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Abstract

Modeling from silhouettes is a popular and useful topic in computer vision. Many methods exist to

compute the surface of the visual hull from silhouettes, butfew address the problem of ensuring good

topological properties of the surface, such as manifoldness. This article provides an efficient algorithm

to compute such a surface in the form of a polyhedral mesh. It relies on a small number of geometric

operations to compute a visual hull polyhedron in a single pass. Such simplicity enables the algorithm

to combine the advantages of being fast, producing pixel-exact surfaces, and repeatably yield manifold

and watertight polyhedra in general experimental conditions with real data, as verified with all datasets

tested. The algorithm is fully described, its complexity analyzed and modeling results given.

Index Terms

Modeling from multiple views, modeling from silhouettes, shape-from-silhouettes, 3D reconstruc-

tion, visual hull

I. INTRODUCTION

Modeling an object from silhouettes is a popular topic in computer vision. Solving this problem

has a number of applications for 3D photography, automatic modeling, virtual reality applications,

among other possibilities.

Assume we are givenN silhouettes of an object corresponding to different cameraviewpoints.

The visual hull is the maximal solid shape consistent with the object silhouettes. It is often

seen as the intersection of per-view volumes that backproject from the input silhouettes, the

viewing cones, as will be further discussed. Such an approximation of the object captures all

the geometric information available from the object silhouettes. Many methods exist to compute

the visual hull of objects from silhouettes in images, as theproblem is of interest for many

applications including real-time 3D modeling, and provides an initialization for a wide range of

more complex offline modeling methods [1]–[3]. In this article we describe how to efficiently

use the silhouette information to compute polyhedral visual hulls, while achieving desirable

properties for the surface representation and high modeling speed.

The visual hull definition was coined by Laurentini [4] in a theoretical context where an infinite

number of viewpoints surrounding the object is considered.In this contribution, fundamental

properties of visual hulls are also analyzed. However, a geometric intuition and solution of the
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3D modeling problem from a finite number of silhouettes was given as early as 1974 by B.

Baumgart [5], based on pairwise polyhedral intersections of viewing cones.

The visual hull has been widely studied implicitly or explicitly after this seminal contribution,

in the computer vision and graphics communities. In particular, it was recently shown that the

visual hull of a curved object is a topological polyhedron, with curved faces and edges, which

can be recovered under weak calibration [6] using oriented epipolar geometry [7]. The algorithm

proposed can however be impractical for fast and robust computations. We propose a simpler

alternative to achieve these goals.

Many other algorithms exist to provide approximate solutions to the shape-from-silhouette

problem. Most of them fall in two categories:volume-based approachesfocus on the volume of

the visual hull and usually rely on a discretization of space. Surface-based approachesfocus on a

surface representation of the visual hull. A third approachexists that computes a view dependent

image-based representation, from an arbitrary viewpoint [8]. Although useful for a wide variety

of tasks, this method doesn’t provide full 3D models as required by many applications. Obtaining

full 3D models is a main concern of this article, which is why we focus mainly on surface-based

approaches. To provide a wider view of the reconstruction problem, which can be solved using

information different than silhouettes alone, we also discuss alternate methods of volume and

surface reconstruction which use photoconsistency as a modeling cue.

A. Volume-based approaches

Volume-based approaches usually choose a discretization of space that uses convex cells called

voxels. Each cell is projected in the original images and carved with respect to its silhouette

consistency. This process relies on the convexity of cells to estimate whether a voxel falls inside

or outside the input silhouettes, possibly sampling several points within a single voxel to perform

the decision [9]. As such these approaches compute a discretized viewing cone intersection, as

an approximate representation of the visual hull. The particular discretization chosen ranges from

fixed grid representations with parallelepipedal axis-aligned cells [10], to adaptive, hierarchical

decompositions of the scene volume [11]–[14]. Notably the choice of representation of the scene

volume as a set of voxel columns reduces the visual hull occupancy decision of an entire column

to a line-to-silhouette-boundary intersection problem [15].

While robust and simple, this category of approaches suffers from inherent disadvantages.
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As they compute a discrete and approximate representation of the scene, the provided result is

usually subject to aliasing artifacts. These can only be reduced by drastically raising the resolution

of representations, yielding a poor trade-off between timecomplexity and precision. These

representations are also biased by the coordinate system chosen for grid alignments. This is why

more recent work has focused on alternate surface representations to capture more information

about the visual hull. We have proposed a first improvement tovolume-based approaches by

means of a Delaunay tetrahedrization of space, yielding a surface by carving away tetrahedra

that fall out of the visual hull and a first step to eliminatingaxis-aligned bias [16]. We now

discuss other works relevant to surface modeling from silhouettes.

B. Surface-based approaches

Surface-based approaches aim at computing an explicit representation of the visual hull’s

surface, and analyze the geometric relationship between the silhouette boundaries in images,

and the visual hull boundary. Surface primitives are computed based on this relationship and

assumptions about the surface. Baumgart’s early method proposes an approach to compute

polyhedral representations of objects from silhouette contours, approximated by polygons [5].

A number of approaches assume local smoothness of the reconstructed surface [17]–[21],

and computerim points based on a second-order approximation of the surface, from epipolar

correspondences. These correspondences are usually obtained by matching and ordering contours

from close viewpoints and can be used to connect points together to build a surface from the

resulting local connectivities and orientations. This however only yields an approximate topology

of the surface as these orientations reverse atfrontier points, where rims cross over each other.

