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Abstract

Modeling from silhouettes is a popular and useful topic impater vision. Many methods exist to
compute the surface of the visual hull from silhouettes, feut address the problem of ensuring good
topological properties of the surface, such as manifolsin€kis article provides an efficient algorithm
to compute such a surface in the form of a polyhedral mesteligs on a small number of geometric
operations to compute a visual hull polyhedron in a singlesp&uch simplicity enables the algorithm
to combine the advantages of being fast, producing pixatesurfaces, and repeatably yield manifold
and watertight polyhedra in general experimental conatiavith real data, as verified with all datasets

tested. The algorithm is fully described, its complexityagzed and modeling results given.

Index Terms

Modeling from multiple views, modeling from silhouettefiape-from-silhouettes, 3D reconstruc-

tion, visual hull

I. INTRODUCTION

Modeling an object from silhouettes is a popular topic in poer vision. Solving this problem
has a number of applications for 3D photography, automatideting, virtual reality applications,
among other possibilities.

Assume we are giverv silhouettes of an object corresponding to different camerapoints.
The visual hullis the maximal solid shape consistent with the object siti@s. It is often
seen as the intersection of per-view volumes that backgrrdjem the input silhouettes, the
viewing conesas will be further discussed. Such an approximation of thiead captures all
the geometric information available from the object silbttes. Many methods exist to compute
the visual hull of objects from silhouettes in images, as phablem is of interest for many
applications including real-time 3D modeling, and progde initialization for a wide range of
more complex offline modeling methods [1]-[3]. In this deiave describe how to efficiently
use the silhouette information to compute polyhedral Vidudls, while achieving desirable
properties for the surface representation and high moglsipeed.

The visual hull definition was coined by Laurentini [4] in @&thretical context where an infinite
number of viewpoints surrounding the object is considetadthis contribution, fundamental

properties of visual hulls are also analyzed. However, amggic intuition and solution of the
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3D modeling problem from a finite number of silhouettes wagegias early as 1974 by B.
Baumgart [5], based on pairwise polyhedral intersectidngewing cones.

The visual hull has been widely studied implicitly or exlic after this seminal contribution,
in the computer vision and graphics communities. In paldicut was recently shown that the
visual hull of a curved object is a topological polyhedronthwcurved faces and edges, which
can be recovered under weak calibration [6] using orienpgolodar geometry [7]. The algorithm
proposed can however be impractical for fast and robust otetipns. We propose a simpler
alternative to achieve these goals.

Many other algorithms exist to provide approximate sohsido the shape-from-silhouette
problem. Most of them fall in two categoriegolume-based approaché&scus on the volume of
the visual hull and usually rely on a discretization of sp&face-based approachixus on a
surface representation of the visual hull. A third approexists that computes a view dependent
image-based representation, from an arbitrary viewp@htAlthough useful for a wide variety
of tasks, this method doesn’t provide full 3D models as negiiby many applications. Obtaining
full 3D models is a main concern of this article, which is whg fecus mainly on surface-based
approaches. To provide a wider view of the reconstructiablem, which can be solved using
information different than silhouettes alone, we also ascalternate methods of volume and

surface reconstruction which use photoconsistency as a&lngdcue.

A. Volume-based approaches

Volume-based approaches usually choose a discretizdtgpaoe that uses convex cells called
voxels. Each cell is projected in the original images andredwith respect to its silhouette
consistency. This process relies on the convexity of cellsstimate whether a voxel falls inside
or outside the input silhouettes, possibly sampling séyeriats within a single voxel to perform
the decision [9]. As such these approaches compute a desziatiewing cone intersection, as
an approximate representation of the visual hull. The palgr discretization chosen ranges from
fixed grid representations with parallelepipedal axigradd cells [10], to adaptive, hierarchical
decompositions of the scene volume [11]-[14]. Notably theice of representation of the scene
volume as a set of voxel columns reduces the visual hull cootypdecision of an entire column
to a line-to-silhouette-boundary intersection probler][1

While robust and simple, this category of approaches suffierm inherent disadvantages.
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As they compute a discrete and approximate representatittecscene, the provided result is
usually subject to aliasing artifacts. These can only baged by drastically raising the resolution
of representations, yielding a poor trade-off between teoenplexity and precision. These
representations are also biased by the coordinate systesermiior grid alignments. This is why

more recent work has focused on alternate surface repedserst to capture more information
about the visual hull. We have proposed a first improvementolame-based approaches by
means of a Delaunay tetrahedrization of space, yieldingriaai by carving away tetrahedra
that fall out of the visual hull and a first step to eliminatiagis-aligned bias [16]. We now

discuss other works relevant to surface modeling from siies.

B. Surface-based approaches

Surface-based approaches aim at computing an explicieseptation of the visual hull's
surface, and analyze the geometric relationship betweersithouette boundaries in images,
and the visual hull boundary. Surface primitives are cormpuiased on this relationship and
assumptions about the surface. Baumgart’s early methodopes an approach to compute
polyhedral representations of objects from silhouette@mms, approximated by polygons [5].

A number of approaches assume local smoothness of the teatied surface [17]—-[21],
and computaim points based on a second-order approximation of the syrfem® epipolar
correspondences. These correspondences are usuallyezbbyi matching and ordering contours
from close viewpoints and can be used to connect points hegeb build a surface from the
resulting local connectivities and orientations. This Boer only yields an approximate topology
of the surface as these orientations reverskaaitier points where rims cross over each other.
More recent methods [22]-[25] exploit the duality that é&xibetween points and planes in 3D
space, and estimate the dual of the surface tangent plamesiasd by silhouette contour points,
but can still suffer from singularities due to improper hiamgl of the local surface topology in
the neighborhood of frontier points, or evacuate them bysilgoesampling of the final surface
which doesn't guarantee proper surface rendition belowog&h threshold. Other primitives have
been used to model the visual hull surface, computed in the & surface patches [24], [26] or
strips [27]. However, building a manifold surface repraagan from these primitives proves non-
trivial and is not thoroughly addressed in those works. fiddal difficulties arise in the particular

