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Abstract: The problem of multimodal clustering arises whenever thta dae gath-
ered with several physically different sensors. Obseovetifrom different modalities
are not necessarily aligned in the sense that there is n@obway to associate or to
compare them in some common space. A solution may consisinisidering multi-
ple clustering tasks independently for each modality. Thénndifficulty with such an
approach is to guarantee that the unimodal clusterings ateatly consistent. In this
paper we show that multimodal clustering can be addresstilva novel framework,
namelyconjugate mixture modelsThese models exploit the explicit transformations
that are often available between an unobserved paramedee gpbjects) and each
one of the observation spaces (sensors). We formulate tidgmn as a likelihood
maximization task and we derive the associatedjugate expectation-maximization
algorithm. The convergence properties of the proposediéifigo are thouroughly in-
vestigated. Several local/global optimization techn&jaee proposed in order to in-
crease its convergence speed. Two initialization strategie proposed and compared.
A consistent model-selection criterion is proposed. Tlgedihm and its variants are
tested and evaluated within the task of 3D localization wéss speakers using both
auditory and visual data.
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Modeles de Melange Conjugles pour le Clustering de
Données Multimodales

Résune : Le probleme de grouper (clustering) des données multalesdse pose
lorsque les données sont acquises avec des capteurs&remiés natures physiques.
Les observations de plusieurs modalités ne sont pas s&casent alignées dans le
sens qu'il n'y a pas une fa con évidente de les associer etctmhparer dans un méme
espace. Une solution possible est de considérer plusgacessus de groupement
pour chaque modalité. La principale difficulté d’'une ¢edipproche est de garantir la
consistance mutuelle entre les groupements. Dans celeantitis montrons que le
probléme peut &tre formulé dans un cadre nouveanjugate mixture modelsCe
dernier exploite les transformations souvent disponiblgse un espace de parametres
non observé (les objets) et chacun des espaces obser{akleapteurs). Nous for-
mulons le probleme comme la recherche du maximum de vréigme et nous pro-
posons l'algorithme qui y est assoc@#njugate expectation-maximizatiohes pro-
priétés de convergence de cet algorithme sont étudigeketail. Plusieurs techniques
d’optimisation locales/globales sont proposées afin élarer sa vitesse de conver-
gence. Deux stratégies d'initialisation sont proposte®mparées, ainsi qu'un critere
de sélection de modele. L'algorithme et ses variantes ts@tés dans le cadre d’'une
application de localisation 3D de plusieurs orateursaiit des données visuelles et
auditives.

Mots-clés : Modeles de mélange, algorithm EM, fusion multisenstejehtégration
audiovisuelle, continuité Lipschitz, optimisation gidé.
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4 Khalidov, Forbes, & Horaud

1 Introduction

The unsupervised clustering of multimodal data is a key béipawhenever the goal
is to group observations that are gathered using severdaigdily different sensors.
A typical example is the computational modeling of bioladimultisensory percep-
tion. This includes the issues of how a human detects objectathdioth seen and
touched (Pougadt al., 2002; Ernst and Banks, 2002), seen and heard (Anastbalo
2000; King, 2004, 2005) or how a human localizes one sourcEp$ory input in a
natural environment in the presence of competing stimudi aha variety of noise
sources (Haykin and Chen, 2005). More generatlyltisensory fusiofHall and Mc-
Mullen, 2004; Mitchell, 2007) is highly relevant in varioosher research domains,
such as target tracking (Smith and Singh, 2006) based om aadbsonar data (Naus
and van Wijk, 2004; Coirast al., 2007), mobile robot localization with laser rangefind-
ers and cameras (Castellanos and Tardos, 1999), robot ulatigm and object recog-
nition using both tactile and visual data (Allen, 1995; J@std Sanderson, 1999), un-
derwater navigation based on active sonar and underwatezrea (Majumdeet al,
2001), audio-visual speaker detection (Betdl,, 2003; Pereet al., 2004; Fisher IlI
and Darrell, 2004), speech recognition (Heckmatml, 2002; Nefiaret al., 2002;
Shao and Barker, 2008), and so forth.

When the data originates from a single object, finding the bssmates for the
object’s characteristics is usually referred to apuae fusiontask and it reduces to
combining multisensor observations in some optimal waya(B¢ al., 2003; Kushal
et al,, 2006; Smith and Singh, 2006). For example, land and underwabots fuse
data from several sensors to build a 3D map of the ambienesipaspective of the
number of objects presentin the environment (CastellandJardos, 1999; Majumder
et al, 2001). The problem is much more complex when several abjae present
and when the task implies their detection, identificatiord bbcalization. In this case
one has to consider two processes simultaneouglysegregation(Fisher Il et al,,
2001) which assigns each observation either to an object andutlier category and
(i) estimationwhich computes the parameters of each object based on tlg gfo
observations that were assigned to that object. In othedsydn addition to fusing
observations from different sensors, multimodal analysguires the assignment of
each observation to one of the objects.

This observation-to-objectassociation problem can betmsa probabilistic frame-
work. Recent multisensor data fusion methods able to hazsdleral objects are based
on particle filters (Checkat al., 2004; Chen and Rui, 2004; Gatica-Pegtal., 2007).
Notice, however, that the dimensionality of the paramepace grows exponentially
with the number of objects, causing the number of requiretighes to increase dra-
matically and augmenting computational costs. A numbeffafient sampling proce-
dures were suggested (Chen and Rui, 2004; Gatica-Beatz2007) to keep the prob-
lem tractable. Of course this is done at the cost of loss inehgenerality, and hence
these attempts are strongly application-dependent. Amatrawback of such mod-
els is that they cannot provide estimates of accuracy andritapce of each modality
with respect to each object. The sampling and distributstimeation are performed
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Mixture Models for Multimodal Data 5

in the parameter space, but no statistics are gathereddarlibervation spaces. Re-
cently (Hospedales and Vijayakumar, 2008) extended tlggesiobject model of (Beal
et al, 2003) to multiple objects: several single-object modetsiacorporated into
the multiple-object model and the number of objects is setkby an additional hid-
den node, which thus accounts for model selection. We remhatkthis method also
suffers from exponential growth in the number of possiblaleis.

In the case of unimodal data, the problems of grouping olagiems and of asso-
ciating groups with objects can be cast into the frameworstandard data clustering
which can be solved using a variety of parametric or nonipatec techniques. The
problem ofclustering multimodal dataaises the difficult question of how to group
together observations that belong to different physicalcep with different dimen-
sionalities, e.g., how to group visual data with auditorya@aWhen the observations
from two different modalities can baignedpairwise, a natural solution is to consider
the Cartesian product of two unimodal spaces. Unfortupadath an alignment is not
possible in most practical cases. Different sensors opatadifferent frequency rates
and hence the number of observations gathered with onersegisde quite different
from the number of observations gathered with another serfSonsequently, there
is no obvious way to align the observations pairwise. Cagraigy all possible pairs
would result in a combinatorial blow-up and typically cre@bundance of erroneous
observations corresponding to inconsistent solutions.

Alternatively, one may consider several unimodal clusigsi provided that the
relationships between a common object space and severmivaltisn spaces can be
explicitly specified.Multimodal clusteringhen results in a number of unimodal clus-
terings that are jointly governed by the same unknown pat@reeharacterizing the
object space.

The original contribution of this paper is to show how the lgemn of clustering
multimodal datecan be addressed within the framework of mixture models (&dti-
lan and Peel, 2000). We propose a variant of the EM algoritbem{psteet al,, 1977;
McLachlan and Krishnan, 1996) specifically designed tovestie object-space param-
eters that are indirectly observed in several sensor spafies convergence proper-
ties of the proposed algorithm are thoroughly investigated several efficient imple-
mentations are described in detail. The proposed modelngposed of a number of
modality-specific mixtures. These mixtures are jointly gmed by a set of common
object-space paramete(a/hich will be referred to as the/ing parameters thus in-
suring consistency between the sensory data and the objgot $eing sensed. This
is done using explicit transformations from the unobserpathmeter space (object
space) to each of the observed spaces (sensor spaces)., Henpmposed model is
able to deal with observations that live in spaces with déifé physical properties such
as dimensionality, space metric, sensor sampling rate Vé¢cbelieve that linking the
object space with the sensor spaces based on object-gpaeador-space transforma-
tions has more discriminative power than existing multserfusion techniques and
hence performs better in terms of multiple object identifamaand localization. To the
best of our knowledge, there has been no attempt to use aageerenodel, such as
ours, for the task of multimodal data interpretation.

