Select: this procedure applies the BIC-like criterion to determine the number of
objectsN . In Section 7 propose the consistent criterion for the case of conjugate
mixture models.

• Choose: the goal of this procedure is to provide at each M step initial values
s̃
(0)
1 , . . . , s̃

(0)
N which are likely to be close to the global maxima of the functions

Q
(q)
n (s) in (34). The exact form of this procedure is important to ensure the

ability of the subsequentLocal Searchprocedure to find these global maxima.
We will use results on global search algorithms (Zhigljavsky andŽilinskas, 2008)
and propose different variants in Section 5.

• Local Search: an important requirement of this procedure is that it finds alocal
maximum of theQ(q)

n (s)’s starting from any arbitrary point inS. In this work,
we will consider procedures that consist in iterating a local update of the form (ν
is the iteration index):

s̃n
(ν+1) = s̃n

(ν) + H(q,ν)
n ∇Q(q)

n (s̃n
(ν)), (35)

with H(q,ν)
n being a positive definite matrix that may vary withν. When the gra-

dient∇Q
(q)
n (s) is Lipschitz continuous with some constantL

(q)
n , an appropriate

choice that guarantees the increase ofQ
(q)
n (s̃(ν)) at each iterationν, is to choose

H(q,ν)
n such that it verifies‖H (q,ν)

n ‖ ≤ 2/L
(q)
n .

Different choices forH(q,ν)
n are possible and they correspond to different opti-

mization methods that belong, in general, to the variable metric class. For exam-
ple H(q,ν)

n = 2

L
(q)
n

I leads to gradient ascent, while takingH(q,ν)
n as a scaled in-

verse of the Hessian matrix would lead to a Newton-Raphson optimization step.
Other possibilities include Levenberg-Marquardt and quasi-Newton methods.

4 Analysis of theLocal SearchProcedure

Each instance of (34) forn = 1, . . . , N can be solved independently. In this section
we focus on providing a set of conditions under which each iteration of our algorithm
guarantees that the objective functionQ

(q)
n (s) in (34) is increased. We start by rewrit-

ing (34) more conveniently in order to perform the optimization with respect tos ∈ S.
To simplify the notation, the iteration indexq is sometimes omitted. We simply write
Qn(s) for Q

(q)
n (s).
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14 Khalidov, Forbes, & Horaud

Let ᾱn =
∑M

m=1 α
(q)
mn andβ̄n =

∑K
k=1 β

(q)
kn denote the average object weights in

each one of the two modalities. We introduceαn = ᾱ−1
n (α

(q)
1n , . . . , α

(q)
Mn) andβn =

β̄−1
n (β

(q)
1n , . . . , β

(q)
Kn) the discrete probability distributions obtained by normalizing the

object weights. We denote byF andG the random variables that take their values in
the discrete sets{f1, . . . , fm, . . . , fM} and{g1, . . . , gk, . . . , gK}. It follows that the
expressions for the optimal variances (31) and (32) as functions ofs, can be rewritten
as:

Σ
(q+1)
n (s) =Eαn

[
(

F −F(s)
)(

F −F(s)
)⊤

], (36)

Γ
(q+1)
n (s) =Eβn

[
(

G − G(s)
)(

G − G(s)
)⊤

], (37)

whereEαn
andEβn

denote the expectations with respect to the distributionsαn and
βn. Using some standard projection formula, it follows that the covariances are:

Σ
(q+1)
n (s) =Vf + vfv⊤

f , (38)

Γ
(q+1)(s) =Vg + vgv

⊤
g , (39)

whereVf andVg are the covariance matrices ofF andG respectively under distribu-
tionsαn andβn, andvf andvg are vectors defined by:

vf = Eαn
[F ] −F(s), (40)

vg = Eβn
[G] − G(s). (41)

For convenience we omit the indexn for Vf , Vg, vf andvg. Let f̄n = Eαn
[F ] and

ḡn = Eβn
[G]. This yields:

f̄n = ᾱ−1
n

M
∑

m=1

α(q)
mnfm, (42)

ḡn = β̄−1
n

K
∑

k=1

β
(q)
kn gk, (43)

Vf = ᾱ−1
n

M
∑

m=1

α(q)
mnfmf⊤

m − f̄nf̄
⊤
n , (44)

Vg = β̄−1
n

K
∑

k=1

β
(q)
kn gkg⊤

k − ḡnḡ⊤
n . (45)

Next we derive a simplified expression forQn(s) in (34) in order to investigate its
properties. Notice that one can write (34) as the sumQn(s) = Qn,F(s) + Qn,G(s),
with:

Qn,F(s) = −
M
∑

m=1

α(q)
mn(‖fm −F(s)‖2

Σ
(q+1)
n (s)

+ log |Σ(q+1)
n (s)|), (46)
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Mixture Models for Multimodal Data 15

and a similar expression forQn,G(s). Eq. (46) can be written:

Qn,F(s) = −ᾱn(Eαn
[(F −F(s))⊤Σ

(q+1)
n (s)−1(F −F(s))] + log |Σ(q+1)

n (s)|).
(47)

The first term of (47) can be further divided into two terms:

Eαn
[(F −F(s))⊤Σ

(q+1)
n (s)−1(F −F(s))] =

=Eαn
[(F − f̄n)⊤Σ

(q+1)
n (s)−1(F − f̄n)] + v⊤

f Σ
(q+1)
n (s)

−1
vf . (48)

The Sherman-Morrison formula applied to (38) leads to

Σ
(q+1)
n (s)−1 = V−1

f − V−1
f vfv⊤

f V−1
f /(1 + Dn,F(s)), (49)

with:
Dn,F(s) = ‖F(s) − f̄n‖2

Vf
. (50)

It follows that (48) can be written as the sum of:

Eαn
[(F − f̄n)⊤Σ

(q+1)
n (s)−1(F − f̄n)] = Cf − Dn,F(s)