case of visual hulls surfaces, which are computed as thedaoyof a cone intersection volume,
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where viewing cones are tangent to each other. Thus, mafgcsuromponents are sensitive to
numerical instabilities in the region of these tangendididless addressed, these issues usually
mean that the surface produced will locally have anomasiesh as holes, duplicate primitives,
and possibly self-intersections. While such methods vattal errors are perfectly acceptable for
rendering tasks, and have been used as such on graphicsanai@8], [29], surfaces produced
without these guarantees are not suitable for 3D modelingicgtions. These often require
post-processing of the surface, where manifoldness is al usquirement. The surface is2a
manifold if the local surface topology around any point oé thurface corresponds to a disk,
thus ruling out cuts, self-intersections, and orientatieversals of the surface. This property is
necessary for many post-processing tasks such as mestifisatipin or smoothing, animation,
compression, collision detection, volume computatiom-degenerate computation of normals,
among other possibilities. A first response to degeneradyegipolar matching problems was
proposed for the case of smooth objects [6], [30], by idgmg the precise structure of the

piecewise smooth visual hull induced in this case.

C. Photoconsistency approaches

The aforementioned approaches are based on purely geordetrisions using silhouette
regions and do not consider any photometric informatiorotétiull approaches exist which
compute sets of photoconsistent voxels as scene reprasan&i], [32], which has lead to many
variations. Surveys of volume-based photoconsistencyoagpes can be consulted for further
details [33], [34]. It should be noted that although thesd¢hmés use more scene information,
they must also deal with the visibility problem, becausedig photoconsistent voxels assumes
knowledge of the subset of input images where that voxekibl. As such, they are significantly
more complex and sensitive to classifications errors, wpitdpagate false information on the
model for all voxels behind it. Such classification errore a&ound to happen because many
photohull methods compute photoconsistency under a Lambesurface assumption for scene
objects, a well known oversimplification of real world scen@ecently, more successful methods
using photometric information have been presented andeaddhese problems using surface
regularization schemes and surface topology constr&htg3]. Interestingly, most such methods
achieve robustness by using a manifold visual hull surfapeasentation to provide initialization

and geometric constraints, which our algorithm can proygje
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D. Difficulties and contributions

In this article we propose a new method for polyhedral madetif the visual hull of objects.
Although several methods exist to compute visual hulls,\@adal hull polyhedra or polyhedral
strips [5], [27], from a set of silhouettes, several proldemmain unaddressed.

First, we propose a more general definition of the visual Wwhilch formulates the visual hull
in the complement of the union of visibility domains of allhearas, as discussed in section II-C.
The current formulations of visual reconstruction fronhsilettes implicitly imply that all views
see the entire object. Although this constraint can easilfuliilled for small-scaled setups under
controlled environments, it is much harder to achieve inenscale setups where the field of
view of cameras and size of acquisition rooms is a limitingtda Our definition enables to
relax this constraint.

Second, it is unclear from existing work if polyhedral madelf the visual hull are good
approximations of the visual hull itself. We show here a sobehat consistently yields op-
timal polyhedral visual hulls. Indeed we successfully gpgh 8-connected segment retrieval
algorithm [35] to recognize exact contours from image daticoordinates lying at the boundary
between the discrete silhouette and non-silhouette pegibns. This in turn enables our algo-
rithm to yield visual hull polyhedra that are pixel-exacthviespect to input silhouettes, thereby
providing a valid alternative to more expensive smooth mstaiction methods.

Third, most existing polyhedron-based reconstructioritigms do not combine the advan-
tages of being fast and repeatably yield watertight and folahipolyhedral surfaces. As a
matter of fact, none of the surface-based reconstructiaiieds reviewed in section I-B make
any strong mesh validity claim or thoroughly verify theirtputs, with the exception of [36]
(comparison given in section VIII). Baumgart's contritmrtito polyhedral visual hull modeling
[5] has given rise to an entire family of more general polylaédolid modeling methods within
the framework of Constructive Solid Geometry (CSG) [37],enhsolids are expressed as a set
of simpler solids combined using boolean operations. Thersection computations involved
in building a boundary mesh from such general represemntativere proven unstable [38]
in certain identified cases: because machine precision i®,figeometric decisions can be
erroneous in degenerate or nearly degenerate mesh cotibiggralhe best attempt to solve

this problem relies on exact, arbitrary-precision aritim¢39], which remains the standard
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requirement for failproof computational geometry modglimethods to this date, as implemented
in state-of-the-art libraries such as CGAL [40]. While thiieoretically closes the problem, the
enormous overhead of exact arithmetic CSG hardly makes itaatipal solution for visual
hull modeling, one of its major appeals being the potentgbtoduce models at very efficient
speeds. Instead, our solution focuses on identifying tinectstre of polyhedral visual hulls
(section Ill) to yield a very simple algorithm with an ideirgd computational complexity
(section VII). In our case, geometric computations reduca very small set of single-unknown
intersection cases (examined in sections V and VI) whichezasily be fine-tuned to minimize the
possibility of numerical error. Indeed our implementattwas provided watertight and manifold
polyhedral surfaces on all real datasets tested with ndesfiagure, as verified in section VIl

and independently [36].

[1. VISUAL HULL DEFINITIONS

Let us consider a scene with several objects of interesgrebd by N pinhole cameras with
known calibration. A vertex in space will be writteXi (capitals). Image points will be written
x or p, and an image liné. Image view numbers will be noted as superscripts. We somesti
associate to a point in view i its viewing line L. defined as the set of points that project:to

in image:. Details about multi-view geometry can be found in the #tare [41], [42].

A. Contours and rims

We assume that the surface of observed scene objects isl chosk orientable, curved or
polyhedral, possibly of non-zero genugims(see Fig. 3(a)) are defined as the locus of points
on the surface of objects where viewing lines are stricthgent to the surface. The projection of
rims in images define theccluding contour$10], which bound the silhouette of objects in each
image plane. With this definition, each occluding contows tiee topology of a one-dimensional
manifold.