RR n° 7117



6 Khalidov, Forbes, & Horaud

In Section 2 we formally introduce the conceptoinjugate mixture modelStan-
dard Gaussian mixture models (GMM) are used to model the odd@indata. The
parameters of these Gaussian mixtures are governed by fibet phrameters through
a number of object-space-to-sensor-space transfornsgiore transformation for each
sensing modality). Through the paper we will assume a venggs class of transfor-
mations, namely non-linear Lipschitz continuous funcsigeee below). In Section 3
we cast the multimodal data clustering problem in the fraprévef maximum likeli-
hood and we explicitly derive the expectation and maxinieesteps of the associated
EM algorithm. While the E-step of the proposed algorithmt#édard, the M-step im-
plies non-linear optimization of the expected complet&adtag-likelihood with respect
to the object parameters. We investigate efficient localglotal optimization meth-
ods. More specifically, in Section 4 we prove that, provideat the object-to-sensor
functions as well as their first derivatives are Lipschitntiouous, the gradient of the
expected complete-data log-likelihood is Lipschitz contius as well. The immediate
consequence is that a number of recently proposed optiimizaligorithms specifically
designed to solve Lipschitzian global optimization probéecan be used within the M-
step of the proposed algorithm (Zhigljavsky arinskas, 2008). Several of these
algorithms combine a local maximum search procedure witimigializing scheme to
determine, at each iteratiogpodinitial values from which the local search should be
performed. This implies that the proposed EM algorithm hagrgnteed convergence
properties. Section 5 discusses several possible locattséatialization schemes,
leading to different convergence speeds. In Section 6 wpge® and compare two
possible strategies to initialize the EM algorithm. Settiois devoted to a consistent
criterion to determine the number of objects. Section &itates the proposed method
with the task of audiovisual object detection and localarausing binocular vision
and binaural hearing. Section 9 analyses in detail the pednces of the proposed
model under various practical conditions with both simethand real data. Finally,
Section 10 the paper and provides directions for future work

2 Mixture Models for Multimodal Data

We considerNV objectsn = 1...N. Each object: is characterized by a parameter
vector of dimensionl, denoted bys,, € S C R%. The sefs = {s1,...,8p,...,8n}
corresponds to the unknowying parametersThe objects are observed with a number
of physically different sensors. Although, for the sake lafity, we will consider two
modalities, generalization is straightforward. Therefothe observed data consists
of two sets of observations denoted respectivelyf by {f,,..., f,.,---, far} @and
9={gy,---,95---,9x} lying in two different observation spaces of dimensiens
andp, f,, € F CR" andg,, € G C RP.

One key ingredient of our approach is that we consider thestcamations:

:S—F
{g:S—MG ()
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Mixture Models for Multimodal Data 7

that magsS respectively into the observation spaéesndG. These transformations are
defined by the physical and geometric properties of the seresul they are supposed
to be known. We treat the general case when fo#ndgG are non-linear.

An assignment variable is associated with each observdtios indicating the ob-
jectthat generated the observatioh:= {A;,..., An, ..., Ay tandB = {B;, ..., B,
., Bk }. Hence, the segregation process is cast into a hidden i@patiblem. The

notation4,, = n (resp. B, = n) means that the observatigf), (resp. g;) was
generated by objeat. In order to account for erroneous observations, an additio
N + 1-th fictitious object is introduced to represent an outliategory. The notation
A, = N+ 1(resp.Br = N + 1) means thaf,,, (resp.g,,) is an outlier. Note that we
will also use the following standard convention: upper daers for random variables
(A andB) and lower case letters for their realizatiomsgndd). The usual conditional
independence assumption leads to:

K
P(f,gla,b) = H P(f lam) H (gxlbr). 2)

In addition, all assignment variables are assumed to beamtent, i.e.:

K
P(a,b) = [] Plam) [T P(bw)- (3)

As discussed in Section 10, more general cases could bedevedi However, we

focus on the independent case for it captures most of therfesatelevant to the conju-
gate clustering task and because more general dependamnttess could be reduced
to the independent case via the use of appropriate varatapproximation techniques
(Jordaret al, 1998; Celewset al,, 2003).

Next we define the following probability density functiofs;alln = 1... N, N+
1,forall f,, € Fandforallg, € G:

Py(fn) = P(fulAm=n), (4)
PG(Qk) P(gy|Br = n). (5)

More specifically, the likelihoods for an observation todrej to an object are
Gaussian distributions whose medhés,,) andG(s,,) correspond to the object’s pa-
rameter vectos,, mapped to the observations spaces by the transformafioasd
g:

P'}:‘(f'm) N(fnL; f(3")72’":)5 (6)
Pf(gk) = Nl(gy; G(sn),Tn), (7)

with:

N(fma ]:(Sn)a Zn) = W exXp (_%”frn - T(Sn)”%],,) ) (8)
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8 Khalidov, Forbes, & Horaud

where the notatiofjv — w||% stands for the Mahalanobis distarfee— w) "=~ (v —
w) and " stands for the transpose of a matrix. The likelihoods ofierglare taken as
two uniform distributions:

Py i1(gx) =U(gi: U), (10)
whereV andU denote the respective support volumes. We also define thepgob-
abilites7 = (m1,..., 70, ..., *nsr) @andAd = (A, ..., A\, oo, AN ):

™ = PAn=mn), Vm=1...M, (11)
A = P(Br=n), Vk=1...K. (12)

Therefore f,, andg, are distributed according to twé(+ 1)-component mixture
models, where each mixture is made /§f Gaussian components and one uniform
component:

P(f,) = an (i F(80),Zn) + anild (F i V), (13)
P(g,) = ZA N(gi; G(80),Tn) + A1l (g U). (14)

The log-likelihood of the observed data can then be writeen a

L(f,9,0) = Zlog(an (Fi Flsn), 2 )+7rN+1L{(fm;V)>+

+ Zlog(Z (g1 G n>7rn>+AN+1u<gk;U>> (15)
k=1

where:

0= {7T1,...,7TN,7TN+1,/\1,...,/\N,/\N_H,Sl,...,SN,El,...,EN,I‘l,...,I‘N}

(16)
denotes the set of all unknown parameters to be estimated asnaximum likelihood
principle.

The graphical representation of our conjugate mixture rhisdghown in Figure 1.
We adopted the graphical notation introduced in (Bishof6}Qo represent similar
nodes in a more compact way: thé (resp. K) similar nodes are indicated with
aplate The two sensorial modalities are linked by tlygng parameterssy,...sy
shown in between the two plates.

INRIA



Mixture Models for Multimodal Data 9

>
D

3y, BN

81,...,8N ® & ry,...,Tx

T v ) (BY)——=Xo o A A
K

M

Figure 1: Graphical representation of the conjugate m&tmodel. Circles denote
random variables, plates (rectangles) around them reptreseltiple similar nodes,
their number being given in the plates.