1 + Dn,F(s)
, (51)

and of

v⊤
f Σ

(q+1)
n (s)

−1
vf =

Dn,F(s)

1 + Dn,F(s)
. (52)

Hence the first term of (47), namely (48) is equal toCf which is constant with respect
to s. Moreover, applying the matrix determinant lemma to the second term of (47) we
successively obtain:

log |Σ(q+1)
n (s)| = log |Vf + vfv⊤

f | = log |Vf | + log(1 + v⊤
f V−1

f vf ) =

= log |Vf | + log(1 + Dn,F(s)). (53)

It follows that there is only one term depending ons in (47):

Qn,F(s) = −ᾱn (Cf + log |Vf | + log(1 + Dn,F(s))) . (54)

Repeating the same derivation for the second sensorial modality we obtain the follow-
ing equivalent form of (34):

Qn(s) = −ᾱn log(1 + Dn,F(s)) − β̄n log(1 + Dn,G(s)) + C, (55)

whereC is some constant not depending ons.

Using this form ofQn(s), we can now investigate the properties of its gradient
∇Qn(s). It appears that under some regularity assumptions onF andG, the gradient
∇Qn(s) is bounded and Lipschitz continuous. The corresponding theorem is formu-
lated and proved. First we establish as a lemma some technical results, required to
prove the theorem. In what follows, for any matrixV, the matrix norm used is the
operator norm‖V‖ = sup

‖v‖=1

‖Vv‖. For simplicity, we further omit the indexn.
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16 Khalidov, Forbes, & Horaud

Lemma 1. Let V be a symmetric positive definite matrix. Then the function

ϕ(v) = ‖Vv‖/(1 + v⊤Vv)

is bounded byϕ(v) ≤ Cϕ(V) with Cϕ(V) =
√

‖V‖/2 and is Lipschitz continuous:

∀v, ṽ ‖ϕ(v) − ϕ(ṽ)‖ ≤ Lϕ(V)‖v − ṽ‖,
whereLϕ(V) = ‖V‖(1 + µ(V)/2) is the Lipschitz constant andµ(V) = ‖V‖‖V−1‖
is the condition number ofV.

Proof: We start by introducingw = Vv so thatϕ(v) = ϕ̃(w) = ‖w‖/(1 +
w⊤V−1w). As soon asw⊤V−1w ≥ λmin‖w‖2 (where we denoted byλmin the small-
est eigenvalue ofV−1, so that in factλmin = ‖V‖−1), to find the maximum of̃ϕ(w)
we should maximize the expressiont/(1 + λmint2) for t = ‖w‖ ≥ 0. It is reached

at the pointt∗ = λ
−1/2
min . Substituting this value into the original expressions gives

ϕ(v) ≤
√

‖V‖/2.

To compute the Lipschitz constantLϕ we consider the derivative:

‖∇ϕ̃′(w)‖ =

∥

∥(1 + w⊤V−1w)w − 2‖w‖2V−1w
∥

∥

‖w‖(1 + w⊤V−1w)2
≤ 1 +

2‖V−1‖‖w‖2

(1 + w⊤V−1w)2
,

from where we find that‖∇ϕ̃′(w)‖ ≤ 1+µ(V)/2, and soLϕ = ‖V‖(1+µ(V)/2). �

This lemma yields the following main result for the gradient∇Q:

Theorem 1. Assume functionsF andG and their derivativesF ′ andG′ are Lipschitz
continuous with constantsLF , LG , L′

F andL′
G respectively. Then the gradient∇Q is

bounded and Lipschitz continuous with some constantL.

Proof: From (55) the gradient∇Q can be written as:

∇Q(s) = ∇QF(s) + ∇QG(s) =

=
2ᾱF ′⊤(s)V−1

f (f̄ −F(s))

1 + DF(s)
+

2β̄G′⊤(s)V−1
g (ḡ − G(s))

1 + DG(s)
. (56)

It follows from Lemma 1 that‖∇QF(s)‖ ≤ 2LF ᾱCϕ(V−1
f ) and ‖∇QG(s)‖ ≤ 2LGβ̄Cϕ(V−1

g ).
The norm of the gradient is then bounded by:

‖∇Q(s)‖ ≤ 2LF ᾱCϕ(V−1
f ) + 2LGβ̄Cϕ(V−1

g ). (57)

Considering the norm‖∇QF(s) − ∇QF(s̃)‖, we introducev1 = f̄ − F(s) and
v2 = f̄ −F(s̃). Then we have:

‖∇QF(s) − ∇QF(s̃)‖ ≤ 2ᾱ

(
∥

∥

∥

∥

∥

(F ′(s) −F ′(s̃))⊤V−1
f v1

1 + ‖v1‖2
Vf

∥

∥

∥

∥

∥

+

+

∥

∥

∥

∥

∥

F ′⊤(s̃)V−1
f v2

1 + ‖v2‖2
Vf

−
F ′⊤(s̃)V−1

f v1

1 + ‖v1‖2
Vf

∥

∥

∥

∥

∥

)

. (58)
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Using Lemma 1 withV−1
f we have:

‖∇QF (s) − ∇QF(s̃)‖ ≤ 2ᾱ
(

L′
FCϕ(V−1

f ) + L2
FLϕ(V−1

f )
)

‖s − s̃‖.

The same derivations can be performed for∇QG(s), so that finally we get:

‖∇QG(s) − ∇QG(s̃)‖ ≤ L‖s− s̃‖, (59)

where the Lipschitz constant is given by:

L = 2ᾱ
(

L′
FCϕ(V−1

f ) + L2
FLϕ(V−1

f )
)

+ 2β̄
(

L′
GCϕ(V−1

g ) + L2
GLϕ(V−1

g )
)

. (60)

�

To actually construct the non-decreasing sequence in (35),we make use of the
following fundamental result on variable metric gradient ascent algorithms.