More recent methods [22]–[25] exploit the duality that exists between points and planes in 3D

space, and estimate the dual of the surface tangent planes asdefined by silhouette contour points,

but can still suffer from singularities due to improper handling of the local surface topology in

the neighborhood of frontier points, or evacuate them by a costly resampling of the final surface

which doesn’t guarantee proper surface rendition below a chosen threshold. Other primitives have

been used to model the visual hull surface, computed in the form of surface patches [24], [26] or

strips [27]. However, building a manifold surface representation from these primitives proves non-

trivial and is not thoroughly addressed in those works. Additional difficulties arise in the particular

case of visual hulls surfaces, which are computed as the boundary of a cone intersection volume,
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where viewing cones are tangent to each other. Thus, many surface components are sensitive to

numerical instabilities in the region of these tangencies.Unless addressed, these issues usually

mean that the surface produced will locally have anomalies,such as holes, duplicate primitives,

and possibly self-intersections. While such methods with local errors are perfectly acceptable for

rendering tasks, and have been used as such on graphics hardware [28], [29], surfaces produced

without these guarantees are not suitable for 3D modeling applications. These often require

post-processing of the surface, where manifoldness is a usual requirement. The surface is a2-

manifold if the local surface topology around any point of the surface corresponds to a disk,

thus ruling out cuts, self-intersections, and orientationreversals of the surface. This property is

necessary for many post-processing tasks such as mesh simplification or smoothing, animation,

compression, collision detection, volume computation, non-degenerate computation of normals,

among other possibilities. A first response to degeneracy and epipolar matching problems was

proposed for the case of smooth objects [6], [30], by identifying the precise structure of the

piecewise smooth visual hull induced in this case.

C. Photoconsistency approaches

The aforementioned approaches are based on purely geometric decisions using silhouette

regions and do not consider any photometric information. Photohull approaches exist which

compute sets of photoconsistent voxels as scene representation [31], [32], which has lead to many

variations. Surveys of volume-based photoconsistency approaches can be consulted for further

details [33], [34]. It should be noted that although these methods use more scene information,

they must also deal with the visibility problem, because detecting photoconsistent voxels assumes

knowledge of the subset of input images where that voxel is visible. As such, they are significantly

more complex and sensitive to classifications errors, whichpropagate false information on the

model for all voxels behind it. Such classification errors are bound to happen because many

photohull methods compute photoconsistency under a Lambertian surface assumption for scene

objects, a well known oversimplification of real world scenes. Recently, more successful methods

using photometric information have been presented and address these problems using surface

regularization schemes and surface topology constraints [2], [3]. Interestingly, most such methods

achieve robustness by using a manifold visual hull surface representation to provide initialization

and geometric constraints, which our algorithm can provide[3].
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D. Difficulties and contributions

In this article we propose a new method for polyhedral modeling of the visual hull of objects.

Although several methods exist to compute visual hulls, andvisual hull polyhedra or polyhedral

strips [5], [27], from a set of silhouettes, several problems remain unaddressed.

First, we propose a more general definition of the visual hullwhich formulates the visual hull

in the complement of the union of visibility domains of all cameras, as discussed in section II-C.

The current formulations of visual reconstruction from silhouettes implicitly imply that all views

see the entire object. Although this constraint can easily be fulfilled for small-scaled setups under

controlled environments, it is much harder to achieve in wider-scale setups where the field of

view of cameras and size of acquisition rooms is a limiting factor. Our definition enables to

relax this constraint.

Second, it is unclear from existing work if polyhedral models of the visual hull are good

approximations of the visual hull itself. We show here a scheme that consistently yields op-

timal polyhedral visual hulls. Indeed we successfully apply an 8-connected segment retrieval

algorithm [35] to recognize exact contours from image lattice coordinates lying at the boundary

between the discrete silhouette and non-silhouette pixel regions. This in turn enables our algo-

rithm to yield visual hull polyhedra that are pixel-exact with respect to input silhouettes, thereby

providing a valid alternative to more expensive smooth reconstruction methods.

Third, most existing polyhedron-based reconstruction algorithms do not combine the advan-

tages of being fast and repeatably yield watertight and manifold polyhedral surfaces. As a

matter of fact, none of the surface-based reconstruction methods reviewed in section I-B make

any strong mesh validity claim or thoroughly verify their outputs, with the exception of [36]

(comparison given in section VIII). Baumgart’s contribution to polyhedral visual hull modeling

[5] has given rise to an entire family of more general polyhedral solid modeling methods within

the framework of Constructive Solid Geometry (CSG) [37], where solids are expressed as a set

of simpler solids combined using boolean operations. The intersection computations involved

in building a boundary mesh from such general representations were proven unstable [38]

in certain identified cases: because machine precision is finite, geometric decisions can be

erroneous in degenerate or nearly degenerate mesh configurations. The best attempt to solve

this problem relies on exact, arbitrary-precision arithmetic [39], which remains the standard
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requirement for failproof computational geometry modeling methods to this date, as implemented

in state-of-the-art libraries such as CGAL [40]. While thistheoretically closes the problem, the

enormous overhead of exact arithmetic CSG hardly makes it a practical solution for visual

hull modeling, one of its major appeals being the potential to produce models at very efficient

speeds. Instead, our solution focuses on identifying the structure of polyhedral visual hulls

(section III) to yield a very simple algorithm with an identified computational complexity

(section VII). In our case, geometric computations reduce to a very small set of single-unknown

intersection cases (examined in sections V and VI) which caneasily be fine-tuned to minimize the

possibility of numerical error. Indeed our implementationhas provided watertight and manifold

polyhedral surfaces on all real datasets tested with no single failure, as verified in section VIII

and independently [36].

II. V ISUAL HULL DEFINITIONS

Let us consider a scene with several objects of interest, observed byN pinhole cameras with

known calibration. A vertex in space will be writtenX (capitals). Image points will be written

x or p, and an image linel. Image view numbers will be noted as superscripts. We sometimes

associate to a pointx in view i its viewing lineLi
x defined as the set of points that project tox

in imagei. Details about multi-view geometry can be found in the literature [41], [42].

A. Contours and rims

We assume that the surface of observed scene objects is closed and orientable, curved or

polyhedral, possibly of non-zero genus.Rims(see Fig. 3(a)) are defined as the locus of points

on the surface of objects where viewing lines are strictly tangent to the surface. The projection of

rims in images define theoccluding contours[10], which bound the silhouette of objects in each

image plane. With this definition, each occluding contour has the topology of a one-dimensional

manifold.