3 Generalized EM for Clustering Multimodal Data

Given the probabilistic model just described, we wish toedmine the parameter
vectors associated with the objects that generated olismrsdn two different sen-
sory spaces. It is well known that direct maximization of thieserved-data log-
likelihood (15) is difficult to achieve. The expectationxmaization (EM) algorithm (Demp-
steret al,, 1977; McLachlan and Krishnan, 1996) is a standard apprtmaofaximize
likelihood functions of type (15). It is based on the follegirepresentation, for two
arbitrary values of the parametétsandé:

L(f,9.0) = Q(6.6)+ H(8,0), (17)
with Q(6.0) = ElogP(f,g, A, B;0) |f,g;6], (18)
and H(0,0) = -EllogP(A,B |f,g;0)|f g0, (19)

where the expectations are taken over the hidden variablesd B. Each iterationy
of EM proceeds in two steps:

» Expectation For the current valueg@'? of the parameters, compute the condi-
tional expectation with respect to variabldsand B:

QO,69)= > > P(ablf,g; 0'9) log P(f,g,a,b; 0)
ac{l.N+1}M hef1. N+1}K
(20)

* Maximization Update the parameter set? by maximizing (20) with respect
to 6:
0D = argmax Q(6,0'?) (21)
0

It is well known that the EM algorithm increases the targetchion £(f, g, ) in
(15), i.e., the sequence of estimaf@$? } ,cy satisfiesC(f, g, 01* V) > £(f,g,0'9).
Standard EM deals with the parameter estimation of a singktune model, and a

RR n° 7117



10 Khalidov, Forbes, & Horaud

closed form solution for (21) exists in this case. When thaimgation (21) is diffi-
cult to achieve, various generalizations of EM are propo3ée M step can be relaxed
by requiring just an increase rather than an optimum. ThéslyiGeneralized EM
(GEM) procedures (McLachlan and Krishnan, 1996) (see @xy1983) for a result
on the convergence of this class of algorithms). The GEMrétlyn searches for some
69t such tha (0, 9?) > (', 0\?). Therefore it provides a sequence of
estimates that still verifies the non-decreasing likelthpooperty although the conver-
gence speed is likely to decrease. In the case of conjugatanmimodels, we describe
in more detail the specific forms of the E and M steps in thefwithg sections.

3.1 The Expectation Step

Using (3)-(12) the conditional expectation (20) can be dggosed as:

Q(0,0') = Qr(6,0) + Qg(6,0'7), (22)
with

M N+1

0,01) =" > al®) log (1, P(f,,| A = n; 0)), (23)
m=1 n=1
K N+1

0,0) =>"5" 3 log (A Plgy|Br = 15 9)), (24)
k=1 n=1

wherea'?), and3? denote the posterior probabilities?), = P(A,, = n|f,,;0?)

andﬁ(‘” P(By, = nlg,;0?). Their expressions can be derived straightforwardly
from Bayes’ theorentyn =1...N:

(q) . (q) (q)

mn ?

; N (), 20 + Vil

@ _ MON (g G(s$), T80y
kn .
Z )\(q)./\/(g :G(s (Q)) (q )) 1)\%)4_1

=1

(26)

2

INRIA



Mixture Models for Multimodal Data 11

N
and<>4('1)1\,+1 =1- Z al?), andﬁb),gqj)wrl =1- 3 8. Using (6)-(10) the expres-
n=1

sions above further Iead to:

Qr(6,0'7) = Z Za(” 1 = F(sa)ll5, +log((2m)" [y m, %)) —
m=1n=1
M
1 _
) Z afvz?NJrllOg(V?WNiﬂ’ (27)
m=1
1

Qq(6.0) = 522@“ lgs. = Gsw)lf, +log((2m)7 [Tl A72) -

k=1n=1

- Z BN o1 log(URARA). (28)

3.2 The Maximization Step

In order to carry out the maximization (21) of the conditibeapectation (20), its
derivatives with respect to the model parameters are seéro. zThis leads to the

standard update expressions for priors, more specifigally- 1,..., N + 1:
(¢+1) _ E D) 29
ﬂ—n M — mn’ ( )
IR @)
(¢+1) _ = a
A = % g_l . (30)

The covariance matrices are governed by the tying parameﬁ(@?l) € S through
the functions¥ andgG,vn =1,..., N:

M

1
DI () = ——— > al (fr — F(sET))(f 1 — FsiTV))([RL)
S ald), m=1
m=1
1 K
DD (s ) = ———3" A0(g;, — G ) (g, — G(sT) . (32)
2 i
k=1
Foreveryn =1,..., N, s\t s the parameter vector such that:
s\ — argmax Q{9 (s), (33)
S

RR n° 7117



12 Khalidov, Forbes, & Horaud

where
M
QW(s)= — Y D (lf, — F(s)lk, (s +log|Ba(s)]) -
m=1
Zﬁ@ (g — G(8)]1}, (s) + log [T (s)]). (34)

We stress that the covariancEs,(s) andT',,(s) in (31) and (32) are considered as
functions ofs € S. Hence, at each iteration of the algorithm, the overall wpadd
the tying parameters can be split imdidentical optimization tasks of the form (34).
These tasks can be solved in parallel. In genefadndG are non-linear transforma-
tions and hence there is no simple closed-form expressiothéoestimation of the
tying parameters.

3.3 Generalized EM for Conjugate Mixture Models

The initial parameters selection of the proposed EM algarifor conjugate mixture
models uses the proceddrgtialize that is given in Section 6. The maximization step
uses two procedures, referred to@isooseandLocal Searchwhich are explained in
detail in Sections 4 and 5. To determine the number of objeetdefine the procedure
Selecthat is derived in Section 7. The overall EM procedure isinad below:

1. Apply procedurénitialize to initialize the parameter vector:
0 0) 0 0 0 0 0 0 0)y.
0(0):{775 )5"'5 N+17)‘g a"'v)‘g\/l-lasg )a---vsg\/)72() . 25\7)7 ()7 ,I‘g\/)},

2. E step compute(6, 9(‘1)) using equations (25) to (28);
3. M step estimateg(?+?) using the following sub-steps:
(a) The priors.Computer**" ... 7TV andA{""" ... AltY using (29)
and (30);

(b) The tying parameters-oreachn =1...N:

« Apply procedureéChooseo determine an initial value, denoted &Y,
as proposed in Section 5;

* Apply procedureLocaI Searcho eactQﬁ{’) (s) as defined in (34) start-

ing from s s ) and set the result tsﬁ{’“) using the eq. (35) specified
below;

(c) The covariance matricesFor everyn = 1...N, use (31) and (32) to
computes'?™) andr{¢

4. Check for convergenc&erminate, otherwise go to Step 2;

5. Apply procedur&electuse (62) specified below to determine the bést

INRIA



Mixture Models for Multimodal Data 13

This algorithm uses the following procedures:

« Initialize: this procedure aims at providing the initial parameteneab ). Its
performance has a strong impact on the time required for lth@rithm to con-
verge. In Section 6 we propose different initializatioragtgies based on single-
space cluster detection.

» Select this procedure applies the BIC-like criterion to deterenthe number of
objectsN. In Section 7 propose the consistent criterion for the casemjugate
mixture models.

» Choose the goal of this procedure is to provide at each M step initedues
égo), cee §§3> which are likely to be close to the global maxima of the fuoics
5{1)(3) in (34). The exact form of this procedure is important to easthe
ability of the subsequentocal Searchprocedure to find these global maxima.
We will use results on global search algorithms (ZhigljavakdZilinskas, 2008)
and propose different variants in Section 5.

» Local Searchan important requirement of this procedure is that it findscal

maximum of theQﬁlq)(s)’s starting from any arbitrary point i§. In this work,
we will consider procedures that consist in iterating a logalate of the formi
is the iteration index):

s, = 5, L Ha g Q@ (s, ™), (35)

with HE{“’) being a positive definite matrix that may vary withWhen the gra-
dientVQﬁ?)(s) is Lipschitz continuous with some constdrif), an appropriate
choice that guarantees the increas@)f (31)) at each iteratiom, is to choose
H(@¥) such that it verifiegH (4| < 2/L'9.

Different choices fongI’”) are possible and they correspond to different opti-

mization methods that belong, in general, to the variablgimeass. For exam-
ple H{#*) = 251 leads to gradient ascent, while takihg? as a scaled in-

verse of the Hessian matrix would lead to a Newton-Raphstimgation step.
Other possibilities include Levenberg-Marquardt and gdseswvton methods.

4 Analysis of theLocal SearchProcedure

Each instance of (34) fat = 1,..., N can be solved independently. In this section
we focus on providing a set of conditions under which eaataiten of our algorithm
guarantees that the objective functi@t‘f) (s) in (34) is increased. We start by rewrit-
ing (34) more conveniently in order to perform the optimiaatwith respect tx € S.