Observed silhouettes can be of non-zero genus: each sitaaam consist of several different
connected components, arising from the projection of wifie scene objects. Each connected
component can comprise several holes reflecting the topavddhese objects, giving rise to
inside contours of the silhouette (see Fig. 1). To denoteltifierent occluding contours observed

under these conditions in each view, we use a subsaﬂjmames thejith occluding contour in
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Fig. 1. The silhouette in its most general form: possiblyesalouter and inner contours, with counter-clockwise dodkwise

orientation respectively. The inside region of the sillttriés grayed.

view i. We callinside regionof an occluding contour the closed region of the image plahiehv

it bounds. Symmetrically we catlutside regionts complement in the image plane. Outside and
inside contours of the silhouette are to be distinguishethbly orientation, respectively counter-
clockwise and clockwise. This is a useful definition as itieas that the actual inside region of
the contour is locally left of any portion of an occluding ¢our, regardless of its nature. Each
view i thus has a set of contouf%, which in fact is the union of two sets of inner contos

and outer contour€:.

B. Viewing cone

The viewing cone is an important notion to define visual ha#ist describes the contribution
volume associated with a single view. Because silhouetitashave several disconnected com-
ponents and holes, it is necessary to distinguish two diefinsit We first introduce the viewing
cone associated with a single occluding contour, beforeudsng the more general definition
of a viewing cone associated with a viewpoint, which is the generally used throughout this
article.

Intuitively, the viewing cone associated with an occluding cont@ia cone whose apex is
the optical center of the associated view, and whose badeifside region of this contour.
More formally, the viewing conéJ;? associated with the occluding contdﬁgf is the closure of
the set of rays passing through points insﬂ;]eand through the camera center of ima;gea’;? is
thus a volume tangent to the corresponding object surfamegad curve, the rim (or occluding
contour generator) that projects ordlp According to the nature af?, which is either an outside
or inside contour, the viewing cone is a projective volumesé base in images is a region of

R2, respectively closed or open.
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Based on these conventions, we can now give a definition ofidwing conel’ associated
with a viewi. Such a definition should capture all points of space thgept@n the inside region
of the views's silhouette. A first intuitive definition o¥* could be formulated by compounding

the contributions of the connected components of the sdtieu

vi=J (N 0

kext  jeci

where K is the set of connected components of the silhouette in viemad C!. the set of
contours associated with theth connected component in the silhouette, namely one dmitsi
contour and an arbitrary number of inside contours in thatmanent. This formulation however
assumes that occluding contours can easily be grouped ectad component once acquired
from an input set, which is not straightforward. We thus useguivalent definition o¥*, which
separates cones in two sets according to the orientationeofdrresponding contour:

vi=(Jwvnen v (2)

Jjeo! JENT

The equivalence with (1) comes from the fact that inner corstdnave a neutral contribution for
all set operations outside their corresponding outer eaonfidhus they can be used independently
of outer contours to compute the visual hull volume. Thids$® gractical because the orientation
of the contours can be detected independently when disedvarinput images, which is why

this definition is the one generally used to compute viewiogecprimitives.

C. Visual Hull Set Definitions

In previous work on visual hulls, it is always assumed, tolikst of our knowledge, that all
views see the object in its entirety. However, the problenbwifding such visual hulls from
non-overlapping views has never been addressed. We thenefovide a different definition of
the visual hull to enable the possibility of modeling in tltigse, by reasoning over the set of
points of R? that lie at the union of all visibility regions. All algoriths to reconstruct the visual
hull, including the one we present in this article, can uskegiof these definitions, depending
on the context and targeted application.

Informally, thevisual hullcan be defined as the intersection of all viewing cones ast®ati

with the considered viewpoints. It therefore consists inased region of space, whose points
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Fig. 2. A scene observed by viewpoints: consequence of the different possible visugll definitions. (b) and (c) show, in

gray, regions as defined by (3) and (4) respectively.

project on the inside region of all occluding contours. Ldde the set of input images considered,
and C the set of all occluding contours. The visual hull can be diyeformulated using the
above definition of a view’s viewing cone:
VH(Z.C) =[]V~ (3)
1€

However, expression (3) has the undesirable side-effealiofinating regions outside the
visibility region of certain cameras, as illustrated in F2g(b). This is nevertheless the definition
implicitly used in most existing algorithms. A solution tbig problem is to consider each
view’s contribution only in this view’s visibility regiorD?. This can be achieved by expressing

the complement of the visual hull, as an open regiofiRdfdefined by:
VHY(Z.C) =] (D" \ V'),

1€l

-U| (N>vwvny dd g

(S jeo: JEN?

(4)

where D’ \ V is the complement of a given s®tin view i's visibility domain. By using (4),
objects that do not appear in all images can still contribatdhe visual hull. Knowledge about
the visual hull or its complement is equivalent because tifase of interest of the visual hull
delimits these two regions.

The use of these different definitions is illustrated in FAg.A scene is observed from four

viewpoints, where camera only sees the green object. Use of expression (3) is illtedran
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Fig. (b) : the visual hull (in gray) does not contain any cimittions relative to the red and blue
objects. Fig. (c) shows the result of expression (4), whigksdinclude such contributions using
the complement of the visibility domain. Note that the usé3)fand (4) both can induce virtual
objects not present in the original scene, but (4) produca® im general. Such "ghost” objects
appear in regions of space which project inside silhouettgons of real objects in all views.

The number and size of such artifacts can be reduced by sBingeghe number of viewpoints.

Ill. THE VISUAL HULL SURFACE

We have given a set definition of the visual hull volume. We @adticularly interested in the
visual hull's surface, which bounds this volume. In ordedarive the algorithm, we study the
properties of this surface, in particular under the assionpif polygonal occluding contours,

which leads to a polyhedral form for the visual hull.

Viewing edges

Polyhedral
viewing

cone \

Viewing
cone

Cone
intersection
curve

Cone
intersection
edges

Strip
Polyhedral
visual hull

O Frontier point

7 4 Triple point / i A Triple point

(@) (b)

Fig. 3. Differences in structure in the visual hull (here hexe obtained from three views under a perfectly calibraied
smooth occluding contour setup [6] (a), versus the case sirelized occluding contours and less than perfect céliora

leading to a polyhedral visual hull without frontier poirts).