Observed silhouettes can be of non-zero genus: each silhouette can consist of several different

connected components, arising from the projection of different scene objects. Each connected

component can comprise several holes reflecting the topology of these objects, giving rise to

inside contours of the silhouette (see Fig. 1). To denote thedifferent occluding contours observed

under these conditions in each view, we use a subscript:Ci
j names thejth occluding contour in
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Fig. 1. The silhouette in its most general form: possibly several outer and inner contours, with counter-clockwise and clockwise

orientation respectively. The inside region of the silhouette is grayed.

view i. We call inside regionof an occluding contour the closed region of the image plane which

it bounds. Symmetrically we calloutside regionits complement in the image plane. Outside and

inside contours of the silhouette are to be distinguished bytheir orientation, respectively counter-

clockwise and clockwise. This is a useful definition as it ensures that the actual inside region of

the contour is locally left of any portion of an occluding contour, regardless of its nature. Each

view i thus has a set of contoursCi, which in fact is the union of two sets of inner contoursN i

and outer contoursOi.

B. Viewing cone

The viewing cone is an important notion to define visual hullsas it describes the contribution

volume associated with a single view. Because silhouettes can have several disconnected com-

ponents and holes, it is necessary to distinguish two definitions. We first introduce the viewing

cone associated with a single occluding contour, before discussing the more general definition

of a viewing cone associated with a viewpoint, which is the one generally used throughout this

article.

Intuitively, the viewing cone associated with an occluding contouris a cone whose apex is

the optical center of the associated view, and whose base is the inside region of this contour.

More formally, the viewing coneV i
j associated with the occluding contourCi

j is the closure of

the set of rays passing through points insideCi
j and through the camera center of imagei. V i

j is

thus a volume tangent to the corresponding object surface along a curve, the rim (or occluding

contour generator) that projects ontoCi
j . According to the nature ofCi

j , which is either an outside

or inside contour, the viewing cone is a projective volume whose base in images is a region of

R
2, respectively closed or open.
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Based on these conventions, we can now give a definition of theviewing coneV i associated

with a viewi. Such a definition should capture all points of space that project on the inside region

of the viewi’s silhouette. A first intuitive definition ofV i could be formulated by compounding

the contributions of the connected components of the silhouette:

V i =
⋃

k∈Ki

(
⋂

j∈Ci

k

V i
j), (1)

whereKi is the set of connected components of the silhouette in viewi and Ci
k the set of

contours associated with thek-th connected component in the silhouette, namely one outside

contour and an arbitrary number of inside contours in that component. This formulation however

assumes that occluding contours can easily be grouped by connected component once acquired

from an input set, which is not straightforward. We thus use an equivalent definition ofV i, which

separates cones in two sets according to the orientation of the corresponding contour:

V i = (
⋃

j∈Oi

V i
j)

⋂

(
⋂

j∈N i

V i
j). (2)

The equivalence with (1) comes from the fact that inner contours have a neutral contribution for

all set operations outside their corresponding outer contour. Thus they can be used independently

of outer contours to compute the visual hull volume. This is also practical because the orientation

of the contours can be detected independently when discovered in input images, which is why

this definition is the one generally used to compute viewing cone primitives.

C. Visual Hull Set Definitions

In previous work on visual hulls, it is always assumed, to thebest of our knowledge, that all

views see the object in its entirety. However, the problem ofbuilding such visual hulls from

non-overlapping views has never been addressed. We therefore provide a different definition of

the visual hull to enable the possibility of modeling in thiscase, by reasoning over the set of

points ofR3 that lie at the union of all visibility regions. All algorithms to reconstruct the visual

hull, including the one we present in this article, can use either of these definitions, depending

on the context and targeted application.

Informally, thevisual hull can be defined as the intersection of all viewing cones associated

with the considered viewpoints. It therefore consists in a closed region of space, whose points
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Fig. 2. A scene observed by4 viewpoints: consequence of the different possible visual hull definitions. (b) and (c) show, in

gray, regions as defined by (3) and (4) respectively.

project on the inside region of all occluding contours. LetI be the set of input images considered,

and C the set of all occluding contours. The visual hull can be directly formulated using the

above definition of a viewi’s viewing cone:

VH(I, C) =
⋂

i∈I

V i. (3)

However, expression (3) has the undesirable side-effect ofeliminating regions outside the

visibility region of certain cameras, as illustrated in Fig. 2-(b). This is nevertheless the definition

implicitly used in most existing algorithms. A solution to this problem is to consider each

view’s contribution only in this view’s visibility regionDi. This can be achieved by expressing

the complement of the visual hull, as an open region ofR
3 defined by:

VHc(I, C) =
⋃

i∈I

(

Di \ V i
)

,

=
⋃

i∈I



 (
⋂

j∈Oi

Di \ V i
j )

⋃

(
⋃

j∈N i

Di \ V i
j)





(4)

whereDi \ V is the complement of a given setV in view i’s visibility domain. By using (4),

objects that do not appear in all images can still contributeto the visual hull. Knowledge about

the visual hull or its complement is equivalent because the surface of interest of the visual hull

delimits these two regions.

The use of these different definitions is illustrated in Fig.2. A scene is observed from four

viewpoints, where camera1 only sees the green object. Use of expression (3) is illustrated in
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Fig. (b) : the visual hull (in gray) does not contain any contributions relative to the red and blue

objects. Fig. (c) shows the result of expression (4), which does include such contributions using

the complement of the visibility domain. Note that the use of(3) and (4) both can induce virtual

objects not present in the original scene, but (4) produces more in general. Such ”ghost” objects

appear in regions of space which project inside silhouette regions of real objects in all views.

The number and size of such artifacts can be reduced by increasing the number of viewpoints.

III. T HE V ISUAL HULL SURFACE

We have given a set definition of the visual hull volume. We areparticularly interested in the

visual hull’s surface, which bounds this volume. In order toderive the algorithm, we study the

properties of this surface, in particular under the assumption of polygonal occluding contours,

which leads to a polyhedral form for the visual hull.

(a) (b)

Fig. 3. Differences in structure in the visual hull (here a sphere obtained from three views under a perfectly calibratedand

smooth occluding contour setup [6] (a), versus the case of discretized occluding contours and less than perfect calibration,

leading to a polyhedral visual hull without frontier points(b).