To simplify the notation, the iteration indexis sometimes omitted. We simply write

Qn(s) for Q7 (s).

RR n° 7117



14 Khalidov, Forbes, & Horaud

Leta, = M ol and3, = 32K | 3\7 denote the average object weights in
each one of the two modalities. We introdugg = d;l(ag(jf, . aﬁ&)n) andg, =
BL( @ ,@3;) the discrete probability distributions obtained by noriziag the

1in>
object weights. We denote by andG the random variables that take their values in
the discrete set§f,..., fon,---» Fatand{gy,..., 95, ---, 9%} Itfollows that the
expressions for the optimal variances (31) and (32) as iomef s, can be rewritten

as:

$@ (5) =K, [(F — F(s)) (F - F(s)) '], (36)
T (s) =E5, [(G — G(s)) (G — G(s)) '], (37)

whereE,, andEg, denote the expectations with respect to the distributigpsnd
On. Using some standard projection formula, it follows that tovariances are:

D (s) =V +vjv], (38)
Tt (s) =V, +vgv] (39)

whereV ; andV, are the covariance matrices BfandG respectively under distribu-
tionsa,, andp,, andv; andv, are vectors defined by:

vy =E,, [F] — F(s), (40)
vy =Eg,[G] - G(s). (41)

For convenience we omit the indexfor V¢, V,, v; andv,. Let f,, = E,, [F] and
g, = Eg, [G]. This yields:

M
fo=a," Z al?) fons (42)
=B Z 89g,, (43)
o
at S al fofo — Fufa (44)
=
Vo =313 679,98 — 3,9, (45)
k=1

Next we derive a simplified expression @, (s) in (34) in order to investigate its
properties. Notice that one can write (34) as the 2pis) = Q.. #(s) + Qn.g(s),
with:

Qn,7(s Za@ (1 = FS)l 300 ) + 08[BIV (), (46)
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and a similar expression f@p,, ¢(s). Eq. (46) can be written:

Qn.7(8) = —an(Ba, [(F — F(s) TS (8)7HF — F(s))] +log [E{HV(s))).

The first term of (47) can be further divided into two terms: “n
Eo, [(F — F(5)) TS+ (8) 71 (F — F(s))] =
B, [(F ~ F,)TE0 D (s) (F = £,)] + 0] S0 (s) vy (48)
The Sherman-Morrison formula applied to (38) leads to
B (s)7 =Vt = Vi lww iV (L D s(s)), (49)
with:
Dyr(s) = 1F(s) = F.l1Y - (50)
It follows that (48) can be written as the sum of:
O R R s
and of b
v?Eﬁqurl)(s)_lvf = 1—#%7]:(;28) (52)

Hence the first term of (47), namely (48) is equaltp which is constant with respect
to s. Moreover, applying the matrix determinant lemma to theoselderm of (47) we
successively obtain:
log |2+ (s)] = log Vs + vajﬂ =log |V | +log(1 + v?V;lvf) =
=log |V | +log(l + D, #(s)). (53)

It follows that there is only one term depending®m (47):
Qn,7(8) = —an (Cy +1og |V| +log(1 + Dn #(s))) - (54)

Repeating the same derivation for the second sensorial lihode obtain the follow-
ing equivalent form of (34):

Qn(8) = —anlog(l + Dy, #(8)) — By log(l + D, g(s)) + C, (55)

whereC' is some constant not depending@n

Using this form of@,(s), we can now investigate the properties of its gradient
VQ.(s). It appears that under some regularity assumptiong @mdg, the gradient
VQ.(s)is bounded and Lipschitz continuous. The correspondingrére is formu-
lated and proved. First we establish as a lemma some tet¢hegdts, required to
prove the theorem. In what follows, for any matik the matrix norm used is the

operator norm|V|| = sup ||Vv|. For simplicity, we further omit the index.
[v]l=1
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Lemma 1. LetV be a symmetric positive definite matrix. Then the function
p(v) = [IVol| /(1 + v Vo)
is bounded by (v) < C,(V) with C,(V) = /]|V|[/2 and is Lipschitz continuous:
Vu,0  [lp(v) — p(0)] < Ly(V)|lv -],
whereL, (V) = [|V||(1 + u(V)/2) is the Lipschitz constant andV) = ||V|||[V~!||

is the condition number of.

Proof: We start by introducingv = Vv so thatp(v) = ¢(w) = ||w|/(1 +
w 'V w). Assoonasy 'V w > A\uia||w||? (Where we denoted by,,;,, the small-
est eigenvalue 0¥ ', so that in fact\,,;, = ||V|| =), to find the maximum of(w)
we should maximize the expression1 + Amint?) for t = |Jw|| > 0. Itis reached

at the pointt* = )\;}f. Substituting this value into the original expressionsegiv
e(v) < VIVI/2.

To compute the Lipschitz constaht, we consider the derivative:

[(14+w"V  'w)w — 2[|w|]?Vw|| 21V [Jw]|?
I <l —————,
[lw][(1 +wTV ™ w)? (14+wTV  w)?

fromwhere we find that V' (w) || < 1+u(V)/2,andsal, = ||V|[(1+x(V)/2). R

IVE (w)] =

This lemma yields the following main result for the gradi@ng):

Theorem 1. Assume functiong andgG and their derivativess” andG’ are Lipschitz
continuous with constants, Lg, L- and Lg; respectively. Then the gradie®q is
bounded and Lipschitz continuous with some constant

Proof: From (55) the gradienv () can be written as:
VQ(s) = VQr(s)+VQqg(s) =
2aF" " (s)V; ' (F — F(s)) N 250" (s)V, (g — G(s))
1+ Dg(s) 1+ Dg(s) '

Itfollows from Lemma 1 thal VQx(s)|| < 2LraC,(V;') and [VQg(s)| < 2LgBC,(V, ).
The norm of the gradient is then bounded by:

IVQ(s)ll < 2LFaCu (V) +2LgBC, (V). (57)

(56)

Considering the norm{VQ(s) — VQx(3)|, we introducev; = f — F(s) and
vy = f — F(8). Then we have:

IVQr(s) = VQr(3)| <2a <

+ ‘

‘(f%s) - F3)7V; e
2
T+ ol

FT (Vv FT(3V'o
1 2] 2
+llvally, Hllvilly,

) . (58)
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Using Lemma 1 withv ;* we have:
IVQ#(s) — VQr(3)|| < 2a(LiCo(V7Y) + LEL, (VD)5 — 3.
The same derivations can be performedY¥o®)¢(s), so that finally we get:
VQg(s) = VQg(3)|| < L|s — 5|, (59)

where the Lipschitz constant is given by:
L =26 (LrCo(Vyh) + LELa(Vh)) + 28 (LgCu(Vy ') + 13Ls(V, ) . (60)

To actually construct the non-decreasing sequence in (8®)make use of the
following fundamental result on variable metric gradies¢@nt algorithms.

Theorem 2 ((Polyak, 1987)) Let the functionQ : R? — R be differentiable oiR?
and its gradientV @ be Lipschitz continuous with constaht Let the matrixH be
positive definite, such thiH| < 2. Then the sequencg(3")), defined by" ) =
5" + HVQ(3™) is non-decreasing.