A. Smooth Visual Hulls

The visual hull surface’s structure has previously beedistliin the case of a finite number

of viewpoints, with the underlying assumption of contourcgthness and perfect calibration
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[6]. This work shows that the visual hull of smooth objectghasmooth occluding contours is
a topological polyhedron with generalized edges and fam@msesponding to truncated portions
of smooth viewing cone surfaces and surface intersectidms.shape bares the contributions of
one view (strips), two views (cone intersection curves andtfer points), and three views (triple
points), as depicted in Fig. 3(a). An algorithm to recorstthis polyhedron was proposed in the
original work, and a thoroughly described variant of greatéciency was recently proposed [36].
Both works rely on the explicit detection and constructidrirontier points, which is a delicate
step because frontier points arise at the exact locus oétarygof two viewing cones. However in
general setups, contour extraction and calibration naisevell as finite precision representation
of primitives, imply that the viewing cones manipulated mgtice only approximate true viewing
cones. Therefore they never exactly exhibit the tangenageaty. This leads the aforementioned
approaches [6], [36] to tediously search and build an apprate representation of frontier points

based on contour smoothness assumptions.

B. The Validity of Polyhedral Approximations

Because the shape of the visual hull is stable under smalurpations, using bounded
polygonal approximations of occluding contours will havitld impact on the global shape
computed. To this aim we propose to discretize occludingaios using an efficient, pixel-
exact extraction algorithm (e.g. [35]), which does not @ase the overall noise introduced by
silhouette extraction. Fig. 3 and Fig. 4 make explicit thetipalarities in structure that are
induced by calibration and discretization noise. Tangeiscgenerally lost and the structure
is consequently altered, from a set of perfectly interleag&ips crossing at frontier points
(Fig. 4(a)), to a disymmetric structure where strips oyedae another and where strip continuity
is lost (Fig. 3(b), Fig. 4(b)). Interestingly, this struptus thus more general than the theoretical
smooth structure of the visual hull because of the absenpai@ly degenerate primitives, and

leads to the simpler algorithm proposed.

C. Relevant Primitives of the Polyhedral Visual Hull

We describe here the useful polyhedron primitives inducgddntour discretization, shown

in Fig. 3(b). We will use these to build our algorithm.
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(@) (b)

Fig. 4. Schematic visual hull strips obtained (a) in an id=mde where noise is absent (b) in the presence of noise.

Infinite cone face An infinite cone face is a face of a discrete viewing cafie induced by
contour discretization. Each 2D edgeof a discrete silhouette contour induces an infinite cone

face7..

A discrete strip is a subset of the surface of a discrete viewing cone. Eaghistfragmented
as a set of faces each induced by a 2D edgkhe faces are thus a subset of the corresponding

infinite cone face7..

Viewing edgesare the edges of the visual hull induced by viewing lines aftoar vertices.

They form a discrete set of intervals along those viewingdirand represent part of the discrete
strip geometry as they separate the different faces of a stnipe Such edges can be computed
efficiently, as described in section V, and give the stantiompt of the proposed surface modeling

algorithm.

Triple points, the locus of intersection of three viewing cones, are gt of the cone

intersection geometry, because they are non-degenerdtstaiple under small perturbations.

Cone intersection edgesorm the piecewise linear cone intersection curves indumediewing

cone discretization.

A number of mesh primitives arise from (and project back aayheoccluding contour 2D
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edgee. We call edgee a generatorfor these primitives. In a non-degenerate configuration,
faces possess one generator, edges possess two genexatbrgrtices three: all vertices of
the polyhedron are trivalent. We assume that degenerateyuacations are extremely unlikely to
occur with practical noisy inputs and finite number représgons, an assumption experimentally
verified for all datasets tested to date (section VIII). éast, small but consistent edges and faces
are computed on the polyhedron in nearly degenerate coafigos.

The structural elements of the polyhedral visual hull nowniified, we now discuss the

algorithm proposed to build them efficiently.

IV. ALGORITHM OVERVIEW

Several of the properties analyzed about visual hull payaend viewing edges hint toward
a simple and efficient algorithm. First, the polyhedral me$hthe visual hull is the union
of viewing edges, which are easy to compute, and cone imtBrseedges. Vertices of the
polyhedron are either viewing edge vertices or triple poil®econd, coplanar primitives of the
polyhedron project on the same occluding contour edge: #ieye a common generater
More generally incidence relationships on the polyhedraly @ccur between primitives that
share a common subset of generators. Third, computing ttreneal vertices of an edge on
the polyhedron through intersection operations hints #ititidences of neighboring edges not
yet computed, because we know which generators these pemghare. We thus propose to
incrementally recover the entire polyhedron in a three gi®gess (Figure 5):

1) Compute all viewing edges of the polyhedron, their vedjcand their generators.

2) Incrementally recover all cone intersection edges aigpdetipoints, using the common

generators of adjacent primitives already computed.

3) ldentify and tessellate faces of the polyhedron.

The following sections give the details of each step.

V. COMPUTING VIEWING EDGES

We here examine the first step of the proposed algorithm. Mgwedge computation has
indirectly been studied by Matusi&t al. [8] to compute image-based representations of the

visual hull, where an equivalent process needs to be apphieshach ray of a target image.
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1. Compute viewing edges 2. Cone intersection edges and triple points 3. Faces

Fig. 5. Algorithm overview.

Cheunget al. [43] also use similar computations to constrain the aligmima visual hulls

across time. The algorithm we use is as follows.

A. Algorithm

Computing viewing edges consists in searching the cortabuo the visual hull surface of
each vertexy used in the 2D occluding contour polygons. It is thereby ssas/ to determine
when such a viewing line traverses the viewing cones of deioviews. For each cone this
defines a set of intervals along the viewing lineppfrepresenting the portions inside the cone.
These sets must then be gathered across all views and camlsimg one of the set formulations
described in section II-C, in order to obtain edges of thel fomdyhedron.

The algorithm is summarized below. The viewing line of vxerp@ is notedﬁ;'..
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Fig. 6. Intervals along the viewing ray contributing to thisual hull surface(red).

Algorithm 1 Viewing Edge Computation
1: for all contourOj- in all views: do

2:  for all view k such thatt # i: do

3 for all verticesp’ in O} : do

4: compute the epipolar line of pé— in view £,

5: compute intervals of/ falling inside contourOf in view £,
6: combine depth intervals alonglg'. with the existing

7: end for

8: compute the 3D points bounding the intervals aloﬁgl.

