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Abstract

This purely theoretical work investigates the problem
of artificial singularities in camera self-calibration. Self-
calibration allows one to upgrade a projective reconstruc-
tion to metric and has a concise and well-understood formu-
lation based on the Dual Absolute Quadric (DAQ), a rank-
3 quadric envelope satisfying (nonlinear) ‘spectral con-
straints’: it must be positive of rank 3. The practical scen-
ario we consider is the one of square pixels, known prin-
cipal point and varying unknown focal length, for which
generic Critical Motion Sequences (CMS) have been thor-
oughly derived. The standard linear self-calibration al-
gorithm uses the DAQ paradigm but ignores the spectral
constraints. It thus has artificial CMSs, which have barely
been studied so far.

We propose an algebraic model of singularities based
on the confocal quadric theory. It allows to easily derive
all types of CMSs. We first review the already known gen-
eric CMSs, for which any self-calibration algorithm fails.
We then describe all CMSs for the standard linear self-
calibration algorithm; among those are artificial CMSs
caused by the above spectral constraints being neglected.
We then show how to detect CMSs. If this is the case it
is actually possible to uniquely identify the correct self-
calibration solution, based on a notion of signature of quad-
rics. The main conclusion of this paper is that a posteriori
enforcing the spectral constraints in linear self-calibration
is discriminant enough to resolve all artificial CMSs.

1. Introduction

Structure-from-Motion (SfM) is the problem of recov-
ering a metric model —the scene structure and the cam-
era motion and intrinsic parameters— from multiple views.
It has been extensively studied over the past few decades
(see e.g. [5, 8]). The self-calibration paradigm allows one
to solve SfM with few assumptions about the intrinsics and
barely none about the structure and the motion, thus making
SfM versatile and flexible. In theory, the mere zero-skew
assumption is sufficient for the SfM problem to be well-
posed [9]. We make the stronger standard assumption that

the pixels are square and the principal point lies at the image
centre, but that the focal length is time-varying.

One of the most remarkable results in SfM says that,
given enough point correspondences, a projective recon-
struction of 3D points and cameras can be computed [6, 4,
7]. The metric upgrade of this model is a further recon-
struction step, that draws on the equivalence of the project-
ive to the metric model via an unknown 3D homography.
This is mathematically formulated using the elegant geo-
metrical paradigm of the Dual Absolute Quadric (DAQ)
proposed by Triggs in 1997 [22], which has also been ex-
tended to that of the Absolute Quadratic Complex [13, 23].
The DAQ has nonlinear ‘spectral constraints’: it is semi-
positive and rank-3. This models the fact that the DAQ is
the plane-envelope of the Absolute Conic, a virtual conic
(i.e. consisting only of complex points). Once the DAQ
is recovered, the upgrading homography is easily extrac-
ted from it. This class of algorithms has been popular-
ised by the linear least-squares formulation of Pollefeys et
al. [12, 17], which is hereafter dubbed dual linear self-
calibration. Recently, self-calibration approaches enforcing
the spectral constraints while globally optimizing some al-
gebraic error measure have been proposed [2, 3]. However,
the above dual linear self-calibration approach is probably
still the most used one.

As mentioned in [8, p498], ‘self-calibration can work
well in the right circumstances, but used recklessly it will
fail’, especially if one does not ‘take care to avoid ambigu-
ous motion sequences’, so-called critical motion sequences
(CMSs). For these, there exist more than one virtual conic
satisfying the self-calibration constraints. Sturm [21] and
Kahl et al. [10] studied this problem and established that
there exist generic critical motion sequences for the cam-
era, and that they defeat any self-calibration algorithm.

The SfM framework has all its basic building blocks in
place. There is however an important missing piece re-
garding artificial CMSs. It has been known that there exist
CMSs which are not generic for the self-calibration prob-
lem, but for which the dual linear self-calibration algorithm
fails in finding the ‘true’ DAQ [20]. This is essentially
due to this algorithm ignoring the spectral constraints. In
other words, in generic criticality, only quadric envelopes



representing a virtual conic can satisfy the self-calibration
equations while, in artificial criticality, any quadric envel-
ope (virtual or not, degenerate or not) can satisfy them. In
the case where a linear self-calibration algorithm returns a
1D family of ambiguous solutions, previous works [12, 17]
showed that the rank-deficiency constraint can be enforced
a posteriori to select candidate solutions. Bartoli et al. [1]
select the most realistic solution by examining the camera
focal length.