A. Smooth Visual Hulls

The visual hull surface’s structure has previously been studied in the case of a finite number

of viewpoints, with the underlying assumption of contour smoothness and perfect calibration
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[6]. This work shows that the visual hull of smooth objects with smooth occluding contours is

a topological polyhedron with generalized edges and faces,corresponding to truncated portions

of smooth viewing cone surfaces and surface intersections.This shape bares the contributions of

one view (strips), two views (cone intersection curves and frontier points), and three views (triple

points), as depicted in Fig. 3(a). An algorithm to reconstruct this polyhedron was proposed in the

original work, and a thoroughly described variant of greater efficiency was recently proposed [36].

Both works rely on the explicit detection and construction of frontier points, which is a delicate

step because frontier points arise at the exact locus of tangency of two viewing cones. However in

general setups, contour extraction and calibration noise,as well as finite precision representation

of primitives, imply that the viewing cones manipulated in practice only approximate true viewing

cones. Therefore they never exactly exhibit the tangency property. This leads the aforementioned

approaches [6], [36] to tediously search and build an approximate representation of frontier points

based on contour smoothness assumptions.

B. The Validity of Polyhedral Approximations

Because the shape of the visual hull is stable under small perturbations, using bounded

polygonal approximations of occluding contours will have little impact on the global shape

computed. To this aim we propose to discretize occluding contours using an efficient, pixel-

exact extraction algorithm (e.g. [35]), which does not increase the overall noise introduced by

silhouette extraction. Fig. 3 and Fig. 4 make explicit the particularities in structure that are

induced by calibration and discretization noise. Tangencyis generally lost and the structure

is consequently altered, from a set of perfectly interleaved strips crossing at frontier points

(Fig. 4(a)), to a disymmetric structure where strips overlap one another and where strip continuity

is lost (Fig. 3(b), Fig. 4(b)). Interestingly, this structure is thus more general than the theoretical

smooth structure of the visual hull because of the absence ofpurely degenerate primitives, and

leads to the simpler algorithm proposed.

C. Relevant Primitives of the Polyhedral Visual Hull

We describe here the useful polyhedron primitives induced by contour discretization, shown

in Fig. 3(b). We will use these to build our algorithm.
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(a) (b)

Fig. 4. Schematic visual hull strips obtained (a) in an idealcase where noise is absent (b) in the presence of noise.

Infinite cone face. An infinite cone face is a face of a discrete viewing coneV i, induced by

contour discretization. Each 2D edgee of a discrete silhouette contour induces an infinite cone

faceTe.

A discrete strip is a subset of the surface of a discrete viewing cone. Each strip is fragmented

as a set of faces each induced by a 2D edgee. The faces are thus a subset of the corresponding

infinite cone faceTe.

Viewing edgesare the edges of the visual hull induced by viewing lines of contour vertices.

They form a discrete set of intervals along those viewing lines, and represent part of the discrete

strip geometry as they separate the different faces of a samestrip. Such edges can be computed

efficiently, as described in section V, and give the startingpoint of the proposed surface modeling

algorithm.

Triple points , the locus of intersection of three viewing cones, are stillpart of the cone

intersection geometry, because they are non-degenerate and stable under small perturbations.

Cone intersection edgesform the piecewise linear cone intersection curves inducedby viewing

cone discretization.

A number of mesh primitives arise from (and project back on) each occluding contour 2D
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edgee. We call edgee a generator for these primitives. In a non-degenerate configuration,

faces possess one generator, edges possess two generators,and vertices three: all vertices of

the polyhedron are trivalent. We assume that degenerate configurations are extremely unlikely to

occur with practical noisy inputs and finite number representations, an assumption experimentally

verified for all datasets tested to date (section VIII). Instead, small but consistent edges and faces

are computed on the polyhedron in nearly degenerate configurations.

The structural elements of the polyhedral visual hull now identified, we now discuss the

algorithm proposed to build them efficiently.

IV. A LGORITHM OVERVIEW

Several of the properties analyzed about visual hull polyhedra and viewing edges hint toward

a simple and efficient algorithm. First, the polyhedral meshof the visual hull is the union

of viewing edges, which are easy to compute, and cone intersection edges. Vertices of the

polyhedron are either viewing edge vertices or triple points. Second, coplanar primitives of the

polyhedron project on the same occluding contour edge: theyshare a common generatore.

More generally incidence relationships on the polyhedron only occur between primitives that

share a common subset of generators. Third, computing the extremal vertices of an edge on

the polyhedron through intersection operations hints to the incidences of neighboring edges not

yet computed, because we know which generators these primitives share. We thus propose to

incrementally recover the entire polyhedron in a three stepprocess (Figure 5):

1) Compute all viewing edges of the polyhedron, their vertices, and their generators.

2) Incrementally recover all cone intersection edges and triple points, using the common

generators of adjacent primitives already computed.

3) Identify and tessellate faces of the polyhedron.

The following sections give the details of each step.

V. COMPUTING V IEWING EDGES

We here examine the first step of the proposed algorithm. Viewing edge computation has

indirectly been studied by Matusiket al. [8] to compute image-based representations of the

visual hull, where an equivalent process needs to be appliedto each ray of a target image.
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Fig. 5. Algorithm overview.

Cheunget al. [43] also use similar computations to constrain the alignment of visual hulls

across time. The algorithm we use is as follows.

A. Algorithm

Computing viewing edges consists in searching the contribution to the visual hull surface of

each vertexp used in the 2D occluding contour polygons. It is thereby necessary to determine

when such a viewing line traverses the viewing cones of all other views. For each cone this

defines a set of intervals along the viewing line ofp, representing the portions inside the cone.

These sets must then be gathered across all views and combined using one of the set formulations

described in section II-C, in order to obtain edges of the final polyhedron.

The algorithm is summarized below. The viewing line of vertex pi
j is notedLi

j.
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Fig. 6. Intervals along the viewing ray contributing to the visual hull surface(red).

Algorithm 1 Viewing Edge Computation

1: for all contourOi
j in all views: do

2: for all view k such thatk 6= i: do

3: for all verticespi
j in Oi

j : do

4: compute the epipolar linel of pi
j in view k,

5: compute intervals ofl falling inside contourOk
l in view k,

6: combine depth intervals alongLi
j with the existing

7: end for

8: compute the 3D points bounding the intervals alongLi
j.