9: end for

10: end for

B. Computing depth intervals

Let p;'. be the vertex of an occluding contoCiJf. The contribution intervals on the viewing
line of p! are bounded by intersections of this viewing line with scefa of viewing cones in
views k # i. They can be computed in 3D or using epipolar geometry (Big. 6

Once depth intervals have been obtained for each viewing obwiewsk # i, they must be
combined according to the set definitions of the visual heBatibed in section 1I-C, by using

either definition (3) or (4) and applying it to the intervals.
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Fig. 7. Orientation relationship between strips, occlgdaontours and viewing edges, for algorithm initialization

VI. COMPUTING CONE INTERSECTION EDGES
A. Initialization

The main characteristic of the algorithm is to build the mestile visiting it. New vertices
are incrementally added by identifying missing edges o$taxj vertices. Viewing edges serve
as the starting point for the algorithm: they are a discrefgesentation of the strip geometry.
They provide two initial vertices that share one known edg®.each of the vertices, two edges
are missing and need to be built.

Fig. 7 shows how to initialize the mesh traversal by usingt@onorientation in views. The
viewing edge provides two initial paths for mesh buildindyether traversal is started toward
the camera or away from the camera. When initializing theetsals it is easy to identify what

generators are locally left and right, because the strigiented.

B. Two-view case

The two view case is an interesting particular configuratimtause there are no triple points
by definition. Viewing edge vertices completely capture ¢bae intersection geometry because
they already embed all possible line-to-plane intersastiarising between cones. In this case,
cone intersection edges are very simple to find, becausefithggps between already existing
vertices. Only two configurations exist for a cone intensgceédgeF, whether the vertices of the
edge arise from viewing lines of different or identical vigvas illustrated in figure 8. Since the

generators of viewing edge vertices are known when they @rgated, these can be stored and
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@ ()

Fig. 8. The two types of cone intersection edge, in the twevviase. Both configurations involve connecting neighboring

viewing edge vertices that share the edge

used to identify cone intersection edges. Such edges cagtieved simply by identifying those

viewing edge vertices whose generators are consistenteittibr of the two possible patterns in
the figure. This can be done by looking at each viewing edgexemnd examining candidates
for the second vertex of edgé on the four neighboring viewing lines involved, as seen ia th

figure.

C. GeneralN-view case

Recovering cone intersection edges in the general case &srsimple. Triple points appear on
the cone intersection portions of the visual hull, and cartiersection edges no longer directly
connect viewing edges but form locally connected sub-méslttsires around sets of triples
points, as shown in Fig. 3(b). These sub-mesh structureg &mm the constraint that such
edges always lie on two viewing cone faces, arising from tvfferent views, in order to be on
the surface of the visual hull, as described in section III-C

The two-view algorithm needs to be extended to recover tlsebemeshes. The proposed
algorithm is summarized in paragraph VI-E. At any given pamthe algorithm, a sub-part
of the mesh is known but has partially computeghgingedges. The set of hanging edges is
initialized to the set of viewing edges, but gradually beesrimcremented with cone intersection
edges. Regardless of the nature of the hanging edge andgedtadvance in the reconstruction,
hanging edges always exhibit the same local problem, iifitett in Fig. 9(a). The problem is
that two edges are missing and need to be identified, one flegfteocurrent hanging edgg,

the other on its right. Both missing edges share a commoexeé&rwith the hanging edgé-.
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(@) (b)

Fig. 9. (a) Characteristics of a hanging edge. (b) Retrieval of tla&imal possible edg’,,....

What enables the algorithm to make incremental progresBemtesh building is that all three
generators ol are known. They are notef]. ;;, 7,i,,: andZy., in the figure. Consequently we
know the generators of both missing eddes;, and E,,,,;, because of consistent orientation

propagation from edge to edge.

1) Missing edge directionWe therefore can use this information to compute a first g¢ome
rical attribute of the missing edges, thelirection We label these oriented vectors respectively
Liese @and g,

Because the normals of the planar cone faces correspormiagiven generator are known,
computingl,.;, andl,;y, is easy. Ifn;. s, n,;,, andng., are the normals associated wilh,
T.igne @and 7y, and the traversal direction vector of the current edgebel&dl; and points

toward V, they are given by the following expressions:
lleft = knleft X Ngen such that|lE lleft nleft| >0
lright = kngen X Nyight such that“”‘ght 1 ngen\ >0

where the coefficienk € {—1, 1} ensures a consistent orientation in each case.

The information still missing about edgds.;, and E,,,,, is the particular vertex instance
theses edges lead to. Such vertices can only be of two naterdeer an existing viewing edge
vertex or triple point. Let us focus on the case of missingeellg;,. The case ot is exactly
symmetric and can be inferred by the reader from the follgwdescription, by considering the
generators oft,;,,, namely7Z,.,, and7,,,,,. We will first consider the maximal possible edge,
which is given by two-view constraints ovérl, ;,. We will then discuss the existence and retrieval

of a triple point vertex forE. s, then focus on retrieving a viewing edge candidate, shoald n
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triple point exist for this edge.

2) Maximal possible edgeThe cone intersection edde. . is known to be on the surface of
the visual hull. It is partially defined by two generatdfs;; and 7., arising from two views
and j. Because the two generators are limited in space, theydimte a constraint over where
any candidate edge can be. The maximal bound for an edgeresespied in Fig. 9(b). It is given
by the most restrictive of the four viewing lines involved, the directionl,.;,. The maximal

possible edge is labele#,,,,.

3) Triple point case: Any candidate vertex chosen withif,,,, is valid if and only if
connecting it tol” ensures that the entire resulting edge lies within the velwhall viewing
cones for views other thanand j, by definition of the visual hull. Should this constraint be
violated, we would no longer be able to guarantee that thehrgesmetry we are computing
lies at the surface of the visual hull polyhedron. Recipligcd we do detect a viewk for which
this constraint is violated, then we have detected a tripiatpThere can be several such views
for which the constraint is violated. To ensure we stay onwuiseial hull, we must select the
view k that leads to the shortest possible created edge. This is bprprojectingE,,.. into
all viewsm # i, j, identifying the generator edge giving the most restreciivtersection bound
with the silhouette contour of each view, and keeping the most restrictive intersection bound
among all viewsijf any such intersection existk thus enables us to compute both the existence

and geometry of a triple point, from its third identified geater in a viewk.