In this paper, we propose a theoretical framework for
exhaustively studying CMSs in dual linear self-calibration,
based on the confocal quadric theory. Interestingly enough,
this theory has been established long ago by famous math-
ematicians. The resulting framework can be viewed as an
add-on to the DAQ model of self-calibration. The main
conclusion of this paper is thus that for the studied self-
calibration problem, even linear algorithms only suffer from
the generic CMSs, if spectral constraints are enforced a pos-
teriori.

Paper organization. In section 2, the self-calibration
problem and its ingredients are formulated and the notion
of CMS is defined. Generic CMSs are reviewed in section
3. In section 4, we provide an exhaustive list of CMSs for
dual linear self-calibration and highlight which of these are
artificial, i.e. only exist due to neglecting the spectral con-
straints. Some details on the underlying theoretical ana-
lysis are provided in section 5. In section 6, we show
how a projectively invariant signature for quadrics allows
one to identify the type of CMS that caused linear self-
calibration to give ambiguous results. Finally, we explain
that in the case of an artificial CMS, this signature allows us
to uniquely recover the true self-calibration solution.

2. Problem Formulation

We consider the self-calibration problem for the case of a
varying focal length but where the other intrinsic parameters
are known. Let us review the classical formulation based on
the Dual Absolute Quadric (DAQ) [22]. This is the plane-
envelope of the Absolute Conic Ω∞ (AC). Given a 3 × 4
perspective projection matrix P, the image of the DAQ is
given by the projection equation

ω∗ ∼ PQ∗∞P
>. (1)

whereω∗ is the Dual Image of the Absolute Conic (DIAC).
We assume to be given a set of n cameras obtained by

means of projective reconstruction, that we write

Pj =




aj>

bj>

cj>



 , j = 1, . . . , n (2)

where aj , bj and cj are 4-vectors representing planes.

Camera j projects the DAQ to ω∗j . Under the above
assumptions on the camera’s intrinsic parameters, we may
assumeω∗j ∼ diag

(
(f j)2, (f j)2, 1

)
, where f j denotes the

focal length of camera j. It can be readily seen thatQ∗∞ then
satisfies a set of four linear equations for each camera:

aj>Q∗∞a
j − bj>Q∗∞b

j = 0, aj>Q∗∞b
j = 0, (3)

aj>Q∗∞c
j = 0, bj>Q∗∞c

j = 0. (4)

Solving those constraints for multiple cameras e.g., by
optimizing in a linear least squares manner forms the basis
of the dual linear self-calibration algorithms [11].

Additional constraints are that the DAQ Q∗∞ has rank
3 and is positive semi-definite. These constraints are non-
linear and are thus not taken into account in dual linear self-
calibration.

In this paper, we investigate critical motion sequences
(CMS) for self-calibration, i.e., camera motions for which
the problem does not have a unique solution. It is well
known that there are CMSs that are generic for a given self-
calibration problem, in the sense that any algorithm will suf-
fer from them, and that some algorithms may suffer from
additional, artificial CMSs, due to not exploiting all avail-
able constraints [20]. In this paper, we study this issue for
dual linear self-calibration. In section 3, we first review the
generic CMSs and in section 4 we then derive all CMSs for
dual linear self-calibration and explain which among these
are artificial. After that, we show how articial CMSs can be
detected from an ambiguous self-calibration result and that
the ambiguity can indeed be resolved.

The definition of a CMS is as follows. Let the true cam-
eras be PjE ∼ diag(f

j , f j , 1)Rj
(
I | −tj

)
. If there ex-

ists a Q∗ different from the true DAQ that satisfies all self-
calibration constraints (equations (3,4) as well as the (spec-
tral) rank-3 and positiveness constraints on Q∗∞), then the
set of camera poses is termed a generic CMS. Artificial
CMS for dual linear self-calibration are additional sets of
camera poses for which there exists a Q∗ different from the
true DAQ that only satisfies the linear equations (3,4). In
these cases, Q∗ is called a ‘false DAQ’.