Theorem 2 ((Polyak, 1987)). Let the functionQ : Rd → R be differentiable onRd

and its gradient∇Q be Lipschitz continuous with constantL. Let the matrixH be
positive definite, such that‖H‖ ≤ 2

L . Then the sequenceQ(s̃(ν)), defined bỹs(ν+1) =

s̃(ν) + H∇Q(s̃(ν)) is non-decreasing.

This result shows that for any functionsF andG that verify the conditions of Theo-
rem 1, using (35) withH = 2

LI, we are able to construct a non-decreasing sequence and
an appropriateLocal Searchprocedure. Notice however, that its guaranteed theoretical
convergence speed is linear. It can be improved in several ways.

First, the optimizationdirectioncan be adjusted. For certain problems, the matrix
H can be chosen as in variable metric algorithms, such as Newton-Raphson method,
quasi-Newton methods or Levenberg-Marquardt method, provided that it satisfies the
conditions of Theorem 2. Second, the optimizationstep sizecan be increased based
on local properties of the target function. For example, at iterationν, if when consid-
ering the functionsF andG on some restricted domainS(ν) there exist smaller local
Lipschitz constantsL(ν)

F , L
(ν)
G , L

′(ν)
F andL

′(ν)
G , H can be set toH = 2

L(ν) I with L(ν)

smaller thanL. It follows that‖s̃(ν+1) − s̃(ν)‖ ≤ 2
L(ν) ‖∇Q(s̃(ν))‖, which means that

one can take the local constants,L
(ν)
F , L

(ν)
G , L

′(ν)
F andL

′(ν)
G if they are valid in the ball

Bρ(ν)(s̃(ν)) with

ρ(ν) =
2

L(ν)

(

2L
(ν)
F ᾱCϕ(V−1

f ) + 2L
(ν)
G β̄Cϕ(V−1

g )
)

. (61)

5 Global Search and theChooseProcedure

Theorem 1 allows us to use the improved global random search techniques for Lipschitz
continuous functions (Zhigljavsky, 1991). These algorithms are known to converge, in
the sense that generated point sequences fall infinitely often into an arbitrarily small
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neighbourhood of the optimal points set. For more details and convergence conditions
see Theorem 3.2.1 and the discussion that follows in (Zhigljavsky, 1991). A proper
choice of the initial valuẽs(0) not only guarantees to find the global maximum, but can
also be used to increase the convergence speed. A basic strategy is to draw samples
in S, according to some sequence of distributions overS, that verifies the convergence
conditions of global random search methods. However, the speed of convergence of
such an algorithm is quite low.

Global random search methods can also be significantly improved by taking into
account some specificities of the target function. Indeed, in our case, function (55) is
made of two parts for which the optimal points are known and are respectivelȳf andḡ.
If there exists̃s(0) such that̃s(0) ∈ F−1(f̄ ) ∩ G−1(ḡ), then it is the global maximum
and the M step solution is found. Otherwise, one can sampleS in the vicinity of the set
F−1(f̄)∪G−1(ḡ) to focus on a subspace that is likely to contain the global maximum.
This set is, generally speaking, a union of two manifolds. For sampling methods on
manifolds we refer to (Zhigljavsky, 1991). An illustrationof this technique is given in
Section 8.

Another possibility is to use a heuristic that function (55)does not change much
after one iteration of the EM algorithm. Then, the initial point s̃(0) for the current
iteration can be set to the optimal value computed at the previous iteration. However,
in general, this simple strategy does not yield the global maximum, as can be seen from
the results in Section 9.1.

6 Algorithm Initialization and the Initialize Procedure

In this section we focus on the problem of selecting the initial valuesθ(0) for the model
parameters. As it is often the case with iterative optimization algorithms, the closer
θ(0) is to the optimal parameter values, the less time the algorithm would require to
converge. Within the framework of conjugate mixture modelswe formulate two main
strategies, namelyObservation Space Candidatesand Parameter Space Candidates
that attempt to find a good initialization.

TheObservation Space Candidatesstrategy consists in searching for cluster cen-
ters in single modality spacesF andG to further map them into the parameter space
S, and select the best candidates. More specifically, we randomly select an observa-
tion fm (or gk) and run the mean shift algorithm (Comaniciu and Meer, 2002)in the
corresponding space to find local modes of the distribution,which are calledcandi-
dates. The sets of candidate points{f̂ i}i∈I and{ĝj}j∈J are further rarefied, that is

if ‖f̂ i1 − f̂ i2‖ ≤ εf for somei1 6= i2 and for some thresholdε > 0, we eliminate
one of these points. These rarefied sets are then mapped toS. If one of the observation
space mappings, for exampleF , is non-injective, for eacĥf i we need to select a point
si ∈ F−1(f̂ i) that is the best in some sense. We consider observations density in the
other observation spaces around an image ofsi as the optimality measure ofsi. This
can be estimated through calculation of the k-th nearest neighbour distance (k-NN) in
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the corresponding observation space. The final step is to chooseN points out of these
candidates to initialize the cluster centers{s1, . . . , sN}, so that the inter-cluster dis-
tances are maximized. This can be done using, for example, hierarchical clustering.
The variancesΣ1, . . . ,ΣN andΓ1, . . . ,ΓN are then calculated by standard empirical
variance formulas based on observations, that are closest to the corresponding class
center. The priorsπ1, . . . , πN+1 andλ1, . . . , λN+1 are set to be equal.

TheParameter Space Candidatesstrategy consists in mapping all the observations
to the parameter spaceS, and performing subsequent clustering in that space. More
specifically, for every observationfm andgk we find an optimal point from the corre-
sponding preimageF−1(fm) andG−1(gk). The optimality condition is the same as
in the previous strategy, that is we compare the local observation densities using k-NN
distances. Then one proceeds with selecting local modes in spaceS using the mean-
shift algorithm, and initializingN cluster centers{s1, . . . , sN} from all the candidates
thus calculated. The estimation of variances and priors is exactly the same as in the
previous strategy.