4) Viewing edge vertex caseShould no intersection restridf,,,, from its original upper
bound, we knowE).;, does not connect’ to a triple point, but to an existing viewing edge
vertex instead. As in the two view case, there are only aicéstr number of possible viewing
edge vertex candidate5,.;, can lead to. These lie on the four viewing lines incident te th
planar cone faces df;.;; and7Z,.,, arising from two different views and ;. Exactly like in the
two view case, it is then possible to retrieve the correspandiewing edge verteX’r from

one of these viewing lines, by examining the generatorsstihacommon withZ. ;.
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5) lteration and stopping conditionsOnce the missing vertex af,.;, has been identified
and built, the resulting edge is added to the list of curreariging edges. The missing edge
E,izn can then be built and also added to the list of hanging edgesefsing then continues
by retrieving any hanging edge from the current list, anduim tby building its missing edges,
until the list is empty. Alternatively, the algorithm carsalbe made recursive and use the stack
for hanging edge storage, instead of a list. Traversals sfiopn a missing edge is built by
connecting the current vertex to a vertex that has already lbecated. The condition is trivial
when no triple point is found, because viewing edge vertalesady exist by construction. If a
triple point is found, the algorithm must be able to deteeninit has been created or not. This
can be achieved by indexing triple points using the tripleitsogenerators as key, all of which

are known as soon as a triple point is detected.

D. Polyhedron face identification

Once all edges have been retrieved, a full traversal of tlge eddructure can be used to
determine the faces of the polyhedron. Each generator edfeei2D images contributes to a
face of the polyhedron in form of a general polygon, with plolgsseveral inside and outside
contours. These contours can be identified by starting atlatrary vertex of the face, and by
traversing the mesh, taking face-consistent turns at eaxtbxvuntil a closed contour is identified.
Because the mesh orientation is consistent, this yieldsteowlockwise oriented outer contours,
and clockwise oriented inner contours. This information optionally be used to tessellate faces

to triangles, with standard libraries such as GLU [44].

E. Algorithm summary

The algorithm is summarized here in recursive form. Two fioms are used to process hanging
edges (Algorithm 2), retrievedges (Algorithm 3) and retrieweertex (Algorithm 4). Through
this summary, and the summary of the viewing edge algorithiman be noted that the entire
visual hull computation reduces mainly to one numericalrapen: the ordering of 3D plane

intersections along a 3D line’s direction.
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Algorithm 2 Polyhedral visual hull computation

1:

2

3:

4.

5

6:

7.

compute viewing edges

. for all vertexV' of viewing edgeFE: do
retrieveedgesy, kL)

end for

. for all generator? of all silhouette contoursdo

retrieve face information, all contour§ in plane of 7

end for

Algorithm 3 retrieveedgesV, F)

1:

2:

3:

4.

a

6:

7.

8:

if edge left of £ missing at verteX/ then
compute directionl,.;, of missing edge
retrievevertexV, 1, )

end if

if edge right ofE missing at verteX/ then
compute directionl,;,,, of missing edge
retrievevertexV, L.ignt)

end if

Algorithm 4 retrievevertex(/, 1)

1

2

3

4.

5:

6:

10:

11

12:

13:

14

: compute maximal edgeF,,.. in search direction

. find view k such thatcone,, intersectsk,,,, closest toV
. if k existsthen

searchtriple point P = FE,,.. N coney, in triple point database
if P was not yet createthen
compute triple point P = E,,.. N coney,
add P to mesh and triple point database
end if
add new edgeE=[V, P] to mesh
retrieveedgesP, F)
. else
find viewing edge verteXS incident to F,,.,
add new edge ¥, S] to mesh

- end if
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VII. COMPLEXITY ANALYSIS

Let n be the number of viewsy the number of objects in the scene, anthe maximum
number of vertices in occluding contours of any view. The bamof operations of visual hull
algorithms is non trivial to evaluate with respect to theesrdf magnitude of input sizes. This is
because the topology of scene objects themselves has aenicdlwn the number of primitives
generated and computation time. In particular there canldépte viewing edges along a single
viewing line, as soon as silhouettes of objects exhibitrthen-convex, self-occluding parts.

We therefore simplify this study by considering scenes withconvex objects. The non
linear behavior of the algorithm is then limited to interj@it phenomena, because silhouettes
of convex objects are also convex and can therefore not generultiple viewing edges. This
study generalizes to arbitrary scenes simply, by congideti to be the minimal number of

components in a convex part decomposition of the scene gepme

A. Number of computed vertices

The viewing edge and cone edge retrieval algorithms bothpeteO(nm?q) 3D vertices.
Each reconstructed visual hull component is convex andetber exhibitsO(n) strips, with
each strip being made @f(q) primitives directly inherited from image contour geometrythe
worst case where views are ambiguously placed, the siltesietm objects can be generated
by a quadratic number of components, all of which are acemuifr in the visual hull (see
Figure 10). The likelihood of encountering this worst caserdases with the number of views
used. Nevertheless some particular object and camera aaatfisns have been seen to result in
this behavior in practical, near-degenerate setups, whenviews are at the four corners of a

rectangle for example.

B. Number of operations

The number of operations required for computing viewingesdig O (n?mq log mq), decom-
posing as follows: for each of th@(nmg) viewing lines considered, an intersection is searched
in each of the othen — 1 images, using ai(logmg) search to identify an intersecting edge
among themq edges of the searched image. Such a logarithmic search cachdeved by
pre-ordering vertices of a silhouette around all possilpipaes, using 2D angles, or epipolar

line slopes [8]. Both schemes exhibit discontinuities tmaist be dealt with carefully.
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Fig. 10. Quadratic behavior: illustration in the case ofthreal objects, leading to 9 visual hull components.