3. Generic Critical Motion Sequences

The generic CMSs for self-calibration with varying fo-
cal length have been derived by Sturm [21] and Kahl et al.
[10]. They proceeded as follows. They sought after virtual
proper conics in ‘regular’ 3-space (in contrast to a search in
‘dual’ 3-space) other than the AC; if such a conic exists that
satisfies all constraints, it is called a ‘false’ AC. With regard
to their approach, the self-calibration equations (3,4) have a
simple meaning: they impose that the image of the AC is a
circle, centered in the principal point. The image of a conic
is such a circle, exactly if the cone, with centre the camera’s
optical centre and containing the conic, is a right (circular)



cone. This geometric interpretation of the self-calibration
constraints can now be used to reason on critical motions.
Consider the existence of a false AC. Then, any camera po-
sition in a CMS, must satisfy the constraint that the cone,
with centre the optical center and tangent to the false AC, is
circular. Further, for any such camera position, the camera
orientation must be such that the optical axis coincides with
a revolution axis of that cone.
Based on this interpretation, Sturm and Kahl et al. derived
all types of critical motions. This was done by considering
all possible cases of false ACs and working out the camera
positions and orientations according to the above definition.
Basically Sturm and Kahl et al. (re)discovered (and proved)
a specialised case of the following result: the locus of the
vertices of a circular cone through a conic consists of its
conjugate conics, which is illustrated in Fig. 1. By defini-
tion, two conjugate conics are conics lying on perpendicu-
lar planes and having an axis in common and the foci-pair
(either both real or complex conjugate) of one conic must
be coinciding with the intersection point-pair of the other
with this axis [18, p245]. We wrote ‘rediscovered’ as this
more general result has been known for a long time and is
attributed to Dupin and Steiner in [19, p82].

Figure 1. The two types of focal conic-sets: (left) ellipse / hyper-
bola / virtual-conic triplet; (right) parabola / parabola pair.
Focal conics have the remarkable general property of being con-
jugate (see text) and each conic completely determines the others.

4. Artificial Critical Motion Sequences

We now consider dual linear self-calibration i.e., the
problem of estimating the DAQ without imposing that it is
rank 3 and positive semi-definite i.e., without imposing that
the AC is actually a conic and that it is a virtual conic. In
other words, any quadric in dual form can now be a candid-
ate false DAQ, under the condition that it satisfies the con-
straints expressed in (3,4). As explained above, these con-
vey exactly that the image of the DAQ is a circle centered in
the image’s principal point (to be precise, the dual of such
a circle). A set of camera poses is thus critical if there ex-
ists another dual quadric that is projected to centered circles
in all images. More exactly, the existence of such a CMS

is equivalent to that of a p-parameter linear family of false
DAQs with p > 0. Terminology-wise, a CMS is said to be
degenerate if the solution family is entirely degenerate i.e.,
if it consists of ∞p degenerate dual quadrics D∗. It is not
proved here but a condition for this is that D∗ is ‘squashed’
at infinity i.e., its points are located on the plane at infinity
π∞ i.e., D∗π∞ = 04.

Consider now a dual quadric and a cone enveloping it
whose vertex is the optical center. Its image is a centered
circle (radii can be zero or imaginary) exactly if that cone
is circular and if the camera’s optical axis is aligned with a
revolution axis of the cone. Based on this observation, CMS
can be derived as in the works cited in the previous section,
by considering all (Euclidean) types of dual quadrics, and
determining the camera poses that satisfy the above con-
straints. This latter task is greatly simplified due to results
in the projective geometry literature of the 19th- and the
early 20th-century [15, 18, 19]. In the following, we briefly
summarize these and their implications for our study.

Before going further let us introduce the notions of (real
and imaginary) foci and focal axes of a quadric (e.g., as in
[16, p339] or [18, p225]). Any point such that the tangent-
cone to a quadric with that point as vertex, is circular, is a
focus of the quadric. Any line through a focus relative to
which that cone is rotationally symmetric is a focal axis of
the quadric. This is illustrated in Fig. 2. Note that for each
focus, there is either a single focal axis, or all lines through
it are focal axes (this is the case if the mentioned cone is
isotropic i.e., contains the AC).