This result shows that for any functiofsandg that verify the conditions of Theo-
rem 1, using (35) withd = %I, we are able to construct a non-decreasing sequence and
an appropriateocal Searctprocedure. Notice however, that its guaranteed theofetica
convergence speed is linear. It can be improved in severg.wa

First, the optimizatiordirection can be adjusted. For certain problems, the matrix
H can be chosen as in variable metric algorithms, such as MeR&phson method,
quasi-Newton methods or Levenberg-Marquardt method,igeavthat it satisfies the
conditions of Theorem 2. Second, the optimizat&ep sizecan be increased based
on local properties of the target function. For exampletexationy, if when consid-
ering the functionsF andG on some restricted domafif*) there exist smaller local

Lipschitz constantg ', LY, L'} and L"), H can be set ttd = -2 with L(*)

smaller tharL. It follows that||3* ") — 3| < 22;||wQ(5")||, which means that

one can take the local constants,’, LS, L% and L}y if they are valid in the ball
Bp(u) (.§(V)) with

s 2 D)= e D m e
o) = — (zL(f)acv,(vfl)+2L<g>5c¢(vgl)). (61)

5 Global Search and theChooseProcedure

Theorem 1 allows us to use the improved global random seactimiques for Lipschitz
continuous functions (Zhigljavsky, 1991). These alganthare known to converge, in
the sense that generated point sequences fall infinitegnaftto an arbitrarily small
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neighbourhood of the optimal points set. For more detaits@mvergence conditions
see Theorem 3.2.1 and the discussion that follows in (Znigky, 1991). A proper
choice of the initial valug®) not only guarantees to find the global maximum, but can
also be used to increase the convergence speed. A baseggtiatto draw samples
in S, according to some sequence of distributions &yethat verifies the convergence
conditions of global random search methods. However, teedpf convergence of
such an algorithm is quite low.

Global random search methods can also be significantly ingordy taking into
account some specificities of the target function. Indeeauir case, function (55) is
made of two parts for which the optimal points are known ardraspectivelyf andg.

If there existss”) such that®) € F-1(f) N G~1(g), then it is the global maximum
and the M step solution is found. Otherwise, one can safpighe vicinity of the set
F~Yf)ug—1(g) to focus on a subspace that is likely to contain the globalimas.
This set is, generally speaking, a union of two manifoldsr $ampling methods on
manifolds we refer to (Zhigljavsky, 1991). An illustratiaf this technique is given in
Section 8.

Another possibility is to use a heuristic that function (8®es not change much
after one iteration of the EM algorithm. Then, the initialimxoé(o) for the current
iteration can be set to the optimal value computed at theique\vteration. However,
in general, this simple strategy does not yield the globadimam, as can be seen from
the results in Section 9.1.

6 Algorithm Initialization and the Initialize Procedure

In this section we focus on the problem of selecting theahitalues” for the model
parameters. As it is often the case with iterative optimd@aglgorithms, the closer
0" is to the optimal parameter values, the less time the algarivvould require to
converge. Within the framework of conjugate mixture modedsformulate two main
strategies, namelbservation Space Candidataad Parameter Space Candidates
that attempt to find a good initialization.

The Observation Space Candidatstsategy consists in searching for cluster cen-
ters in single modality spacésandG to further map them into the parameter space
S, and select the best candidates. More specifically, we rafydselect an observa-
tion f,, (or g,) and run the mean shift algorithm (Comaniciu and Meer, 2002)e
corresponding space to find local modes of the distributwamnich are calleccandi-
dates The sets of candidate poinf§; }:c; and {9;} e are further rarefied, that is
if |£:, — fi,| < et for somei; # is and for some threshold > 0, we eliminate
one of these points. These rarefied sets are then mapgedftone of the observation
space mappings, for exampgkg is non-injective, for eactﬂ we need to select a point
s; € F1(f,) that is the best in some sense. We consider observationiydienthe
other observation spaces around an image; @&fs the optimality measure af. This
can be estimated through calculation of the k-th neareghieiur distance (k-NN) in

INRIA



Mixture Models for Multimodal Data 19

the corresponding observation space. The final step is tos&é points out of these
candidates to initialize the cluster centées, ..., sy}, so that the inter-cluster dis-
tances are maximized. This can be done using, for exammearichical clustering.
The variance&, ..., Xy andTl'y, ..., I'y are then calculated by standard empirical
variance formulas based on observations, that are closdéketcorresponding class
center. The priorgy, ..., mny4+1 andAq, ..., Ay are set to be equal.

TheParameter Space Candidatssategy consists in mapping all the observations
to the parameter spa& and performing subsequent clustering in that space. More
specifically, for every observatiofi,, andg,, we find an optimal point from the corre-
sponding preimage —(f,,) andG~'(g,). The optimality condition is the same as
in the previous strategy, that is we compare the local olagienvdensities using k-NN
distances. Then one proceeds with selecting local modgsaiceS using the mean-
shift algorithm, and initializingV cluster center$sy, ..., sy} from all the candidates
thus calculated. The estimation of variances and priorgastty the same as in the
previous strategy.

The second strategy proved to be better when performinglations (see Sec-
tion 9). This can be explained by possible errors in findirg gheimage of an obser-
vation space point in the parameter space. Thus mappingfedset of candidates to
the parameter space is less likely to make a good guess isfhaé than mapping all
the observations and finding the candidates directly in #rameter space.

7 Estimating the Number of Components and theSelect
Procedure

To choose theV that best corresponds to the data, we perform model seteltieed
on a criterion that resembles the BIC criterion (Schwarz,8)9We consider the score
function of the form

BICy = —2£(f,9,0n) + Dy log(M + K), (62)

wherefy is the ML estimate obtained by the proposed EM algorittitf, g, 8) is
givenby (15)andy = N (d + 2 + £(r? + p* 4+ r + p)) is the dimensionality of the
model.

As in the case of (non-conjugate) Gaussian mixture modeds;amnot derive the
criterion from the Laplace approximation of the probakilR(f, g/ N = Ny) because
of the Hessian matrix of(f, g, @) that is not necessarily positive definite (Aitkin and
Rubin, 1985; Quinret al, 1987). Nevertheless, we can use the same arguments as
those used in (Keribin, 2000) for Gaussian mixture modeghtow that the criterion is
consistent, i.e. ifV, is the number of components in the real model that genefated
andg, then

Ngic — N, a.s, when M,K — oo, (63)

providedvarianceX, ..., Xy,I'1,..., 'y are non-degenerate and the sequg@-‘l;’g?
has only one accumulation point (i.e. has a limit).
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The BIC-like criterion (62) shows good performance on bathwated and real
data (see Section 9), choosing correctly the number of thjpall the cases.

8 Clustering Using Auditory and Visual Data

We illustrate the method in the case of audiovisual (AV) otge Objects could be
characterized both by their locations in space and by thelitary status, i.e., whether
they are emitting sounds or not. These object charactsiate not directly observable
and hence they need to be inferred from sensor data, e.geraarand microphones.
These sensors are based on different physical princigiey, aperate with different
bandwidths and sampling rates, and they provide diffengmeg of information. On
one side, light waves convey useful visual information dnbjirectly, on the premise
that they reflect onto the objects’ surfaces. A natural sigeemposed of many ob-
jects/surfaces and hence the task of associating visualvd#i objects is a difficult
one. On the other side, acoustic waves convey auditorynmdition directly from the
emitter to the receiver but the observed data is perturbethéypresence of rever-
berations, of other sound sources, and of background niMseeover, very different
methods are used to extract information from these two sepges. A wide variety of
computer vision principles exist for extracting 3D pointsrh a single image or from
a pair of stereoscopic cameras (Forsyth and Ponce, 2003)ractical methods are
strongly dependent on the ligthing conditions and on th@erties of the objects’ sur-
faces (presence or absence of texture, color, shape, esftaxtetc.). Similarly, various
algorithms were developed to locate sound sources usingi@pfione pair based on
interaural time differences (ITD) and on interaural levéfetences (ILD) (Wang and
Brown, 2006; Christenseet al, 2007), but these cues are difficult to interpret in natu-
ral settings due to the presence of background noise antherf tverberant objects. A
notable improvement consists in the use a larger numberabpinones (Dibiaset al.,
2001). Nevertheless, the extraction of 3D sound sourcdipnsifrom several micro-
phone observations results in inaccurate estimates. We betow that our method
can be used to combine visual and auditory observationsézend localize objects.
A typical example where the conjugate mixture models franr&uwnay help is the task
of locating several speaking persons.