Computing cone intersection edges isO&n?m?qlogmg) operation. Because each of the
O(nm?q) edges requires examining edges in all views other than tbbsts generators, a
naive implementation examining all of th@(nmg) edges in other views would result in an
O(n*m3q?) operation. Similarly to the viewing edge case however, d@eslodatastructure can
be precomputed to achieve per-view searches, reducingetheeptex cost ta)(nlogmg). Our
implementation uses a single data structure to acceleretgng edge and viewing cone edge
computations for the purpose of efficiency. Instead of usirgjructure whose sorting depends
on epipole positions, we compute sorted silhouette verséx for a fixed numbek: of directions
in the 2D plane, which in turn can be amortized for both alfpons. Each algorithm can then
use the direction among whose sorted list minimizes the number of searched edgedated
for a given search operation. The choicekatan be fine-tuned in pre-computed tables according
to n, m andq. Although we do not have accessoin practice, a sufficient approximation of
m IS to consider the average number of occluding contours gsv over all views.

Identifying faces is trivially anO(nm?q) operation, because it is linear in the number of
vertices of the final polyhedron. The polyhedral visual lretovery algorithm therefore yields
an overall cost ofO(n*m?qlogmq) operations. To the best of our knowledge, no existing
polyhedral visual hull method gives an estimate of this clexipy, except [27]. An estimate
of this complexity is given in a related technical reportJ[48ection 3.6. Transposed with
convex objects in the scene, the given time complexity is idated by O(n?m?qlognmg),

slightly worse than our algorithm, and with weaker guarast®r surface properties.
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VIII. RESULTS

The algorithms presented in this article have been impléedeand validated with several
variants, one of which has been made publicly available fR®3 to 2006 as a library called
EPVH! (reference implementation, version 1.1). A distributecpliementation has also been
produced as part of the collaborative effort to build thenGage experimental platform at the
INRIA Rhodne-Alpes. Both synthetic and real data have beseduo validate the algorithm
and its reference implementation. We first present syrtluetiasets showing the validity of the
algorithm in extreme cases, and correctness of generalgtegaal surfaces on a broad set of
examples. We then provide results obtained from large egliences acquired on the Grimage
platform, and illustrate the potential of the method for 3ibfography and videography. Finally
we compare the algorithm with the method by Lazebnik, Fun#k& and Ponce [36], a state

of the art approach.

A. Method validation and reliability

Synthetic datasets have been used to characterize thd gletiavior of the algorithm in the
absence of segmentation noise, and check its sanity in sgcating objects whose topologies
are actually more complex than those of real world objedte Most relevant example we use is
the “knots” object of figure 11, reconstructed frafviewpoints, illustrating the capability of the
algorithm to accurately reproduce such objects and topegoigom silhouette data. Comparison
with classical volume-based approaches highlight the ssibdity to reproduce the object as
precisely as the polyhedral models even if a very high reswius used.

We have extensively used synthetic and real datasets tty thg manifold and watertight
nature of the surfaces produced by our algorithm. The palesénsitivity of the algorithm,
as in all algorithms strongly relying on geometric boolegremtions, lies in the potential for
misrepresentation of intersection coordinates in thehimghood of a degeneracy: coincidence
of four or more planes at a same point, perfect plane collityeadowever, degeneracies and
their perfect representation within the range of floatinghpoumbers proves extremely unlikely
in practice. In fact, the naive double-precision orderifiglane-intersections along a direction

we use, proves non-ambiguous in all experimented cases.

*http://perception.inrialpes.fr/~Franco/ EPVH

May 30, 2008 DRAFT



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 26

7

sl o
S

Fig. 11. Visual Hull of the “knots” object obtained using calgorithm from42 viewpoints, used9528 vertices. Right: the
same data reconstructed using a voxel method resolutiéd®of= 262144 shows the inherent limitations of axis aligned voxel
methods. Top right: original model, from Hoppe’s web sité][4

For a thorough verification, we have compiled a test databési synthetic objects, each
reconstructed with a number of views ranging frénto 42, which cover the main expected
conditions for running the algorithm. The viewpoints ar@s$n at vertex locations of an icosa-
hedral sphere, which is worse than real-life conditionsabhge choosing regular viewpoints with
noise-free coordinates greatly increases the probalufityomputing coincidentally degenerate
intersections. Silhouette bitmaps are vectorized, andctloedinates of the vectorization dilated
by a random, subpixel factor, to keep this probability clésezero. The completeness and
manifoldness of the representation is verified internayigbecking (1) that each edge is incident
to exactly two faces, and (2) that each vertex’s connectddsineighborhood is homeomorphic
to a circle [47], namely by checking that each vertex is caetew to three faces and edges
verifying (1). Watertightness is also internally verifieg bhecking that each edge is traversed
exactly two times upon building the polyhedron faces in thiedt step. By construction all

polyhedra generated are orientable because of consigtentaiion propagation from images
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Fig. 12. A few of the44 synthetic models reconstructed using the proposed dhgorihere presented as modeled frdn
views. 1760 reconstructions were performed using fréno 42 views.

(algorithm 3). We also verify these properties externajhyidmding all output models in CGAL
and testing for polyhedron validity and closedness: alhsigsts have returned results consistent
with the internal verification.

Examples of objects and reconstructions are given in Fig.Risults collected about the
reconstructions on our dataset show thatl @0 reconstructions succeed in producing a closed
manifold mesh. The manifold property of the generated sedaand broad success of the

algorithm have also been independently verified on otheasgds by Lazebnikt al. [36].
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Fig. 13. Polyhedra produced by EPVH for thesfice sequence, from9 views. Sequence acquired from Grimage, INRIA
Rhdne-Alpes. Input contour sizes were of the orde2t, yielding models with approximately, 400 vertices,8, 100 edges
and 10, 800 triangles. (right) Model is textured by choosing the mosnfrfacing viewpoint, and inserted in a virtual scene.