9: end for

10: end for

B. Computing depth intervals

Let pi
j be the vertex of an occluding contourCi

j . The contribution intervals on the viewing

line of pi
j are bounded by intersections of this viewing line with surfaces of viewing cones in

views k 6= i. They can be computed in 3D or using epipolar geometry (Fig. 6).

Once depth intervals have been obtained for each viewing cone of viewsk 6= i, they must be

combined according to the set definitions of the visual hull described in section II-C, by using

either definition (3) or (4) and applying it to the intervals.

May 30, 2008 DRAFT



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 17

T

Tleft

right

Fig. 7. Orientation relationship between strips, occluding contours and viewing edges, for algorithm initialization.

VI. COMPUTING CONE INTERSECTION EDGES

A. Initialization

The main characteristic of the algorithm is to build the meshwhile visiting it. New vertices

are incrementally added by identifying missing edges of existing vertices. Viewing edges serve

as the starting point for the algorithm: they are a discrete representation of the strip geometry.

They provide two initial vertices that share one known edge.For each of the vertices, two edges

are missing and need to be built.

Fig. 7 shows how to initialize the mesh traversal by using contour orientation in views. The

viewing edge provides two initial paths for mesh building, whether traversal is started toward

the camera or away from the camera. When initializing the traversals it is easy to identify what

generators are locally left and right, because the strip is oriented.

B. Two-view case

The two view case is an interesting particular configuration, because there are no triple points

by definition. Viewing edge vertices completely capture thecone intersection geometry because

they already embed all possible line-to-plane intersections arising between cones. In this case,

cone intersection edges are very simple to find, because theyfill gaps between already existing

vertices. Only two configurations exist for a cone intersection edgeE, whether the vertices of the

edge arise from viewing lines of different or identical views, as illustrated in figure 8. Since the

generators of viewing edge vertices are known when they are computed, these can be stored and
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Fig. 8. The two types of cone intersection edge, in the two view case. Both configurations involve connecting neighboring

viewing edge vertices that share the edgeE.

used to identify cone intersection edges. Such edges can be retrieved simply by identifying those

viewing edge vertices whose generators are consistent witheither of the two possible patterns in

the figure. This can be done by looking at each viewing edge vertex and examining candidates

for the second vertex of edgeE on the four neighboring viewing lines involved, as seen in the

figure.

C. GeneralN-view case

Recovering cone intersection edges in the general case is not as simple. Triple points appear on

the cone intersection portions of the visual hull, and cone intersection edges no longer directly

connect viewing edges but form locally connected sub-mesh structures around sets of triples

points, as shown in Fig. 3(b). These sub-mesh structures arise from the constraint that such

edges always lie on two viewing cone faces, arising from two different views, in order to be on

the surface of the visual hull, as described in section III-C.

The two-view algorithm needs to be extended to recover thesesub-meshes. The proposed

algorithm is summarized in paragraph VI-E. At any given point in the algorithm, a sub-part

of the mesh is known but has partially computedhangingedges. The set of hanging edges is

initialized to the set of viewing edges, but gradually becomes incremented with cone intersection

edges. Regardless of the nature of the hanging edge and the stage of advance in the reconstruction,

hanging edges always exhibit the same local problem, illustrated in Fig. 9(a). The problem is

that two edges are missing and need to be identified, one left of the current hanging edgeE,

the other on its right. Both missing edges share a common vertex V with the hanging edgeE.
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Fig. 9. (a) Characteristics of a hanging edge. (b) Retrieval of the maximal possible edgeEmax

What enables the algorithm to make incremental progress in the mesh building is that all three

generators ofV are known. They are notedTleft, Tright andTgen in the figure. Consequently we

know the generators of both missing edgesEleft and Eright, because of consistent orientation

propagation from edge to edge.

1) Missing edge direction:We therefore can use this information to compute a first geomet-

rical attribute of the missing edges, theirdirection. We label these oriented vectors respectively

lleft and lright.

Because the normals of the planar cone faces corresponding to a given generator are known,

computinglleft and lright is easy. Ifnleft, nright andngen are the normals associated withTleft,

Tright and Tgen, and the traversal direction vector of the current edge is labeled lE and points

towardV, they are given by the following expressions:

lleft = k nleft × ngen such that|lE lleft nleft| > 0

lright = k ngen × nright such that|lright lE ngen| > 0

where the coefficientk ∈ {−1, 1} ensures a consistent orientation in each case.

The information still missing about edgesEleft and Eright is the particular vertex instance

theses edges lead to. Such vertices can only be of two natures: either an existing viewing edge

vertex or triple point. Let us focus on the case of missing edge Eleft. The case ofEright is exactly

symmetric and can be inferred by the reader from the following description, by considering the

generators ofEright, namelyTgen andTright. We will first consider the maximal possible edge,

which is given by two-view constraints overEleft. We will then discuss the existence and retrieval

of a triple point vertex forEleft, then focus on retrieving a viewing edge candidate, should no
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triple point exist for this edge.

2) Maximal possible edge:The cone intersection edgeEleft is known to be on the surface of

the visual hull. It is partially defined by two generatorsTleft andTgen, arising from two viewsi

and j. Because the two generators are limited in space, they introduce a constraint over where

any candidate edge can be. The maximal bound for an edge is represented in Fig. 9(b). It is given

by the most restrictive of the four viewing lines involved, in the directionlleft. The maximal

possible edge is labeledEmax.

3) Triple point case: Any candidate vertex chosen withinEmax is valid if and only if

connecting it toV ensures that the entire resulting edge lies within the volume of all viewing

cones for views other thani and j, by definition of the visual hull. Should this constraint be

violated, we would no longer be able to guarantee that the mesh geometry we are computing

lies at the surface of the visual hull polyhedron. Reciprocally, if we do detect a viewk for which

this constraint is violated, then we have detected a triple point. There can be several such views

for which the constraint is violated. To ensure we stay on thevisual hull, we must select the

view k that leads to the shortest possible created edge. This is done by projectingEmax into

all views m 6= i, j, identifying the generator edge giving the most restrictive intersection bound

with the silhouette contour of each viewm, and keeping the most restrictive intersection bound

among all views,if any such intersection exists. It thus enables us to compute both the existence

and geometry of a triple point, from its third identified generator in a viewk.