Regarding the issue of which dual quadrics other than
the DAQ, get projected to a dual circle that is centred in
the principal point, the answer is surprisingly enough quite
simple: these are the quadrics for which the camera centre
is a real focus and the optical axis a real focal axis. The
result that we infer from this is fundamental; a sketch of the
proof is given in the appendix.

Prop. 1 (Fundamental condition) A motion sequence is
critical iff there exists an irreducible1 quadric other than
the DAQ such that:

1. any camera centre is a focus of the quadric,
2. any optical axis is a focal axis of the quadric.

In other words, it is equivalent to say that a camera mo-
tion is critical or that the camera moves on the ‘focal curve’
of some irreducible quadric while its optical axis, for each
position, is a focal axis of the quadric through the camera
centre. Note that, as a result, only the orientation of the
camera’s optical axis matters, whereas rotation about the
optical axis is irrelevant.

What are the foci of a quadric? A first main classical
result we use has been established long ago: a focus of a

1A (full) rank-4 or (deficient) rank-3 quadric in locus or envelope form.
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Figure 2. A focus and a focal axis of a quadric respectively coin-
cide with the vertex and the revolution axis of a circular cone (i.e.,
having double contact with Ω∞) enveloping the quadric (see text).

quadric is a point of its focal conics (a set of focal curves
also called focals, cf. [19, p81]) which are conics lying on
its principal planes (mutually orthogonal and such that any
two of them share a principal axis). There are other prop-
erties, see e.g. [18]. Furthermore, it is known that there are
only two types of focal conic-sets of a general quadric2: (i)
the parabola/parabola pair, (ii) the ellipse/hyperbola/virtual
conic triplet (see Fig. 1). Other quadrics need special treat-
ments that will be discussed in the sequel.

The second main result is due to Chasles (see [19, p81]
and also [14]). It describes how to obtain the focal conics
of a general quadric Q. Consider the confocal range of its
dual Q∗, i.e. the 1D linear family of dual quadrics spanned
by Q∗ and the DAQ Q∗∞. This family has in general four
degenerate members; these, except Q∗∞, are exactly the en-
velopes of the focal conics of Q.

What are the focal axes of a quadric? A focal axis of
a quadric is a line through which the two (complex) planes
touching the AC are also tangent to the quadric [18, p224]
(see Fig. 2). Thanks in particular to Plücker (see [19, p82]),
it has been established that the assemblage of focal axes of
a quadric consists of the generators i.e., the axes of pencils
of planes, of the quadrics of its confocal range. The general
notion of focal axis is less intuitive than that of focus and,
as we are only interested in focal axes through foci, we will
not look deeper into the theory of confocal quadrics.

5. The Geometry of Criticality

The above results, in particular Chasles’ result, can be
used to efficiently derive types of CMSs as shown in the
following section. To determine all possible geometries of
CMSs, it now suffices to compute the focal conics of quad-
rics of different Euclidean types and to describe the results

2Here, a general quadric is a proper quadric that is not of revolution.

in a generic geometric manner (this is done quite easily us-
ing a symbolic software like MAPLE). It is rather mechan-
ical to carry out this procedure (see e.g., example 2 below),
besides a few exceptions explained below (e.g., example 3).
The results are summarized in table 1, which contains all
critical motions for the dual linear self-calibration problem.

To obtain these results, we needed to consider, besides
the above classical geometric results, several other issues.
First, these results only directly provide the camera posi-
tions in a CMS, the camera orientations are less directly
given and are obtained algebraically. Second, as said pre-
viously, these results only hold for general proper quadrics;
the cases of quadrics of revolution, spheres, and degenerate
quadrics, need special treatment.

If we deal with a quadric of revolution, there is a major
specificity: one conic in its focal-set is repeated and degen-
erates into either a rank-1 or a ‘rank-0’ conic (see Fig. 3).
Note that no rank-2 focal conic does exist. The rank-1 fo-
cal conic is a (‘repeated’) line that coincides with the axis
of revolution of the quadric. We will also call this a focal
line. It contains two specialised foci called principal foci,
which are the two foci of the conic obtained by meridian-
section3 of the quadric. In the special case of a sphere, this
linear locus of foci further degenerates into a ‘rank-0 conic’,
meaning that every point in 3-space is a focus of the sphere.
The sphere has a single principal focus, its centre. Note that
all lines passing through a principal focus, are focal axes of
the quadric.