The second strategy proved to be better when performing simulations (see Sec-
tion 9). This can be explained by possible errors in finding the preimage of an obser-
vation space point in the parameter space. Thus mapping a rarefied set of candidates to
the parameter space is less likely to make a good guess in thatspace than mapping all
the observations and finding the candidates directly in the parameter space.

7 Estimating the Number of Components and theSelect
Procedure

To choose theN that best corresponds to the data, we perform model selection based
on a criterion that resembles the BIC criterion (Schwarz, 1978). We consider the score
function of the form

BICN = −2L(f, g, θ̂N ) + DN log(M + K), (62)

whereθ̂N is the ML estimate obtained by the proposed EM algorithm,L(f, g, θ) is
given by (15) andDN = N

(

d + 2 + 1
2 (r2 + p2 + r + p)

)

is the dimensionality of the
model.

As in the case of (non-conjugate) Gaussian mixture models, we cannot derive the
criterion from the Laplace approximation of the probability P (f, g|N = N0) because
of the Hessian matrix ofL(f, g, θ) that is not necessarily positive definite (Aitkin and
Rubin, 1985; Quinnet al., 1987). Nevertheless, we can use the same arguments as
those used in (Keribin, 2000) for Gaussian mixture models toshow that the criterion is
consistent, i.e. ifN∗ is the number of components in the real model that generatedf
andg, then

NBIC → N∗ a.s., when M, K → ∞, (63)

provided variancesΣ1, . . . ,ΣN ,Γ1, . . . ,ΓN are non-degenerateand the sequenceM
M+K

has only one accumulation point (i.e. has a limit).
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The BIC-like criterion (62) shows good performance on both simulated and real
data (see Section 9), choosing correctly the number of objects in all the cases.

8 Clustering Using Auditory and Visual Data

We illustrate the method in the case of audiovisual (AV) objects. Objects could be
characterized both by their locations in space and by their auditory status, i.e., whether
they are emitting sounds or not. These object characteristics are not directly observable
and hence they need to be inferred from sensor data, e.g., cameras and microphones.
These sensors are based on different physical principles, they operate with different
bandwidths and sampling rates, and they provide different types of information. On
one side, light waves convey useful visual information onlyindirectly, on the premise
that they reflect onto the objects’ surfaces. A natural sceneis composed of many ob-
jects/surfaces and hence the task of associating visual data with objects is a difficult
one. On the other side, acoustic waves convey auditory information directly from the
emitter to the receiver but the observed data is perturbed bythe presence of rever-
berations, of other sound sources, and of background noise.Moreover, very different
methods are used to extract information from these two sensor types. A wide variety of
computer vision principles exist for extracting 3D points from a single image or from
a pair of stereoscopic cameras (Forsyth and Ponce, 2003) butpractical methods are
strongly dependent on the ligthing conditions and on the properties of the objects’ sur-
faces (presence or absence of texture, color, shape, reflectance, etc.). Similarly, various
algorithms were developed to locate sound sources using a microphone pair based on
interaural time differences (ITD) and on interaural level differences (ILD) (Wang and
Brown, 2006; Christensenet al., 2007), but these cues are difficult to interpret in natu-
ral settings due to the presence of background noise and of other reverberant objects. A
notable improvement consists in the use a larger number of microphones (Dibiaseet al.,
2001). Nevertheless, the extraction of 3D sound source positions from several micro-
phone observations results in inaccurate estimates. We show below that our method
can be used to combine visual and auditory observations to detect and localize objects.
A typical example where the conjugate mixture models framework may help is the task
of locating several speaking persons.

Using the same notations as above, we consider two sensor spaces. The multimodal
data consists ofM visual observationsf and ofK auditory observationsg. We consider
data that are recorded over a short time interval[t1, t2], such that one can reasonably
assume that the AV objects have a stationary spatial location. Nevertheless, it is not
assumed here that the AV objects, e.g., speakers, are static: lip movements, head and
hand gestures are tolerated. We address the problem of estimating the spatial locations
of all the objects that are both seen and heard. LetN be the number of objects and
in this case each object is described by a three dimensional parameter vectorsn =
(xn, yn, zn)⊤.

The AV data are gathered using a pair of stereoscopic camerasand a pair of omnidi-
rectional microphones, i.e., binocular vision and binaural hearing. A visual observation
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vectorfm = (um, vm, dm)⊤ corresponds to a 2D image location(um, vm) and to an
associated binocular disparitydm. Considering a projective camera model (Faugeras,
1993) it is straightforward to define an invertible functionF : R

3 → R
3 that maps

s = (x, y, z)⊤ ontof = (u, v, d)⊤:

F(s) =

(

x

z
,
y

z
,
1

z

)⊤

and F−1(f) =

(

u

d
,
v

d
,
1

d

)⊤

. (64)

This model corresponds to a rectified camera pair (Hartley and Zisserman, 2000) and
it can be easily generalized to more complex binocular geometries (Hansard and Ho-
raud, 2008, 2007). Without loss of generality one can use a sensor-centered coordinate
system to represent the object locations.

Similarly one can use the auditory equivalent of disparity,namely theinteraural
time difference(ITD) widely used by auditory scene analysis methods (Wang and
Brown, 2006). The functionG : R3 → R mapss = (x, y, z)⊤ onto a 1D audio
observation:

g = G(s) =
1

c

(

‖s − sM1‖ − ‖s − sM2‖
)

. (65)

Herec is the sound speed andsM1 andsM2 are the 3D locations of the two micro-
phones in the sensor-centered coordinate system. Each isosurface defined by (65) is
represented by one sheet of a two-sheet hyperboloid in 3D. Hence, each audio obser-
vationg constrains the location of the auditory source to lie onto a 2D manifold.