Using the same notations as above, we consider two sens@sspehe multimodal
data consists af/ visual observationsand of K" auditory observationg. We consider
data that are recorded over a short time intef#zglt,], such that one can reasonably
assume that the AV objects have a stationary spatial latatdevertheless, it is not
assumed here that the AV objects, e.g., speakers, are diatinovements, head and
hand gestures are tolerated. We address the problem ofatistgnthe spatial locations
of all the objects that are both seen and heard. X die the number of objects and
in this case each object is described by a three dimensi@rahpeter vectos,, =
(Tns Yns 2n) -

The AV data are gathered using a pair of stereoscopic caraatha pair of omnidi-
rectional microphones, i.e., binocular vision and binblearing. A visual observation
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vectorf, = (um,vm,dn) " corresponds to a 2D image locatiom,,, v,,,) and to an
associated binocular disparitl;,,. Considering a projective camera model (Faugeras,
1993) it is straightforward to define an invertible functigh: R?* — R? that maps
s=(z,y,2)  ontof = (u,v,d)":

z y 1 u v 1

]—"(s):(z,z,z>T and J-'l(f):(g,a,a)T. (64)

This model corresponds to a rectified camera pair (HartlelyZiaserman, 2000) and
it can be easily generalized to more complex binocular geéeese(Hansard and Ho-
raud, 2008, 2007). Without loss of generality one can usesmecentered coordinate
system to represent the object locations.

Similarly one can use the auditory equivalent of dispartymely theinteraural
time difference(ITD) widely used by auditory scene analysis methods (Wang a
Brown, 2006). The functio : R*> — R mapss = (z,y,2)’ onto a 1D audio
observation:

9=06(5) =~ (lls s ~ s — sav.|). (65)

Herec is the sound speed arxd;, ands,,, are the 3D locations of the two micro-
phones in the sensor-centered coordinate system. Eaadrfsos defined by (65) is
represented by one sheet of a two-sheet hyperboloid in 3Dcéjeeach audio obser-
vationg constrains the location of the auditory source to lie ont®ar2anifold.

In order to perform audiovisual clustering based on the wgaje EM algorithm,
Theorem 1 (Section 4) must hold for both (64) and (65), nartieyunctionsF andg
and their derivatives are Lipschitz continuous. We proeftillowing theorem:

Theorem 3. The functionsF, 7', G and G’ are Lipschitz continuous with constants
Ly =20 V3, Llr = 2,2, Lg = ||sm, — sm,||(cR)~tand L; = 3(cR)~!in the

domainS = {|2| > zmin > 1} N {min{Hs —sayll s — sw,l} > R > 1}.

Proof: The derivatives ofF andg are given by:

1 0 —x/z
Flis) = =0 1 —y/z (66)
1o 0 —1/z
g(s) = 1( ST ST M, ) (67)
c \ls=swmll [s—smll

The eigenvalues af’(s) are1/z and—1/22, so||F'(s)|| < max{z~1, 272} <
—1 from which it follows thatL~ can be taken aér = z_ . v/3. Also ||F’(s) —

Zmin’ 9 min
F'(8)] < max{|z=t — 271,272 — 272} < 27 ||ls — 3|, so thatL/- can be set to
L‘I7__ = Z_.2

min”*
Introducinge; = 5= andey = 3=42, it comes|le;|| = flez] =1
andg’(s) = 1(e1 — e;). Provided thaf|s — sy\1, || and||s — su, || are both greater
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than R, it follows [|G'(s)|| = 1|le1 — ez < |[sm, — sm.|/(cR)~™! and soLg =
lsm, — sm, || (¢cR)~1. Then, the second derivative Gfis given by
1 1
G"(s) = ———(I —eleT - —egeT .
B P [ T At
1 1 2e,e/ v 1
sothat|G"(s)ll < |ars=gmat — cTe=ga S G s sy < 3¢

andLj; canbesettd; = 3(cR)~'. W

This result shows that under some natural conditions (TheoBjécts should not
be too close to the sensors) the conjugate EM algorithm ibestin Section 3.3 can be
applied. The constart given by Lemma 1 guarantees a certain (worst-case) conver-
gence speed. In practice, we can use the techniques meahtioSections 4 and 5 to
accelerate the algorithm. First, to speed up the local apétion step, local Lipschitz
constants can be computed based on the current value ofemra?ﬁ‘f). Equation (61)
gives the largest possible step sjz&), so setting:""). = () — p(*) and R®) =
min{ |3 — sy, ||, |3%) — su, ||} — p), provides local Lipschitz constants that insure
the update not to qut® = {|z| > 2 } n { min{||s — su, ||, |8 — s, ||} > R(”)}.

Second, we propose four possibilities to set the initiakobparameter valuefs(rb‘)):

(i) it can be taken to be the previously estimated objectt'mvsisﬁqfl’l), (ii) it can be
settoF~!(f) (as soon af is injective inS), (iii) it can be found through sampling of
the manifoldG—!(g) by selecting the sampled value which gives the largesalue,
or (iv) similarly through sampling directly i8. Comparisons are reported in the fol-
lowing sections.

9 Experimental Validation

9.1 Experiments with Simulated Data

Our algorithm is first illustrated on simulated data. For giicity we consider(u, d)

and (z, z) coordinates so thdf C R? andS C R2. Notice however that this pre-
serves the projective nature of the mappifgit does not qualitatively affect the re-
sults and allows to better understand the algorithm peréomce. We consider three
objects defined ir§ by s,, n = 1,2,3. We simulated three cases: well-separated
objects (GoodSep), partially occluded objects (PoorSegd)mor precision in visual
observations for well-separated objects (PoorPrec). Toergl-truth object locations
(x, z) for the GoodSep and PoorPrec cases are the same, namely{—300, 1000),

s2 = (10,800) andss = (500, 1500). In the PoorSep case, the coordinates are respec-
tively s; = (—300,1000), s = (10,800) andss = (100, 1500). The data in both
observation spacdsandG was simulated from a mixture model with three Gaussian
components and a uniform component that models the outliées means of the Gaus-
sian components are computed usififs,,) andG(s,), n = 1,2,3. An example of
simulated data for the three mentioned configurations isvaho Figure 2, i.e.{u, d)
locations of the visual observations and ITD values of thgitaty observations.
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100 =50 0 50 100 10 =50 0 50 00 100 -50 g 50 100

(a) GoodSep (b) PoorSep (c) PoorPrec

Figure 2: Simulated data in visual (top) and audio (bottob®esvation spaces for three
cases: (a) well-separated objects, (b) partially occluagédcts, and (c) poor precision
of visual observations. The small squares correspond t@tbend-truth parameter
values. Each one of the two mixtures models (associatedeaith sensorial modality)
contains four components: three objects and one outliescla

Initialization. We compared two strategie®bservation Space Candidaté3SC)
andParameter Space CandidatéRSC) that are proposed in Section 6. Their perfor-
mance is summarized in Figure 3. It shows the mean and variahthe likelihood
valueL(f, g, 9) for initial parametersis'g)%C ando9g)s)C chosen by OSC and PSC strate-
gies respectively. For the total number of clustdfs= 1,...,5 and different object
configurations, we calculate the statistics based on l@lizétions. The analysis
shows that the PSC strategy performs at least as well as tite D &tegy, or even
better in some cases. Our explanation is that mappings flisargation spaces to pa-
rameter space are subject to absolute (and in our case badjundigse. Mapping all
the observations and calculating a candidate point in thenpeter space has an av-
eraging effect and reduces the absolute error, compardubtsttategy with candidate
calculation being performed in an observation space witlssguent mapping to the
parameter space. Therefore in what follows, all the resarksobtained based on the
PSC initialization strategy.

Optimization. We compared several versions of the algorithm based onustiboose
andLocal Searctstrategies. For the initial values,(”), we considered the following
possibilities: the optimal value computed at a previousafithe algorithm (IP), the
value predicted from visual data (IV), the value predictexhf audio data (IA) and the
value obtained by global random search (IG). More specijical
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(a) GoodSep (b) PoorSep (c) PoorPrec

Figure 3: Means and variances of log-likelihood valdgs g, 0) for initial parameters
B(C?%C and49§jos)C chosen byObservation Space Candidatg3SC, red) andParameter
Space Candidatd®SC, blue) strategies respectively, for different nursludiclusters
N and different data configurations.