Let us consider, for these special cases, the nature of fo-
cal axes that pass through a focus (keep in mind that they
determine the orientation of optical axes in CMSs). Con-
sider first the general case of a quadric having general focal
conics. For any point on such a focal conic, the focal axis
passing through it coincides with the tangent line to that fo-
cal conic at that point which is coplanar with the focal conic.
Next, we consider the case of a focal line, which happens
for quadrics of revolution, see above. For any point on a fo-
cal line, the focal axis passing through that point is the focal
line itself (which is always a real line). An exception are the
two principal foci, where any line passing through them is
a focal axis. Finally, in the case of a sphere, every point in
3-space is a focus, as explained above, and through it there
is just one focal axis which is the line joining that point and
the centre of the sphere. Again, an exception is the centre of
the sphere itself, for which all lines passing through it, are
focal axes (see Fig. 3).

There are two classes of confocal ranges for which the
locus of foci is the entire 3-space i.e., a focal space. The first
includes (i) all confocal (i.e., concentric) ranges of spheres
(type (R4) in table 1) and the second (ii) all degenerate con-
focal ranges, for which arbitrary values of α1, α2 satisfy
det(α1Q

∗ + α2Q
∗
∞) = 0 (type (D)). Here, degenerate con-

3Any planar section of the quadric through its axis of revolution.



focal quadric ranges correspond to ranges of conics at in-
finity with the dual absolute conic Ω∗∞ as member (cf. § 4).
What distinguishes (i) and (ii) is that, in the former case, the
focal axes through foci concur at a finite (unique) principal
focus; in the latter case, they concur at a principal foci at
infinity and hence all focal axes are parallel.

We now give two examples carrying some technical de-
tails on how to determine the real points of the focal conics.
Other cases are solved in very similar ways.

Example 2 We here determine the foci and focal axes of a
central quadric Q (class G1). Write the envelope of Q in
Euclidean canonical form as

Q∗ = diag(a1, a2, a3,−1)

The parameters of the degenerate envelopes of the con-
focal range determined by Q∗ are the generalized eigenval-
ues of the matrix-pair (Q∗,Q∗∞) which can be easily com-
puted since Q∗∞ = diag(1, 1, 1, 0). These parameters are
a1, a2, a3 and∞ (the latter is the parameter ofQ∗∞). Hence
it is straightforward to compute, in this order, the matrices
of the degenerate envelopes —other than Q∗∞— and their
(ordinary) eigenvalues:

F∗1=










0 0 0 0

0 a2−a1 0 0

0 0 a3−a1 0

0 0 0 −1









; eig(F∗1)=










0

−1

a3−a1

a2−a1










F∗2=










a1−a2 0 0 0

0 0 0 0

0 0 a3−a2 0

0 0 0 −1









; eig(F∗2)=










0

−1

a3−a2

a1−a2










F∗3=










a1−a3 0 0 0

0 a2−a3 0 0

0 0 0 0

0 0 0 −1









; eig(F∗3)=










0

−1

a2−a3

a1−a3










The F∗k’s are matrices of three rank-3 dual quadrics encod-
ing three focal conics on the principal planes of the quadric
(point-equations of these focals can be easily derived). As-
sume Q to be general e.g., a1 < a2 < a3 and a1a2a3 6= 0.
The first two point-equations represent conjugate focal con-
ics i.e., a (real) ellipse on the Y Z-plane and a (real) hy-
perbola on the XZ-plane respectively, while the third one
represents a virtual ellipse on the XY -plane. Each tangent
line to the conic on the supporting plane of the conic is the
axis of a pencil of planes of F∗k and thus is a focal axis of Q.