In order to perform audiovisual clustering based on the conjugate EM algorithm,
Theorem 1 (Section 4) must hold for both (64) and (65), namelythe functionsF andG
and their derivatives are Lipschitz continuous. We prove the following theorem:

Theorem 3. The functionsF , F ′, G andG′ are Lipschitz continuous with constants
LF = z−1

min

√
3, L′

F = z−2
min, LG = ‖sM1 − sM2‖(cR)−1 andL′

G = 3(cR)−1 in the

domainS = {|z| > zmin > 1} ∩
{

min{‖s − sM1‖, ‖s − sM2‖} > R > 1
}

.

Proof: The derivatives ofF andG are given by:

F ′(s) =
1

z





1 0 −x/z
0 1 −y/z
0 0 −1/z



 (66)

G′(s) =
1

c

(

s − sM1

‖s − sM1‖
− s − sM2

‖s − sM2‖

)

. (67)

The eigenvalues ofF ′(s) are1/z and−1/z2, so‖F ′(s)‖ ≤ max{z−1, z−2} ≤
z−1
min, from which it follows thatLF can be taken asLF = z−1

min

√
3. Also ‖F ′(s) −

F ′(s̃)‖ ≤ max{|z−1 − z̃−1|, |z−2 − z̃−2|} ≤ z−2
min‖s − s̃‖, so thatL′

F can be set to
L′
F = z−2

min.

Introducinge1 = s−sM1

‖s−sM1‖
ande2 = s−sM2

‖s−sM2‖
, it comes‖e1‖ = ‖e2‖ = 1

andG′(s) = 1
c (e1 − e2). Provided that‖s − sM1‖ and‖s − sM2‖ are both greater
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thanR, it follows ‖G′(s)‖ = 1
c‖e1 − e2‖ ≤ ‖sM1 − sM2‖(cR)−1 and soLG =

‖sM1 − sM2‖(cR)−1. Then, the second derivative ofG is given by

G′′(s) =
1

c‖s − sM1‖
(I − e1e

⊤
1 ) − 1

c‖s − sM2‖
(I − e2e

⊤
2 ).

so that‖G′′(s)‖ ≤
∣

∣

∣

1
c‖s−sM1‖

− 1
c‖s−sM2‖

∣

∣

∣
+ sup

‖v‖=1

2e1e⊤

1 v
c min{‖s−sM1‖,‖s−sM2‖}

≤ 3(cR)−1,

andL′
G can be set toL′

G = 3(cR)−1. �

This result shows that under some natural conditions (The AVobjects should not
be too close to the sensors) the conjugate EM algorithm described in Section 3.3 can be
applied. The constantL given by Lemma 1 guarantees a certain (worst-case) conver-
gence speed. In practice, we can use the techniques mentioned in Sections 4 and 5 to
accelerate the algorithm. First, to speed up the local optimization step, local Lipschitz
constants can be computed based on the current value of parameters̃(ν). Equation (61)
gives the largest possible step sizeρ(ν), so settingz(ν)

min = z(ν) − ρ(ν) andR(ν) =

min{‖s̃(ν)−sM2‖, ‖s̃(ν)−sM1‖}−ρ(ν), provides local Lipschitz constants that insure

the update not to quitS(ν) = {|z| > z
(ν)
min}∩

{

min{‖s−sM1‖, ‖s−sM2‖} > R(ν)
}

.

Second, we propose four possibilities to set the initial object parameter values̃s(0)
n :

(i) it can be taken to be the previously estimated object position s
(q−1)
n , (ii) it can be

set toF−1(f̄) (as soon asF is injective inS), (iii) it can be found through sampling of
the manifoldG−1(ḡ) by selecting the sampled value which gives the largestQ value,
or (iv) similarly through sampling directly inS. Comparisons are reported in the fol-
lowing sections.

9 Experimental Validation

9.1 Experiments with Simulated Data

Our algorithm is first illustrated on simulated data. For simplicity we consider(u, d)
and (x, z) coordinates so thatF ⊆ R2 andS ⊆ R2. Notice however that this pre-
serves the projective nature of the mappingF , it does not qualitatively affect the re-
sults and allows to better understand the algorithm performance. We consider three
objects defined inS by sn, n = 1, 2, 3. We simulated three cases: well-separated
objects (GoodSep), partially occluded objects (PoorSep) and poor precision in visual
observations for well-separated objects (PoorPrec). The ground-truth object locations
(x, z) for the GoodSep and PoorPrec cases are the same, namelys1 = (−300, 1000),
s2 = (10, 800) ands3 = (500, 1500). In the PoorSep case, the coordinates are respec-
tively s1 = (−300, 1000), s2 = (10, 800) ands3 = (100, 1500). The data in both
observation spacesF andG was simulated from a mixture model with three Gaussian
components and a uniform component that models the outliers. The means of the Gaus-
sian components are computed usingF(sn) andG(sn), n = 1, 2, 3. An example of
simulated data for the three mentioned configurations is shown in Figure 2, i.e.,(u, d)
locations of the visual observations and ITD values of the auditory observations.
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(a) GoodSep (b) PoorSep (c) PoorPrec

Figure 2: Simulated data in visual (top) and audio (bottom) observation spaces for three
cases: (a) well-separated objects, (b) partially occludedobjects, and (c) poor precision
of visual observations. The small squares correspond to theground-truth parameter
values. Each one of the two mixtures models (associated witheach sensorial modality)
contains four components: three objects and one outlier class.

Initialization. We compared two strategies,Observation Space Candidates(OSC)
andParameter Space Candidates(PSC) that are proposed in Section 6. Their perfor-
mance is summarized in Figure 3. It shows the mean and variance of the likelihood
valueL(f, g, θ) for initial parametersθ(0)

OSC andθ
(0)
PSC chosen by OSC and PSC strate-

gies respectively. For the total number of clustersN = 1, . . . , 5 and different object
configurations, we calculate the statistics based on 10 initializations. The analysis
shows that the PSC strategy performs at least as well as the OSC strategy, or even
better in some cases. Our explanation is that mappings from observation spaces to pa-
rameter space are subject to absolute (and in our case bounded) noise. Mapping all
the observations and calculating a candidate point in the parameter space has an av-
eraging effect and reduces the absolute error, compared to the strategy with candidate
calculation being performed in an observation space with subsequent mapping to the
parameter space. Therefore in what follows, all the resultsare obtained based on the
PSC initialization strategy.