4) Viewing edge vertex case:Should no intersection restrictEmax from its original upper

bound, we knowEleft does not connectV to a triple point, but to an existing viewing edge

vertex instead. As in the two view case, there are only a restricted number of possible viewing

edge vertex candidatesEleft can lead to. These lie on the four viewing lines incident to the

planar cone faces ofTleft andTgen, arising from two different viewsi andj. Exactly like in the

two view case, it is then possible to retrieve the corresponding viewing edge vertexVE from

one of these viewing lines, by examining the generators it has in common withEleft.
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5) Iteration and stopping conditions:Once the missing vertex ofEleft has been identified

and built, the resulting edge is added to the list of current hanging edges. The missing edge

Eright can then be built and also added to the list of hanging edges. Processing then continues

by retrieving any hanging edge from the current list, and in turn by building its missing edges,

until the list is empty. Alternatively, the algorithm can also be made recursive and use the stack

for hanging edge storage, instead of a list. Traversals stopwhen a missing edge is built by

connecting the current vertex to a vertex that has already been created. The condition is trivial

when no triple point is found, because viewing edge verticesalready exist by construction. If a

triple point is found, the algorithm must be able to determine if it has been created or not. This

can be achieved by indexing triple points using the triplet of its generators as key, all of which

are known as soon as a triple point is detected.

D. Polyhedron face identification

Once all edges have been retrieved, a full traversal of the edge structure can be used to

determine the faces of the polyhedron. Each generator edge in the 2D images contributes to a

face of the polyhedron in form of a general polygon, with possibly several inside and outside

contours. These contours can be identified by starting at an arbitrary vertex of the face, and by

traversing the mesh, taking face-consistent turns at each vertex until a closed contour is identified.

Because the mesh orientation is consistent, this yields counter-clockwise oriented outer contours,

and clockwise oriented inner contours. This information can optionally be used to tessellate faces

to triangles, with standard libraries such as GLU [44].

E. Algorithm summary

The algorithm is summarized here in recursive form. Two functions are used to process hanging

edges (Algorithm 2), retrieveedges (Algorithm 3) and retrievevertex (Algorithm 4). Through

this summary, and the summary of the viewing edge algorithm,it can be noted that the entire

visual hull computation reduces mainly to one numerical operation: the ordering of 3D plane

intersections along a 3D line’s direction.
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Algorithm 2 Polyhedral visual hull computation
1: compute viewing edges

2: for all vertexV of viewing edgeE: do

3: retrieveedges(V,E)

4: end for

5: for all generatorT of all silhouette contours:do

6: retrieve face information, all contoursC in plane ofT

7: end for

Algorithm 3 retrieveedges(V, E)
1: if edge left ofE missing at vertexV then

2: compute direction lleft of missing edge

3: retrievevertex(V, lleft)

4: end if

5: if edge right ofE missing at vertexV then

6: compute direction lright of missing edge

7: retrievevertex(V, lright)

8: end if

Algorithm 4 retrievevertex(V, l)
1: compute maximal edgeEmax in search directionl

2: find view k such thatconek intersectsEmax closest toV

3: if k existsthen

4: search triple point P = Emax ∩ conek in triple point database

5: if P was not yet createdthen

6: compute triple point P = Emax ∩ conek

7: add P to mesh and triple point database

8: end if

9: add new edgeE=[V, P ] to mesh

10: retrieveedges(P, E)

11: else

12: find viewing edge vertexS incident toEmax

13: add new edge [V, S] to mesh

14: end if
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VII. COMPLEXITY ANALYSIS

Let n be the number of views,m the number of objects in the scene, andq the maximum

number of vertices in occluding contours of any view. The number of operations of visual hull

algorithms is non trivial to evaluate with respect to the order of magnitude of input sizes. This is

because the topology of scene objects themselves has an influence on the number of primitives

generated and computation time. In particular there can be multiple viewing edges along a single

viewing line, as soon as silhouettes of objects exhibit their non-convex, self-occluding parts.

We therefore simplify this study by considering scenes withm convex objects. The non

linear behavior of the algorithm is then limited to inter-object phenomena, because silhouettes

of convex objects are also convex and can therefore not generate multiple viewing edges. This

study generalizes to arbitrary scenes simply, by considering m to be the minimal number of

components in a convex part decomposition of the scene geometry.

A. Number of computed vertices

The viewing edge and cone edge retrieval algorithms both compute O(nm2q) 3D vertices.

Each reconstructed visual hull component is convex and therefore exhibitsO(n) strips, with

each strip being made ofO(q) primitives directly inherited from image contour geometry. In the

worst case where views are ambiguously placed, the silhouettes ofm objects can be generated

by a quadratic number of components, all of which are accounted for in the visual hull (see

Figure 10). The likelihood of encountering this worst case decreases with the number of views

used. Nevertheless some particular object and camera configurations have been seen to result in

this behavior in practical, near-degenerate setups, when four views are at the four corners of a

rectangle for example.

B. Number of operations

The number of operations required for computing viewing edges isO(n2mq log mq), decom-

posing as follows: for each of theO(nmq) viewing lines considered, an intersection is searched

in each of the othern − 1 images, using anO(logmq) search to identify an intersecting edge

among themq edges of the searched image. Such a logarithmic search can beachieved by

pre-ordering vertices of a silhouette around all possible epipoles, using 2D angles, or epipolar

line slopes [8]. Both schemes exhibit discontinuities thatmust be dealt with carefully.
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Fig. 10. Quadratic behavior: illustration in the case of three real objects, leading to 9 visual hull components.