Example 3 We now determine the foci and focal axes of an
elliptic paraboloid of revolution Q (R3). Write the envelope
of Q in Euclidean canonical form as

Q∗ =







1 0 0 0
0 1 0 0
0 0 0 2/b

0 0 2/b 0





 b 6= 0. (5)

The parameters of the degenerate envelopes of the confocal
range of Q∗ are the generalized eigenvalues of (Q∗,Q∗∞).
One gets generalized eigenvalues equal to 1 and ∞, both
with multiplicity two (∞ is the parameter of Q∗∞). The
matrix of the single ‘focal’ degenerate envelope (with para-
meter 1) is given below with its (ordinary) eigenvalues:

F∗=










0 0 0 0

0 0 0 0

0 0 −1 2/b

0 0 2/b 0









; eig(F∗)= 1

2b










0

0

−b+(b2+16)1/2

−b−(b2+16)1/2










As the product of the 3rd and 4th eigenvalues yields −4/b2,
one deduces that F∗ is a real point-pair, say F∗ = fg>+gf>

where f ,g ∈ R4, formed by the two principal foci of the
quadric. By inspecting the element F ∗44 = 0 = 2f4g4, one
can see that f or g —but not both— is at infinity. The line
spanned by f and g is a focal line i.e., a rank-1 focal conic.
Through each of f and g, there passes∞2 planes (a star of
planes) and hence∞2 lines which are the focal axes of Q ,
including the line through f and g.

Along these lines, we can derive all CMSs ; they are
summarized in table 1. Naturally, they subsume the generic
critical motions summarized in section 3. Concretely, the
classes of motions (G1), (R1) and (D) are generic critical
motions, all others are artificial ones for the dual linear self-
calibration approach (see Fig. 4).

1. 2a.

2c.2b.

Π∞

Figure 3. Four degenerate types of focus loci (black dots), in-
cluding principal foci (white dots), and assemblage of focal axes
through them (arrows). The dashed style indicates virtual objects.
The general case is shown in Fig. 1.

6. How to Detect Artificial Critical Motions

In this section, we show how one may detect and handle
artificial CMSs, starting from a projective reconstruction.



(G2) (R2) (R4)

Figure 4. The three classes (G2), (R2) and (R4) of artificial CMS completing the known generic CMS. The ambiguity for the DAQ is 1D
if the CMS is rank-2 i.e., it includes at least three cameras with at least one on the circle for (R2).

Quadric Confocal Ranges Degenerate envelopes (focal conics)
and associated signature sequence

Critical motions: locus L of camera centres
and associated assemblage A of optical axes.

(G1) General virtual ellipsoids, el-
lipsoids and hyperboloids of one or
two sheets

{ Q∗∞, Q
∗
virt, E

∗, H∗ }

{ (3, 0), (3, 0), (2, 1), (2, 1) }

L is a conjugate conic-pair formed by a general
ellipse and a general hyperbola; A consists of axes
tangent to these conics in their supporting planes.

(G2) General elliptic and hyper-
bolic paraboloids

{ Q∗∞ × 2, P
∗
1, P

∗
2 }

{ ((3, 0)), (2, 1), (2, 1) }

L is a conjugate conic-pair formed by two general
parabolas; A consists of axes tangent to these con-
ics in their supporting planes.

(R1) Prolate ellipsoids and hyper-
boloids of two sheets, oblate vir-
tual ellipsoids

{
Q∗∞, C

∗
virt, (FF

′> + F′F>)× 2
}

{ (3, 0), (3, 0), ((1, 1)) }

L is a single line; A consists of L and two stars
of axes through two fixed finite points on L .

(R2) oblate ellipsoids and hyper-
boloids of one sheet; prolate vir-
tual ellipsoids

{
Q∗∞, C

∗, (F+F
>
− + F−F

>
+)× 2

}

{ (3, 0), (2, 1), ((2, 0)) }

L consists of a circle and a line which cuts ortho-
gonally its centre; A consists of this line and the
axes tangent to the circle in its supporting plane.

(R3) Elliptic paraboloids of re-
volution

{
Q∗∞ × 2, (FF

′>
∞ + F

′
∞F

>)× 2
}

{ ((3, 0)), ((1, 1)) }

L is a single line; A consists of two stars of axes
through two fixed points on L , one finite and the
other infinite.

(R4) Spheres
{
Q∗∞, CC

> × 3
}

{ (3, 0), (((1, 0))) }

L is the 3-space;A consists of a star of nonparallel
axes, through a fixed finite point.

(D) Degenerate confocal ranges ∞1 degenerate envelopes L is the 3-space; A consists of all parallel axes.