Optimization. We compared several versions of the algorithm based on variousChoose
andLocal Searchstrategies. For the initial values̃sn

(0), we considered the following
possibilities: the optimal value computed at a previous runof the algorithm (IP), the
value predicted from visual data (IV), the value predicted from audio data (IA) and the
value obtained by global random search (IG). More specifically:
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Figure 3: Means and variances of log-likelihood valuesL(f, g, θ) for initial parameters

θ
(0)
OSC andθ

(0)
PSC chosen byObservation Space Candidates(OSC, red) andParameter

Space Candidates(PSC, blue) strategies respectively, for different numbers of clusters
N and different data configurations.

• When initializing from visual data (IV), the average valuef̄n, calculated in the
current E-step of the algorithm for everyn, was mapped to the parameter space
ands̃n

(0) set tos̃n
(0) = F−1(f̄n) using the injectivity ofF .

• When initializing from audio data (IA),G−1(ḡn) defines a manifold. The gen-
eral strategy here would be to find the optimal point that lieson this surface.
We achieved this through random search based on a uniform sampling on the
corresponding part of the hyperboloid (see (Zhigljavsky, 1991) for details on
sampling from an arbitrary distribution on a manifold); in our experiments we
used 50 samples to select the one providing the largestQ (likelihood) value.

• The most general initialization scheme (IG) was implemented using global ran-
dom search in the whole parameter spaceS; 200 samples were used in this case.

Local optimization was performed either using basic gradient ascent (BA) or the
locally accelerated gradient ascent (AA). The latter used the local Lipschitz constants
to augment the step size, as described in Section 4.

Each algorithm run consisted of 70 iterations of the EM algorithm with 10 non-
decreasing iterations during the M step.

To check the convergence speed of different versions of the algorithm for the three
object configurations we compared the likelihood evolutiongraphs that are presented in
Figure 4. Each graph contains several curves that correspond to five different versions
of the algorithm. The acronyms we use to refer to the different versions (for example,
IPAA) consist of two parts encoding the initialization (IP)and the local optimization
(AA) types. The black dashed line on each graph shows the ‘ground truth’ likelihood
level, that is the likelihood value for the parameters used to generate the data. The
meaning of the acronyms is recalled in Table 1.

As expected, the simplest version IPBA that uses none of the proposed acceleration
techniques appears to be the slowest. The other variants using basic gradient ascent

INRIA



Mixture Models for Multimodal Data 25

Table 1: Acronyms used for five variants of the conjugate EM algorithm. Variants
correspond to different choices for theChooseandLocal searchprocedures.

Acronym s̃(0) initialization (Choose) Local optimization (Search)
IPBA previous iteration value basic gradient ascent
IGAA global random search accelerated gradient ascent
IVAA predicted value from visual data accelerated gradient ascent
IPAA previous iteration value accelerated gradient ascent
IAAA audio predicted manifold sampling accelerated gradient ascent
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Figure 4: Likelihood function evolution for five variants ofthe algorithm in three cases.
Top-left: well-separated objects; top-right: poorly separated objects; bottom: well-
separated object but poor observation precision.

are then not reported. Predicting a single object parametervalue from visual obser-
vations (IVAA) does not give any improvement over IPAA, where s̃(0) is taken from
the previous EM iteration. Wheñs(0) is obtained by sampling the hyperboloid pre-
dicted from audio observations (IAAA), a significant impacton the convergence speed
is observed, especially on early stages of the algorithm, where the predicted value can
be quite far from the optimal one. However, ‘blind’ samplingof the whole parameter
space does not bring any advantage: it is much less efficient regarding the number of
samples required for the same precision. This suggests thatin the general case, the best
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strategy would be to sample the manifoldsF−1(f̄n) andG−1(ḡn) with possible small
perturbations to find the bests̃(0) estimate and to perform an accelerated gradient as-
cent afterwards (IAAA). We note that IAAA succeeds in all thecases to find parameter
values that are well-fitted to the model in terms of likelihood function (likelihood is
greater or equal than that of real parameter values).

Parameter evolution trajectories for the IAAA version of the algorithm in the Good-
Sep case are shown in Figures 5-6. The estimate changes are reflected by the node sizes
(from smaller to bigger) and colours (from darker to lighter). The final values are very
close to the real cluster centers in all three audio, visual and object spaces. The con-
vergence speed is quite dependent on the initialization. Inthe provided example the
algorithm spent almost a half of useful iterations to disentangle the estimates trying to
decide which one corresponds to which class. Another possibility here would be to
predict the initial values through sampling in the audio domain. We demonstrate this
strategy further when working with real data.

We compared the performance of our algorithm for the three object configurations.
For each of them, we computed absolute and relative errors for the object parameter
estimations in the different coordinate systems (object, audio and visual spaces). The
averages were taken over 10 runs of the algorithm for different PSC initializations, as
described above. The results are reported in Table 2. We giveobject location estimates
ŝ = (x̂, ẑ), f̂ = (û, d̂) and ĝ in parameter, visual and audio spaces respectively. It
appears that the localization precision is quite high. In a realistic setting such as that of
Section 9.2, the measurement unit can be set to a millimeter.In that case, the observed
precision, in a well-separated objects configuration, it isat worse about 6cm. However,
precision in thez coordinate is quite sensible to the variance of the visual data and
the object configuration. To get a better idea of the relationship between the variance
in object space and the variance in visual space,F−1 can be replaced by its linear
approximation given by a first order Taylor expansion. Assuming then that visual data
are distributed according to some probability distribution with meanµF and variance
ΣF , it follows that through the linear approximation ofF−1, the variance in object

space is∂F−1(µF )

∂f
ΣF

∂F−1(µF )

∂f

⊤

. Then, thez coordinate covariance for an objectn

is approximately proportional to thed covariance for the object multiplied byz4
n. For

distant objects, a very high precision ind is needed to get a satisfactory precision in
z. At the same time we observe that the likelihood of the estimate configuration often
exceeds the likelihood for real parameter values. This suggests that the model performs
well for the given data, but cannot get better precision thanthat imposed by the data.