Computing cone intersection edges is aO(n2m2q log mq) operation. Because each of the

O(nm2q) edges requires examining edges in all views other than thoseof its generators, a

naive implementation examining all of theO(nmq) edges in other views would result in an

O(n2m3q2) operation. Similarly to the viewing edge case however, a sorted datastructure can

be precomputed to achieve per-view searches, reducing the per-vertex cost toO(n log mq). Our

implementation uses a single data structure to accelerate viewing edge and viewing cone edge

computations for the purpose of efficiency. Instead of usinga structure whose sorting depends

on epipole positions, we compute sorted silhouette vertex lists for a fixed numberk of directions

in the 2D plane, which in turn can be amortized for both algorithms. Each algorithm can then

use the direction amongk whose sorted list minimizes the number of searched edge candidates

for a given search operation. The choice ofk can be fine-tuned in pre-computed tables according

to n, m andq. Although we do not have access tom in practice, a sufficient approximation of

m is to consider the average number of occluding contours per view over all views.

Identifying faces is trivially anO(nm2q) operation, because it is linear in the number of

vertices of the final polyhedron. The polyhedral visual hullrecovery algorithm therefore yields

an overall cost ofO(n2m2q log mq) operations. To the best of our knowledge, no existing

polyhedral visual hull method gives an estimate of this complexity, except [27]. An estimate

of this complexity is given in a related technical report [45], section 3.6. Transposed withm

convex objects in the scene, the given time complexity is dominated byO(n2m2q log nmq),

slightly worse than our algorithm, and with weaker guarantees for surface properties.
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VIII. R ESULTS

The algorithms presented in this article have been implemented and validated with several

variants, one of which has been made publicly available from2003 to 2006 as a library called

EPVH1 (reference implementation, version 1.1). A distributed implementation has also been

produced as part of the collaborative effort to build the GrImage experimental platform at the

INRIA Rhône-Alpes. Both synthetic and real data have been used to validate the algorithm

and its reference implementation. We first present synthetic datasets showing the validity of the

algorithm in extreme cases, and correctness of generated polyhedral surfaces on a broad set of

examples. We then provide results obtained from large real sequences acquired on the GrImage

platform, and illustrate the potential of the method for 3D photography and videography. Finally

we compare the algorithm with the method by Lazebnik, Furukawa & and Ponce [36], a state

of the art approach.

A. Method validation and reliability

Synthetic datasets have been used to characterize the global behavior of the algorithm in the

absence of segmentation noise, and check its sanity in reconstructing objects whose topologies

are actually more complex than those of real world objects. The most relevant example we use is

the “knots” object of figure 11, reconstructed from42 viewpoints, illustrating the capability of the

algorithm to accurately reproduce such objects and topologies from silhouette data. Comparison

with classical volume-based approaches highlight the impossibility to reproduce the object as

precisely as the polyhedral models even if a very high resolution is used.

We have extensively used synthetic and real datasets to verify the manifold and watertight

nature of the surfaces produced by our algorithm. The potential sensitivity of the algorithm,

as in all algorithms strongly relying on geometric boolean operations, lies in the potential for

misrepresentation of intersection coordinates in the neighborhood of a degeneracy: coincidence

of four or more planes at a same point, perfect plane collinearity. However, degeneracies and

their perfect representation within the range of floating point numbers proves extremely unlikely

in practice. In fact, the naive double-precision ordering of plane-intersections along a direction

we use, proves non-ambiguous in all experimented cases.

1http://perception.inrialpes.fr/∼Franco/EPVH/
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Fig. 11. Visual Hull of the “knots” object obtained using ouralgorithm from42 viewpoints, uses19528 vertices. Right: the

same data reconstructed using a voxel method resolution of64
3

= 262144 shows the inherent limitations of axis aligned voxel

methods. Top right: original model, from Hoppe’s web site [46].

For a thorough verification, we have compiled a test databaseof 44 synthetic objects, each

reconstructed with a number of views ranging from3 to 42, which cover the main expected

conditions for running the algorithm. The viewpoints are chosen at vertex locations of an icosa-

hedral sphere, which is worse than real-life conditions because choosing regular viewpoints with

noise-free coordinates greatly increases the probabilityof computing coincidentally degenerate

intersections. Silhouette bitmaps are vectorized, and thecoordinates of the vectorization dilated

by a random, subpixel factor, to keep this probability closeto zero. The completeness and

manifoldness of the representation is verified internally by checking (1) that each edge is incident

to exactly two faces, and (2) that each vertex’s connected surface neighborhood is homeomorphic

to a circle [47], namely by checking that each vertex is connected to three faces and edges

verifying (1). Watertightness is also internally verified by checking that each edge is traversed

exactly two times upon building the polyhedron faces in the third step. By construction all

polyhedra generated are orientable because of consistent orientation propagation from images
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Fig. 12. A few of the44 synthetic models reconstructed using the proposed algorithm, here presented as modeled from42

views. 1760 reconstructions were performed using from3 to 42 views.

(algorithm 3). We also verify these properties externally by loading all output models in CGAL

and testing for polyhedron validity and closedness: all such tests have returned results consistent

with the internal verification.

Examples of objects and reconstructions are given in Fig. 12. Results collected about the

reconstructions on our dataset show that all1760 reconstructions succeed in producing a closed

manifold mesh. The manifold property of the generated surfaces and broad success of the

algorithm have also been independently verified on other datasets by Lazebniket al. [36].
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Fig. 13. Polyhedra produced by EPVH for the DANCE sequence, from19 views. Sequence acquired from GrImage, INRIA

Rhône-Alpes. Input contour sizes were of the order of210, yielding models with approximately5, 400 vertices,8, 100 edges

and10, 800 triangles. (right) Model is textured by choosing the most front-facing viewpoint, and inserted in a virtual scene.

B. Real Datasets and 3D Videography

We conducted many experiments with real video streams acquired on the GrImage platform.

We here present an example sequence, among many others acquired throughout the life of the

acquisition platform, the DANCE sequence. This dataset was produced using19 synchronized

30Hz cameras, whose acquisition was processed on a dedicated PC grid. Surface precision and

movement details are captured with high quality by the reconstructions, as illustrated in Fig. 13.