B. Real Datasets and 3D Videography

We conducted many experiments with real video streams eemtjoin the Grlmage platform.
We here present an example sequence, among many othersedctjuoughout the life of the
acquisition platform, the BNCE sequence. This dataset was produced us$ihgynchronized
30Hz cameras, whose acquisition was processed on a dedic@teglid® Surface precision and
movement details are captured with high quality by the retroctions, as illustrated in Fig. 13.
All 800 models generated in thig7 second sequence were verified to be manifold, watertight
polyhedral surfaces. The average computation time.isseconds per sequence time step, as
processed by @aGHz PC with3Gb Ram. The model quality is suitable for 3D photography,
by applying a texture to the resulting model, here computedlending contributions of the
three viewpoints most front-facing the correspondinguextace. Realistic models obtained are
depicted in Fig. 13.
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C. Comparison with state of the art methods

Many shape-from-silhouette algorithms exist, yet littlencproduce outputs comparable to
those of the proposed approach. The very recent approachabgbhik, Furukawa & Ponce
[36], built upon earlier work [6], proposes an algorithmyie on smooth apparent contours
and explicit detection and reconstruction of approximatatier points, to recover the smooth
projective structure of the visual hull. In this approache tauthors propose to use a dense
discretization of apparent contours in image space andretjiscrete approximations of contour
curvatures to build the topological polyhedron of the vishall illustrated in Fig. 3(a). The
resulting algorithm can be used to perform incremental eefients of the visual hull by adding
a viewpoint at a time, and explicitly uses oriented epipgkmmetry to compute image-to-surface
relationships and primitives. The algorithm produces gguteve mesh and a finescale polyhedron
by triangulation of visual hull strips. A qualitative andaquitative performance assessment has
been jointly performed (see also [36], section 6.3), usiagskets kindly made public by Lazebnik
et al. Five objects were photographed frd& viewpoints, yielding high resolution images. For
the need of the Lazebnikt al. algorithm, apparent contours were manually extracted from
images, and very densely discretized to favor frontier pdetection. Comparisons are given
for the sub-pixel contour dataset in Table | for both aldoris and depicted in Fig. 14.

Importantly, such a dense sub-pixel discretization is remded but can still be dealt with by
our algorithm. It is also not necessary for most applicatioro illustrate this, we also provide
results, labeled “EPVH from images”, produced using thgioél silhouette bitmaps at image
resolution, and applying pixel-exact contour discret@at[35], the standard EPVH pipeline.
This processing of the datasets still captures all the im&tion present in the original silhouettes
but yields apparent contour discretizations and visual pollyhedra orders of magnitude less
complex, which can be computed in a few seconds.

When compared on identical sub-pixel piecewise-lineartaaninputs, both our algorithm
and Lazebnilet al. produce manifold polyhedra that are visually indistingaisle (see Fig. 15).
Our algorithm however does show a clear performance adyaritaall datasets. No complexity
analysis was given by Lazebnét al., although the provided time results do hint toward a similar
complexity, related by a constant. Yet our algorithm showsrderent advantage in producing

polyhedra with a significantly lower number of primitiveshieh certainly participates in the
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Fig. 14. (a) Original models. (b) Reconstruction obtaineithvdense subpixel contours using our algorithm (EPVH). (c)
Close up of dense contour reconstruction. (d) Same closgsing image-resolution silhouette bitmaps: reconstoastiare less
smooth but carry the same surface information, hardly risishable from their subpixel input counterparts. (1)eAli24
views, 1600 x 1600. (2) Dinosaur:24 views, 2000 x 1500. (3) Predator1800 x 1700. (4) Roman:48 views, 3500 x 2300. (5)

Skull: 1900 x 1800. All five datasets courtesy Lazebnik, Furukawa & Ponce.

performance gain. This characteristic can probably béated to the fact that EPVH produces
polyhedra which closely and directly relate to contour iispwand generates no intermediate

primitives other than ones already on the visual hull sefdry construction.

IX. CONCLUSION

We have proposed an analysis of visual hull based object ingdgielding a new algorithm

to build the visual hull of an object in the form of a manifoldatertight polyhedral surface.
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Dataset | Method Contour points| Vertices Faces | Time(s)
EPVH sub-pixel contours 10,331 401,830 | 803,680 | 128.9
SKULL EPVH from images 418 19,466 38,940 2.5
Lazebnik, Furukawa & Ponce 10,331 486,480 | 972,984 | 395.7
EPVH sub-pixel contours 10,066 290,456 | 580,908 | 138.0
DINOSAUR | EPVH from images 566 19,938 39,868 3.8
Lazebnik, Furukawa & Ponce 10,066 337,828 | 675,664 | 513.4
EPVH sub-pixel contours 9,387 171,752 | 343,500 | 119.3
ALIEN EPVH from images 633 14,972 29,924 3.9
Lazebnik, Furukawa & Ponce 9,387 209,885 | 419,770 | 532.3
EPVH sub-pixel contours 10,516 306,152 | 612,420 | 136.0
PREDATOR | EPVH from images 611 23,370 46,784 4.1
Lazebnik, Furukawa & Ponce 10,516 375,345 | 750,806 | 737.2
EPVH sub-pixel contours 17,308 884,750 | 1,769,544| 1,612.5
ROMAN EPVH from images 778 51,246 102,448 18.1
Lazebnik, Furukawa & Ponce 17,308 1,258,346| 2,516,764| 5,205.6

TABLE |

STATE OF THE ART COMPARISON ON3.4GHz PENTIUM IV, JOINTLY PERFORMED WITHLAZEBNIK ET AL.[36].

We propose an alternative set definition of the visual hudk tlelaxes the need for a common
visibility region of space implied by classical definitio’&e then carry further the analysis and
precisely determine the discrete structure of the visulldusface in the case where polygonal
silhouettes are used as input. This leads to a new algoritta deparates the estimation of
a visual hull polyhedron into the determination of its deter strip geometry, followed by the
recovery of cone intersection edges. These primitives aterchined to be complementary in
the representation of visual hull polyhedra. The compjegit the algorithm is analyzed, and
results are provided for a variety of synthetic and real sktta This work provides several key
contributions to 3D modeling from silhouettes, which ar@exmentally put to the test. First,
watertight, manifold polyhedral surfaces are verifiablpdquced. Second, such polyhedra are

produced more efficiently than current state of the art nutho
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Fig. 15. Comparison of outputs of EPVH (b,d) and the algarnifinom Lazebniket al. (a,c), with the five datasets of Fig. 14.
Reprinted from [36], courtesy Lazebnét al. (a) and (b) show a close-up of the visual polyhedron for bégbri¢hms. (c) and
(d) show a view with one color per visual hull strip. Resultsye visually indistinguishable.
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