Selection. To select the optimal number of clustersN we applied the BIC crite-
rion (62) to the models, trained for thatN . The BIC score graphs are shown on Fig-
ure 7. The total number of objectsN is correctly determined in all the 3 cases of object
configurations, from which we conclude that the BIC criterion provides reliable model
selection in our case.
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Figure 5: IAAA algorithm: parameter evolution and assignment results for the Good-
Sep case in audio and visual spaces (note the scale change which corresponds to a
zoom on the cluster centers). The initialization (white stars) is based on the PSC strat-
egy. Ground truth means are marked with squares. The evolution is shown by circles
from smaller to bigger, from darker to brighter. Observations assignments are depicted
by different markers (◦, ∗ and× for the three object classes) in visual space and are
colour-coded in audio space. Due to the zoom, outliers are not visible on these figures.
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Figure 6: IAAA algorithm: parameter evolution for the GoodSep case in object space.
The initialization (white stars) is based on the PSC strategy. Ground truth means are
marked with squares. The evolution is shown by circles from smaller to bigger, from
darker to brighter.

1 2 3 4 5
−6500

−6000

−5500

−5000

N
1 2 3 4 5

−1800

−1600

−1400

−1200

−1000

N
1 2 3 4 5

−3000

−2500

−2000

N

(a) GoodSep (b) PoorSep (c) PoorPrec

Figure 7: BIC score graphs for the three object configurations, evaluated for models
trained for different total number of clustersN .
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Table 2: IAAA algorithm: object location estimates in parameter, visual and audio
spaces for GoodSep, PoorSep and PoorPrec object configurations. The estimates are
calculated based on ten runs of the algorithm with PSC initializations.

Ground Truth Estimates Mean Absolute Error Relative Error
Parameter Space s = (x, z) ŝ = (x̂, ẑ) ea = ‖ŝ − s‖ er = ‖ŝ − s‖/‖s‖

G
o

o
d

S
ep Object 1 (−300, 1000) (−300.13, 997.81) 2.2 2.1 · 10−3

Object 2 (10, 800) (9.28, 804.46) 4.52 5.7 · 10−3

Object 3 (500, 1500) (513.56, 1555.23) 56.86 3.5 · 10−2

P
o

o
rS

ep Object 1 (−300, 1000) (−307.47, 1028.38) 29.35 2.8 · 10−2

Object 2 (10, 800) (14.19, 895.69) 95.79 1.2 · 10−1

Object 3 (100, 1500) (105.02, 1447.49) 52.75 3.5 · 10−2

P
o

o
rP

re
c

Object 1 (−300, 1000) (−208.86, 698.51) 314.97 0.3
Object 2 (10, 800) (8.44, 703.97) 96.04 1.2 · 10−1

Object 3 (500, 1500) (507.65, 1533.8) 34.66 2.2 · 10−2

Visual Space f = (u, d) f̂ = (û, d̂) ea = ‖f̂ − f‖ er = ‖f̂ − f‖/‖f‖

G
o

o
d

S
ep Object 1 (−0.3, 0.001) (−0.3008, 0.001) 7.87 · 10−4 2.6 · 10−3

Object 2 (0.0125, 0.00125) (0.0115, 0.00124) 9.59 · 10−4 7.6 · 10−2

Object 3 (0.3333, 0.00067) (0.3302, 0.00064) 31.21 · 10−4 9.3 · 10−3

P
o

o
rS

ep Object 1 (−0.3, 0.001) (−0.299, 0.001) 1.02 · 10−3 3.4 · 10−3

Object 2 (0.0125, 0.00125) (0.0159, 0.00112) 3.36 · 10−3 2.6 · 10−1

Object 3 (0.6667, 0.00067) (0.7131, 0.00238) 4.95 · 10−3 7.4 · 10−2

P
o

o
rP

re
c

Object 1 (−0.3, 0.001) (−0.299, 0.0014) 10.8 · 10−4 3.5 · 10−3

Object 2 (0.0125, 0.00125) (0.012, 0.00142) 5.38 · 10−4 4.3 · 10−2

Object 3 (0.3333, 0.00067) (0.331, 0.00065) 23.56 · 10−4 7.1 · 10−3

Audio Space g ĝ ea = |ĝ − g| er = |ĝ − g|/|g|

G
o

o
d

S
ep Object 1 −49.71 −49.8 0.09 1.9 · 10−3

Object 2 −8.22 −8.35 0.13 1.6 · 10−2

Object 3 34.75 34.37 0.38 1.1 · 10−2

P
o

o
rS

ep Object 1 −49.71 −49.59 0.12 2.3 · 10−3

Object 2 −8.22 −7.76 0.46 5.6 · 10−2

Object 3 −0.66 −0.02 0.65 9.7 · 10−1

P
o

o
rP

re
c

Object 1 −49.71 −49.49 0.22 4.4 · 10−3

Object 2 −8.22 −8.28 0.06 7.6 · 10−3

Object 3 34.75 34.47 0.29 8.3 · 10−3
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Figure 8: Visual observations on the left and right camera images. Circles depict the
‘interest points’, squares show those of them that are matched to some point from the
other image. The epipolar lines correspond to a point markedby a star in the opposite
image.