All 800 models generated in this27 second sequence were verified to be manifold, watertight

polyhedral surfaces. The average computation time is0.7 seconds per sequence time step, as

processed by a3GHz PC with3Gb Ram. The model quality is suitable for 3D photography,

by applying a texture to the resulting model, here computed by blending contributions of the

three viewpoints most front-facing the corresponding texture face. Realistic models obtained are

depicted in Fig. 13.
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C. Comparison with state of the art methods

Many shape-from-silhouette algorithms exist, yet little can produce outputs comparable to

those of the proposed approach. The very recent approach by Lazebnik, Furukawa & Ponce

[36], built upon earlier work [6], proposes an algorithm relying on smooth apparent contours

and explicit detection and reconstruction of approximate frontier points, to recover the smooth

projective structure of the visual hull. In this approach, the authors propose to use a dense

discretization of apparent contours in image space and relyon discrete approximations of contour

curvatures to build the topological polyhedron of the visual hull illustrated in Fig. 3(a). The

resulting algorithm can be used to perform incremental refinements of the visual hull by adding

a viewpoint at a time, and explicitly uses oriented epipolargeometry to compute image-to-surface

relationships and primitives. The algorithm produces a projective mesh and a finescale polyhedron

by triangulation of visual hull strips. A qualitative and quantitative performance assessment has

been jointly performed (see also [36], section 6.3), using datasets kindly made public by Lazebnik

et al. Five objects were photographed from28 viewpoints, yielding high resolution images. For

the need of the Lazebniket al. algorithm, apparent contours were manually extracted from

images, and very densely discretized to favor frontier point detection. Comparisons are given

for the sub-pixel contour dataset in Table I for both algorithms and depicted in Fig. 14.

Importantly, such a dense sub-pixel discretization is not needed but can still be dealt with by

our algorithm. It is also not necessary for most applications. To illustrate this, we also provide

results, labeled “EPVH from images”, produced using the original silhouette bitmaps at image

resolution, and applying pixel-exact contour discretization [35], the standard EPVH pipeline.

This processing of the datasets still captures all the information present in the original silhouettes

but yields apparent contour discretizations and visual hull polyhedra orders of magnitude less

complex, which can be computed in a few seconds.

When compared on identical sub-pixel piecewise-linear contour inputs, both our algorithm

and Lazebniket al. produce manifold polyhedra that are visually indistinguishable (see Fig. 15).

Our algorithm however does show a clear performance advantage in all datasets. No complexity

analysis was given by Lazebniket al., although the provided time results do hint toward a similar

complexity, related by a constant. Yet our algorithm shows an inherent advantage in producing

polyhedra with a significantly lower number of primitives, which certainly participates in the

May 30, 2008 DRAFT



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 30

Fig. 14. (a) Original models. (b) Reconstruction obtained with dense subpixel contours using our algorithm (EPVH). (c)

Close up of dense contour reconstruction. (d) Same close-upusing image-resolution silhouette bitmaps: reconstructions are less

smooth but carry the same surface information, hardly distinguishable from their subpixel input counterparts. (1) Alien: 24

views,1600× 1600. (2) Dinosaur:24 views,2000× 1500. (3) Predator:1800× 1700. (4) Roman:48 views,3500× 2300. (5)

Skull: 1900× 1800. All five datasets courtesy Lazebnik, Furukawa & Ponce.

performance gain. This characteristic can probably be attributed to the fact that EPVH produces

polyhedra which closely and directly relate to contour inputs, and generates no intermediate

primitives other than ones already on the visual hull surface, by construction.

IX. CONCLUSION

We have proposed an analysis of visual hull based object modeling, yielding a new algorithm

to build the visual hull of an object in the form of a manifold,watertight polyhedral surface.
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Dataset Method Contour points Vertices Faces Time(s)

SKULL

EPVH sub-pixel contours 10,331 401,830 803,680 128.9

EPVH from images 418 19,466 38,940 2.5

Lazebnik, Furukawa & Ponce 10,331 486,480 972,984 395.7

DINOSAUR

EPVH sub-pixel contours 10,066 290,456 580,908 138.0

EPVH from images 566 19,938 39,868 3.8

Lazebnik, Furukawa & Ponce 10,066 337,828 675,664 513.4

ALIEN

EPVH sub-pixel contours 9,387 171,752 343,500 119.3

EPVH from images 633 14,972 29,924 3.9

Lazebnik, Furukawa & Ponce 9,387 209,885 419,770 532.3

PREDATOR

EPVH sub-pixel contours 10,516 306,152 612,420 136.0

EPVH from images 611 23,370 46,784 4.1

Lazebnik, Furukawa & Ponce 10,516 375,345 750,806 737.2

ROMAN

EPVH sub-pixel contours 17,308 884,750 1,769,544 1,612.5

EPVH from images 778 51,246 102,448 18.1

Lazebnik, Furukawa & Ponce 17,308 1,258,346 2,516,764 5,205.6

TABLE I

STATE OF THE ART COMPARISON ON3.4GHZ PENTIUM IV, JOINTLY PERFORMED WITHLAZEBNIK ET AL.[36].

We propose an alternative set definition of the visual hull that relaxes the need for a common

visibility region of space implied by classical definitions. We then carry further the analysis and

precisely determine the discrete structure of the visual hull surface in the case where polygonal

silhouettes are used as input. This leads to a new algorithm that separates the estimation of

a visual hull polyhedron into the determination of its discrete strip geometry, followed by the

recovery of cone intersection edges. These primitives are determined to be complementary in

the representation of visual hull polyhedra. The complexity of the algorithm is analyzed, and

results are provided for a variety of synthetic and real datasets. This work provides several key

contributions to 3D modeling from silhouettes, which are experimentally put to the test. First,

watertight, manifold polyhedral surfaces are verifiably produced. Second, such polyhedra are

produced more efficiently than current state of the art methods.
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Fig. 15. Comparison of outputs of EPVH (b,d) and the algorithm from Lazebniket al. (a,c), with the five datasets of Fig. 14.

Reprinted from [36], courtesy Lazebniket al. (a) and (b) show a close-up of the visual polyhedron for both algorithms. (c) and

(d) show a view with one color per visual hull strip. Results prove visually indistinguishable.
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