« When initializing from visual data (IV), the average valfig, calculated in the
current E-step of the algorithm for every was mapped to the parameter space
ands, ) settos, (©) = F-1(f, ) using the injectivity ofF.

« When initializing from audio data (IA)y~!(g,,) defines a manifold. The gen-
eral strategy here would be to find the optimal point that besthis surface.
We achieved this through random search based on a uniformplisgon the
corresponding part of the hyperboloid (see (Zhigljavsi§Q1) for details on
sampling from an arbitrary distribution on a manifold); inreexperiments we
used 50 samples to select the one providing the la@€Ekelihood) value.

* The most general initialization scheme (IG) was impleradntsing global ran-
dom search in the whole parameter spar200 samples were used in this case.

Local optimization was performed either using basic grnadascent (BA) or the
locally accelerated gradient ascent (AA). The latter ubedacal Lipschitz constants
to augment the step size, as described in Section 4.

Each algorithm run consisted of 70 iterations of the EM atpan with 10 non-
decreasing iterations during the M step.

To check the convergence speed of different versions ofltjarithm for the three
object configurations we compared the likelihood evolugcephs that are presented in
Figure 4. Each graph contains several curves that corresjodiive different versions
of the algorithm. The acronyms we use to refer to the diffevensions (for example,
IPAA) consist of two parts encoding the initialization (I&)d the local optimization
(AA) types. The black dashed line on each graph shows theitgtdruth’ likelihood
level, that is the likelihood value for the parameters useddnerate the data. The
meaning of the acronyms is recalled in Table 1.

As expected, the simplest version IPBA that uses none ofrthygoged acceleration
techniques appears to be the slowest. The other variantg bsisic gradient ascent
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Table 1: Acronyms used for five variants of the conjugate ENbathm. Variants
correspond to different choices for t@#ooseandLocal searchprocedures.

Acronym 3 initialization (Choosg Local optimization Eearch
IPBA previous iteration value basic gradient ascent
IGAA global random search accelerated gradient ascent
IVAA predicted value from visual data] accelerated gradient ascent
IPAA previous iteration value accelerated gradient ascent
IAAA audio predicted manifold sampling accelerated gradient ascent

1200, 600

T
O IPBA

-1500- &
0 1PBA
IGAA
@ IVAA
7 IPAA
1AAA
@ --Ground Trutl

Figure 4: Likelihood function evolution for five variantstfe algorithm in three cases.
Top-left: well-separated objects; top-right: poorly segtad objects; bottom: well-
separated object but poor observation precision.

are then not reported. Predicting a single object paranvetele from visual obser-
vations (IVAA) does not give any improvement over IPAA, waaf?) is taken from
the previous EM iteration. Wheg(“) is obtained by sampling the hyperboloid pre-
dicted from audio observations (IAAA), a significant impaatthe convergence speed
is observed, especially on early stages of the algorithnerevthe predicted value can
be quite far from the optimal one. However, ‘blind’ sampliofgthe whole parameter
space does not bring any advantage: it is much less efficggatrding the number of
samples required for the same precision. This suggestsittieg general case, the best
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strategy would be to sample the manifolds®(f,,) andG—!(g,,) with possible small
perturbations to find the best®) estimate and to perform an accelerated gradient as-
cent afterwards (IAAA). We note that IAAA succeeds in all tases to find parameter
values that are well-fitted to the model in terms of likeliddonction (likelihood is
greater or equal than that of real parameter values).

Parameter evolution trajectories for the IAAA version o tilgorithm in the Good-
Sep case are shown in Figures 5-6. The estimate change§ecée by the node sizes
(from smaller to bigger) and colours (from darker to lightéfrhe final values are very
close to the real cluster centers in all three audio, visndl @bject spaces. The con-
vergence speed is quite dependent on the initializatiorthénprovided example the
algorithm spent almost a half of useful iterations to disegte the estimates trying to
decide which one corresponds to which class. Another pitissibere would be to
predict the initial values through sampling in the audio é&m We demonstrate this
strategy further when working with real data.

We compared the performance of our algorithm for the thrgeattconfigurations.
For each of them, we computed absolute and relative errorhéobject parameter
estimations in the different coordinate systems (objeatj@and visual spaces). The
averages were taken over 10 runs of the algorithm for diffeRSC initializations, as
described above. The results are reported in Table 2. Weofpjeet location estimates
s = (z,%), f= (a,ci) andg in parameter, visual and audio spaces respectively. It
appears that the localization precision is quite high. leaistic setting such as that of
Section 9.2, the measurement unit can be set to a millimeténat case, the observed
precision, in a well-separated objects configuration,ét iworse about 6cm. However,
precision in thez coordinate is quite sensible to the variance of the visutd dad
the object configuration. To get a better idea of the relatigm between the variance
in object space and the variance in visual spa&e, can be replaced by its linear
approximation given by a first order Taylor expansion. Asggithen that visual data
are distributed according to some probability distribatigith meanu = and variance
Y7, it follows that through the linear approximation ~!, the variance in object

_ _ T
space is?Z a}”’f)Efaf a}”’f) . Then, thez coordinate covariance for an object

is approximately proportional to thécovariance for the object multiplied byt. For
distant objects, a very high precisiondnis needed to get a satisfactory precision in
z. At the same time we observe that the likelihood of the esBroanfiguration often
exceeds the likelihood for real parameter values. This estgghat the model performs
well for the given data, but cannot get better precision tia@himposed by the data.

Selection. To select the optimal number of clusteds we applied the BIC crite-
rion (62) to the models, trained for that. The BIC score graphs are shown on Fig-
ure 7. The total number of objecdé is correctly determined in all the 3 cases of object
configurations, from which we conclude that the BIC critarrovides reliable model
selection in our case.
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Figure 5: IAAA algorithm: parameter evolution and assigminesults for the Good-
Sep case in audio and visual spaces (note the scale change edrresponds to a
zoom on the cluster centers). The initialization (whitestés based on the PSC strat-
egy. Ground truth means are marked with squares. The evnligishown by circles
from smaller to bigger, from darker to brighter. Observas@ssignments are depicted
by different markersd, * and x for the three object classes) in visual space and are
colour-coded in audio space. Due to the zoom, outliers afreisible on these figures.
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Figure 6: IAAA algorithm: parameter evolution for the Goajfcase in object space.
The initialization (white stars) is based on the PSC stgat€yound truth means are
marked with squares. The evolution is shown by circles fromalter to bigger, from
darker to brighter.
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Figure 7: BIC score graphs for the three object configurati@valuated for models
trained for different total number of clustené.
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Table 2: IAAA algorithm: object location estimates in paster, visual and audio
spaces for GoodSep, PoorSep and PoorPrec object confangaflhe estimates are
calculated based on ten runs of the algorithm with PSC liznéitions.