Table 1. All types of critical motions, induced by a seven-class partition of confocal ranges w.r.t. signature sequences. Glossary: virtual
degenerate envelopes are marked by ‘virt’ – objects at infinity are marked by ‘∞’. E∗virt: virtual ellipse, E∗: ellipse, H∗: hyperbola, P∗j :
parabola j, C∗: circle, (F,F′): (real) principal foci-pair, (F+,F−): (complex conjugate) principal foci-pair, C: single principal focus.

This is based on the notion of signature of a degenerate
dual quadric D∗.

Let ρ and ν be respectively the numbers of positive and
negative eigenvalues of D∗. The signature of D∗ is the pair
(ξ1, ξ2) with ξ1 ≡ max(ρ, ν) and ξ2 ≡ min(ρ, ν) while
ξ1 + ξ2 = rankD

∗. A crucial property of signature and
rank is that they are invariant to homographies [8, p74].

A projective description of a confocal range, spanned by

Q∗1 and Q∗2, is now given by its signature sequence

{(∙ ∙ ∙ (ξ11 , ξ
1
2) ∙ ∙ ∙ ), . . . , (∙ ∙ ∙ (ξ

r
1 , ξ

r
2) ∙ ∙ ∙ )} (6)

where r ∈ {1..4} and

• (ξr1 , ξ
r
2) is the signature of any degenerate Q∗1 − λrQ

∗
2,

where λr is a generalized eigenvalue of (Q∗1,Q
∗
2);

• the number of brackets around a signature (cf. 2nd
column of table 1) indicates the number of times that
Q∗1 − λrQ

∗
2 is repeated in the set of degenerate envel-



opes i.e., the algebraic eigenvalue multiplicity of λr.

The signature sequence describes the four (possibly re-
peated) degenerate dual quadrics of the range. It yields a
projective description as it relies on signatures and multi-
plicities of these dual quadrics which are the same in any
projective representation4.

The signature sequences including the signatures of the
false DAQs for all cases of CMSs, are given in table 1. They
are at the basis of identifying and handling artificial CMSs,
as described in the following.

Let us consider the solution of the linear self-calibration
equations (3,4). Of course, if there are ambiguous solutions,
we are in the presence of a critical motion. Since we deal
with linear equations, ambiguous solutions correspond to
a linear family of dual quadrics. We assume that there is
only a 1D linear family. This is the most practical common
case as soon as there are n ≥ 3 critical cameras taken any-
where in the critical sequence5, except for (R2) in which at
least one must be on the circle, cf. Fig. 4. This can be easily
proved e.g., using MAPLE. We first compute the four degen-
erate members of that linear family, e.g. by computing the
generalized eigenvalues of a pair of dual quadrics that span
the family. Then, for each of these degenerate dual quadrics,
we compute its signature. A first observation is that the sig-
nature sequence allows one to uniquely identify the class of
CMSs (cf. 2nd column of table 1). A second observation is
that all false DAQs of all artificial critical motions (classes
(G2), (R2), (R3) and (R4)) have a signature that is different
from that of the true DAQ, (3, 0). Hence, in the presence of
an artificial CMSs, the true DAQ can be identified without
ambiguity, as the single one having signature (3, 0). In con-
clusion, artificial CMSs can, when taking into account all
self-calibration constraints after solving the linear equation
system, always be disambiguated. Figure 5 shows a typical
example where our algorithm resolves an artificial CMS.

7. Conclusions

Our theoretical results have two major consequences in
practical applications. First, existing SfM implementations
using dual linear self-calibration [11, 12, 17] are known to
be unstable due to degeneracies and noise. But degeneracies
are intrinsically due to critical motions. Knowing the arti-
ficial CMSs will allow one to avoid them. Second, encap-
sulating the spectral constraints in the signature sequence,
we proved that those are discriminant enough to find the
true DAQ within a 1D family of potential DAQs. In other
words, we stated that the spectral constraints can be safely
enforced a posteriori, making it possible to avoid ambigu-
ous self-calibration in the presence of artificial CMSs (refer

4A signature is projectively invariant by Sylvester’s law of inertia. The
multiplicity of a generalized eigenvalue also has this property.

5We do not consider the class (D) here.