9.2 Experiments with Real Data

We evaluated the ability of our algorithms to estimate the 3Dlocations of AV objects in
a person localization task. We considered a typical ‘meeting’ situation. The data was
taken from a database of realistic AV scenarios described indetail in (Arnaudet al.,
2008). A mannequin, with a pair of microphones fixed into its ears and a pair of stereo-
scopic cameras mounted onto its forehead, served as the acquisition device (the setup
was developed and constructed within the POP1 project). The reason for choosing this
configuration was to record data from the perspective of a person, i.e. to try to capture
what a person would both hear and see while being in a natural AV environment. Each
recorded scenario comprised two audio tracks and two image sequences, together with
the sensor calibration information. The data we use here is ameeting scenario2, shown
in Figure 8. There are five persons sitting around a table, butonly three persons are
visible. The recording lasts 25 seconds and contains a totalof about 8000 visual and
600 audio observations.

Audio and visual observations were collected over the recording using the follow-
ing techniques. A standard procedure was used to identify ‘interest points’ in the left
and right images (Harris and Stephens, 1988). These features were put into binocular
correspondence by comparing the local image-structure at each of the candidate points,
as described in (Hansard and Horaud, 2007). The cameras werecalibrated using In-
tel’s OpenCV3 in order to define the(u, v, d)⊤ to (x, y, z)⊤ mapping (64). Auditory
disparities were obtained through the analysis of cross-correlogram of the filtered left
and right microphone signals for every frequency band (Christensenet al., 2007). To
be able to introduce the common parameter spaceS, we performed audio-visual cali-
bration which consisted in finding microphone positions in camera-related 3D frame.

1http://perception.inrialpes.fr/POP/
2http://perception.inrialpes.fr/CAVA Dataset/Site/data.html#M1
3http://www.intel.com/technology/computing/opencv
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Figure 9: Real data: parameter evolution and assignment results for the CAVA M1
scenario in audio, visual and parameter spaces. For visual and parameter spaces, pro-
jections onto UV, UD, XY and XZ planes are given. The initialization (white stars)
is based on PSC strategy. The evolution is shown by circles from smaller to bigger,
from darker to brighter. Observations assignments are depicted by different markers
(◦, ∗ and× for the three object classes and + for the outlier class) in visual space and
are colour-coded in both spaces (outliers are in light blue). The likelihood evolution is
shown (bottom-right corner).

To initialize the parameter values we used the Parameter Space Candidates (PSC)
initialization strategy, as described in Section 6. As in the case of simulated data, we
used the BIC criterion to select the optimal number of clustersN = 3 for the data. The
results are shown in Figure 9.
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The meeting situation corresponds to a well-separated targets case (GoodSep sim-
ulation). The likelihood evolution reported in Figure 9 shows that convergence is
reached in about 20 iterations which is three times faster than in the simulated GoodSep
case of Figure 4. This suggests that the proposed initialization strategy is appropriate.
Also the 3D position estimates are quite accurate, in particular the natural alignment of
the speakers along the table is clearly seen in the XZ domain of the object space. Even
though the outlier class is not uniform and the clusters themselves are not Gaussian,
our model performed quite well, which illustrates robustness of the proposed model to
actual observation-space data distributions.

10 Conclusions

We proposed a novel framework, conjugate mixture models to cluster heterogeneous
data gathered with physically different sensors. Our approach differs from other exist-
ing approaches in that it combines in a single statistical model a number of clustering
tasks while ensuring the consistency of their results. In addition, the fact that the clus-
tering is performed in observation spaces allows one to get useful statistics on the data,
which is an advantage of our approach over particle filteringmodels. The task of si-
multaneous clustering in spaces of different nature, related through known functional
dependencies to a common parameter space, was formulated asa likelihood maxi-
mization problem. Using the ideas underlying the classicalEM algorithm we built the
conjugate EM algorithm to perform the multimodal clustering task, while keeping at-
tractive convergence properties. The analysis of the conjugate EM algorithm and, more
specifically, of the optimization task arising in the M-step, revealed several possibili-
ties to increase the convergence speed. We proposed to decompose the M-step into
two procedures, namely theLocal SearchandChooseprocedures, which allowed us
to derive a number of acceleration strategies. We exhibitedappealing properties of the
target function which induced several implementations of these procedures resulting in
a significantly improved convergence speed. We introduced the Initialize andSelect
procedures to efficiently choose initial parameter values and determine the number of
clusters in a consistent manner respectively. A non trivialaudio-visual localization task
was considered to illustrate the conjugate EM performance on both simulated and real
data. Simulated data experiments allowed us to assess the average method behaviour
in various configurations. They showed that the obtained clustering results were pre-
cise as regards the observation spaces under consideration. They also illustrated the
theoretical dependency between the precisions in observation and parameter spaces.
Real data experiments then showed that the observed data precision was high enough
to guarantee high precision in the parameter space.

One of the strong points of the formulated model is that it is open to different
useful extensions. It can be easily extended to an arbitrarynumberJ of observation
spacesF1, . . . , FJ . The main results, includingLocal SearchandChooseacceleration
strategies stay valid with minor changes. The sum of two terms, related to spacesF
andG, would have to be replaced by a sum ofJ terms corresponding toF1, . . . , FJ

in the formulas of Section 3. Also, the assumption that assignment variablesa andb
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are independent could be relaxed. An appropriate approach to perform inference in a
non independent case would be to consider variational approximations (Jordanet al.,
1998) and in particular a variational EM (VEM) framework. The general idea would
be to approximate the joint distributionP (a) by a distribution from a restricted class

of probability distributions that factorize as̃P (a) =
M
∏

m=1
P̃ (am). For any such dis-

tribution, our model would be applicable without any changes so that for a variational
version of the conjugate EM algorithm, all the results from Section 3 would hold.

It appears that as a generalization of Gaussian mixture models, our model has larger
modeling capabilities. It is entirely based on a mathematical framework in which each
step is theoretically well-founded. Its ability to providegood results in a non trivial
multimodal clustering task is particularly promising for applications requiring the in-
tegration of several heterogenious information sources. Therefore, it has advantages
over other methods that include ad-hoc processing while being open to incorporation
of more task dependent information.
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