Ground Truth | Estimates Meanj Absolute Error Relative Error

I::arameterSpace s=(z,2) s=(z,2) ea=118=sl | e =15-s|/]sl
3 Object 1 (—300,1000) (—300.13,997.81) 2.2 2.1-1073

3 Object 2 (10, 800) (9.28,804.46) 4.52 5.7-1073

9 Object 3 (500, 1500) (513.56,1555.23) 56.86 3.5-1072

g Object 1 (—300,1000) | (—307.47,1028.38) 29.35 2.8-1072

5 Object 2 (10, 800) (14.19, 895.69) 95.79 1.2-1071

2 Object 3 (100, 1500) (105.02, 1447.49) 52.75 3.5-1072

o Object 1 (—300, 1000) (—208.86,698.51) 314.97 0.3

b= Object 2 (10, 800) (8.44,703.97) 96.04 1.2-1071

8 Object 3 (500, 1500) (507.65,1533.8) 34.66 2.2.1072
VisualSpace | f=(uw,d) | F=(i,d) | ea=|f—fl [ e=]F—FI/If]
& | Objectl (—0.3,0.001) (—0.3008,0.001) 7.87-107% 2.6-1073

3 Object2 | (0.0125,0.00125) | (0.0115,0.00124) 9.59 .10~ 7.6-1072

Q Object 3 | (0.3333,0.00067) | (0.3302,0.00064) 31.21-1074 9.3-1073
g Object 1 (—0.3,0.001) (—0.299,0.001) 1.02-1073 3.4-1073

5 Object2 | (0.0125,0.00125) | (0.0159,0.00112) 3.36-1073 2.6-107!

2 Object 3 | (0.6667,0.00067) | (0.7131,0.00238) 4.95-1073 7.4-1072

® | Object1 (—0.3,0.001) (—0.299,0.0014) 10.8-10~% 3.5-107°

b= Object2 | (0.0125,0.00125) (0.012,0.00142) 5.38-107* 4.3-1072

S Object 3 | (0.3333,0.00067) | (0.331,0.00065) 23.56 - 104 7.1-1073
“Audio Space g g ca=19—gl | ex=19—gl|/lg|
s Object 1 —49.71 —49.8 0.09 1.9-1073

S | Object2 —8.22 —8.35 0.13 1.6-1072

2 | Object3 34.75 34.37 0.38 1.1-1072
g Object 1 —49.71 —49.59 0.12 2.3-1073

5 | Object?2 —8.22 ~7.76 0.46 5.6-1072

2 | Object3 —0.66 —0.02 0.65 9.7-10!

o Object 1 —49.71 —49.49 0.22 4.4-1073

& | Object2 —8.22 —8.28 0.06 7.6-107°

S | Object3 34.75 34.47 0.29 8.3-1073
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Figure 8: Visual observations on the left and right camerages. Circles depict the
‘interest points’, squares show those of them that are neatéh some point from the
other image. The epipolar lines correspond to a point mabkeal star in the opposite
image.

9.2 Experiments with Real Data

We evaluated the ability of our algorithms to estimate thd@fations of AV objects in
a person localization task. We considered a typical ‘megésituation. The data was
taken from a database of realistic AV scenarios describatktail in (Arnaudet al.,
2008). A mannequin, with a pair of microphones fixed into &sseand a pair of stereo-
scopic cameras mounted onto its forehead, served as thesgiogqudevice (the setup
was developed and constructed within the P@ject). The reason for choosing this
configuration was to record data from the perspective of agreri.e. to try to capture
what a person would both hear and see while being in a natirah®ironment. Each
recorded scenario comprised two audio tracks and two imegeences, together with
the sensor calibration information. The data we use hereriseting scenarfg shown
in Figure 8. There are five persons sitting around a tablephly three persons are
visible. The recording lasts 25 seconds and contains aabtthout 8000 visual and
600 audio observations.

Audio and visual observations were collected over the @iogrusing the follow-
ing techniques. A standard procedure was used to identifgrést points’ in the left
and right images (Harris and Stephens, 1988). These featwgee put into binocular
correspondence by comparing the local image-structuracit ef the candidate points,
as described in (Hansard and Horaud, 2007). The camerascal#veated using In-
tel's OpenC\; in order to define théu, v,d) " to (x,y,z) T mapping (64). Auditory
disparities were obtained through the analysis of croseetmgram of the filtered left
and right microphone signals for every frequency band (§éniseret al, 2007). To
be able to introduce the common parameter si$aaee performed audio-visual cali-
bration which consisted in finding microphone positionsamera-related 3D frame.

Ihttp://perception.inrialpes.fr/POP/
’http://perception.inrialpes.fr/CAVADat aset/ Site/data. htm #M
Shttp://ww. i ntel.com technol ogy/ conputi ng/ opencv
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Figure 9: Real data: parameter evolution and assignmeunttsefor the CAVA M1
scenario in audio, visual and parameter spaces. For visulparameter spaces, pro-
jections onto UV, UD, XY and XZ planes are given. The initaliion (white stars)
is based on PSC strategy. The evolution is shown by circlas maller to bigger,
from darker to brighter. Observations assignments arectisiby different markers
(o, x and x for the three object classes and + for the outlier class)snalispace and
are colour-coded in both spaces (outliers are in light blwiag likelihood evolution is

shown (bottom-right corner).

To initialize the parameter values we used the ParametareéSpandidates (PSC)
initialization strategy, as described in Section 6. As ia tase of simulated data, we
used the BIC criterion to select the optimal number of clissdé = 3 for the data. The

results are shown in Figure 9.
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The meeting situation corresponds to a well-separateétamase (GoodSep sim-
ulation). The likelihood evolution reported in Figure 9 glwthat convergence is
reached in about 20 iterations which is three times faster th the simulated GoodSep
case of Figure 4. This suggests that the proposed inittadizatrategy is appropriate.
Also the 3D position estimates are quite accurate, in pddiche natural alignment of
the speakers along the table is clearly seen in the XZ donfairembject space. Even
though the outlier class is not uniform and the clusters geues are not Gaussian,
our model performed quite well, which illustrates robustef the proposed model to
actual observation-space data distributions.

10 Conclusions

We proposed a novel framework, conjugate mixture modelduster heterogeneous
data gathered with physically different sensors. Our apghaliffers from other exist-
ing approaches in that it combines in a single statisticadl@ha number of clustering
tasks while ensuring the consistency of their results. Witah, the fact that the clus-
tering is performed in observation spaces allows one to gfulistatistics on the data,
which is an advantage of our approach over particle filtermagels. The task of si-
multaneous clustering in spaces of different nature, edlaétrough known functional
dependencies to a common parameter space, was formulatdiladihood maxi-
mization problem. Using the ideas underlying the clasdiddlalgorithm we built the
conjugate EM algorithm to perform the multimodal clusteriask, while keeping at-
tractive convergence properties. The analysis of the gat@IEM algorithm and, more
specifically, of the optimization task arising in the M-stegvealed several possibili-
ties to increase the convergence speed. We proposed to geserthe M-step into
two procedures, namely tHeocal Searchand Chooseprocedures, which allowed us
to derive a number of acceleration strategies. We exhilaipgubaling properties of the
target function which induced several implementation$iebt procedures resulting in
a significantly improved convergence speed. We introdubednitialize and Select
procedures to efficiently choose initial parameter values determine the number of
clusters in a consistent manner respectively. A non travialio-visual localization task
was considered to illustrate the conjugate EM performamdeath simulated and real
data. Simulated data experiments allowed us to assess ¢nggavmethod behaviour
in various configurations. They showed that the obtainesteting results were pre-
cise as regards the observation spaces under considerdtimy also illustrated the
theoretical dependency between the precisions in obsanvahd parameter spaces.
Real data experiments then showed that the observed daiaiprewas high enough
to guarantee high precision in the parameter space.

One of the strong points of the formulated model is that it gem to different
useful extensions. It can be easily extended to an arbitrargber.J of observation
space¥,...,[F;. The main results, includingocal SearcrandChooseacceleration
strategies stay valid with minor changes. The sum of two semelated to spaces
and G, would have to be replaced by a sum.bterms corresponding t84,...,F;
in the formulas of Section 3. Also, the assumption that ass&nt variables andb
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are independent could be relaxed. An appropriate appraapbrform inference in a
non independent case would be to consider variational appegions (Jordaret al.,
1998) and in particular a variational EM (VEM) framework. &general idea would
be to approximate the joint distributiaB(a) by a distribution from a restricted class

. Mo
of probability distributions that factorize a8(a) = [] P(a.,). For any such dis-

m=1
tribution, our model would be applicable without any chasmge that for a variational
version of the conjugate EM algorithm, all the results froet®n 3 would hold.

It appears that as a generalization of Gaussian mixture lmaule model has larger
modeling capabilities. It is entirely based on a mathemhframework in which each
step is theoretically well-founded. Its ability to provigeod results in a non trivial
multimodal clustering task is particularly promising fge@ications requiring the in-
tegration of several heterogenious information sourcdserdfore, it has advantages
over other methods that include ad-hoc processing whilegoepen to incorporation
of more task dependent information.
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