Figure 5. (3D interactive graphic) We ran the dual self-calibration
linear algorithm from the publicly available “Model House” image
sequence (www.robots.ox.ac.uk/vgg/data). To get the projective
cameras, we used Sturm-Triggs’ projective factorization (see [8,
p444]), followed by projective bundle adjustment. Only the first
six (out of seven) frames were considered, forming a subsequence
in which 94 2D points were matched all over. Regarding the self-
calibration solution given by a SVD-based algorithm (similar to
A5.3 in [8, p592]), after computing the ratios of the first singu-
lar value to the last three ones, respectively equal to 5.70e+ 004,
9.43e+002 and 32.83, we concluded that we were facing a critical
motion, which was confirmed by visualising the ‘meaningless’ 3D
metric reconstruction associated with the lowest singular value.
Hence, the solution for the DAQ is included in a tangential pen-
cil of quadrics α1Q∗1 + α2Q

∗
2. We normalise the Q∗i ’s by dividing

them by their largest singular values, and next assume that, regard-
ing the signatures of the degenerate quadricsQ∗1−λrQ

∗
2 where the

λr’s are the generalized eigenvalues of (Q∗1,Q
∗
2), any value lower

than 10e − 3 is zero. The obtained signature sequence (with no
other ‘numerical trick’) was {(3,0),(((1,0)))}. This indicates that
all the cameras fixates a point, whose matrix is associated with the
signature corresponding to (1, 0). We picked up as solution the
degenerate envelope associated with (3, 0) and obtained the recon-
struction of points and cameras which is displayed here, completed
by reconstructions of additional pair-wise matched points.

to the interactive graphic in Fig. 5).
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Appendix

Due to lack of space, only a sketch of the proof of pro-
position 1 can be given here. Before, we remind some

known projective facts [15, 16, 18] . Except for the plane
at infinity π∞, which is real, all the planes of the DAQ Q∗∞
are complex conjugate ; hence all the tangent-lines6 of Q∗∞
are also complex conjugate. We refer to such pairs as iso-
tropic plane-pairs and isotropic line-pairs respectively. An
important property of an isotropic plane-pair is to be invari-
ant under rotations around its axis i.e., the intersection line
of its two planes.

We also require an alternate definition of the focus of
quadric, which can be found in [15, p127] and actually ap-
plies in dual 3-space for an algebraic surface of any order.
‘A focus is a point through which can be drawn two lines,
each touching the surface and meeting the absolute conic,
and such that the tangent plane to the surface through either
also touches the absolute conic.’

Now, let us reveal the complex geometry of equations
(3,4) by considering the algebraically equivalent pair:

(aj ± ibj)>Q∗∞(a
j ± ibj) = 0, (7)

cj>Q∗∞(a
j ± ibj) = 0, (8)

with i2 = −1. Thus, we treat aj (resp. bj) in (2) as the real
(resp. imaginary) part of a complex conjugate plane-pair.
Since any camera Pj , cf. (2), satisfies equations (7,8), then
(i) πj± = a

j ± ibj is an isotropic plane-pair whose axis is
the optical axis, (ii) the intersection of πj± and cj , denoted
πj± f c

j , is an isotropic line-pair through the optical centre
Oj . Indeed, using (7), (i) holds by definition of an isotropic
plane-pair. Using (7,8), (ii) also holds by definition as the
intersection of two planes p and q is a tangent line of a
quadric envelope X∗ iff both equations7 p>X∗p = 0 and
p>X∗q = 0 are satisfied [15, pp147-148].

That said the proof can be sketched: (i) A camera Pj of
the form (2) is critical w.r.t. X∗ � Q∗∞ iff (ii) Pj and X∗ sat-
isfy (7,8). Using a similar reasoning as above, an equivalent
condition is that (iii) the isotropic plane-pair π± is also a
plane-pair of X∗ and (iv) the isotropic line-pair πj± f c

j is
also a tangent line-pair6 of X∗. When this holds, the optical
centre is a point through which there pass two isotropic lines
tangent to X and such that the isotropic planes through the
lines belong to X∗. By the alternate definition, the optical
axis is a real focal axis of X and the optical centre is a real
focus on the focal axis.

6What is the tangent line to a dual quadric? A tangent line to a quadric
locus is a line which meets the quadric at two coinciding points. Through
a line there are just two planes which belong to a dual quadric; this line is
a tangent line to the dual quadric if the two planes coincide.

7p should be a plane of X∗ while q should not.




