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b INRIA Rhône-Alpes, Montbonnot 38334, France

Received 14 November 2005; received in revised form 24 August 2006; accepted 20 October 2006
Abstract

We present a tracking method where full camera position and orientation is tracked from intensity differences in a video sequence. The
camera pose is calculated based on 3D planes, and hence does not depend on point correspondences. The plane based formulation also
allows additional constraints to be naturally added, e.g., perpendicularity between walls, floor and ceiling surfaces, co-planarity of wall
surfaces etc. A particular feature of our method is that the full 3D pose change is directly computed from temporal image differences
without making a commitment to a particular intermediate (e.g., 2D feature) representation. We experimentally compared our method
with regular 2D SSD tracking and found it more robust and stable. This is due to 3D consistency being enforced even in the low level
registration of image regions. This yields better results than first computing (and hence committing to) 2D image features and then from
these compute 3D pose.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In visual tracking the pose of an object or the camera
motion is estimated over time based on image motion
information. Some applications such as video surveillance
only require that the target object is tracked in 2D image
space. For other applications such as augmented reality
and robotics full 3D camera motion is needed. In this
paper, we concentrate on tracking full 3D pose.

One way to classify tracking methods is into feature-
based and registration-based. In feature-based approaches
features from a (usually a priori) 3D model are matched
with features in the current image. Commonly a feature
detector is used to detect either special markers or natural
image features. Pose estimation techniques can then be
used to compute the camera position from the 2D–3D
correspondences. Many approaches use image contours
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(edges or curves) that are matched with an a priori CAD
model of the object [14,17,7]. Most systems compute pose
parameters by linearizing with respect to object motion.
A characteristic of these algorithms is that the feature
detection is relatively decoupled from the pose computa-
tion, but sometimes past pose is used to limit search ranges,
and the global model can be used to exclude feature mis-
matches [14,1].

In registration-based tracking the pose computation is
based on directly aligning a reference intensity patch with
the current image to match each pixel intensity as closely
as possible. These methods assume that the change in loca-
tion and appearance of the target in consecutive frames is
small. Image constancy can be exploited to derive efficient
gradient based schemes using normalized correlation, or a
sum-of-squared differences (e.g., L2 norm) criterion, giving
the technique its popular name SSD tracking. Unlike the
feature-based approaches, which build the definition of
what is to be tracked into the low level routine (e.g., a line
feature tracker tracks just lines), in registration-based
tracking any distinct pattern of intensity variation can be
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Fig. 1. Overview of the 2D SSD tracking. A 2D surface is related through
a warp W(x, l) between template space T and image space It (x denotes
image pixels transformed by the warp and l are the 2D warp parameters).
An incremental update in parameter space Dl is computed at every step
and added to the current warp.

70 D. Cobzas et al. / Image and Vision Computing 27 (2009) 69–79
tracked. The first such methods required spatial image
derivatives to be recomputed for each frame when
‘‘forward’’ warping the reference patch to fit the current
image [15], while more recently, efficient ‘‘inverse’’
algorithms have been developed, which allow the real time
tracking for the 6D affine [9] and 8D projective warp [2]. A
more complicated appearance model can be used to
compensate changes in intensity [9] or can be learned as a
mixture of stable image structure and motion information
[12]. A related approach [13,8], where instead of using
spatial image derivatives, a linear basis of test image
movements are used to explain the current frame, has
proved equally efficient as the inverse methods during the
tracking, but suffers from longer initialization times to
compute the basis, and a heuristic choice of the particular
test movements.

In this paper, we extend the registration-based tech-
niques by constraining the tracked regions to 3D planes.
This will allow tracking full 3D camera position like in
the feature-based approaches but eliminates the need for
explicit feature matching. The update is based on the
same SSD criterion as the classical 2D registration-based
methods with the difference that the update is done directly
on the 3D parameters and not on the 2D warp para-
meters. The approach is thus different from previous
approaches that first estimate the homography warp from
salient points and then the 3D motion parameters from
the homography [18]. We do not assume any a priori
model. Instead 3D plane parameters are estimated and
optimized during the first �100 frames using structure-
from-motion techniques. The algorithm does not require
complete scene decomposition in planar facets, but works
with few planar patches identified in the scene. Man-made
environments usually contain planar structures (e.g.,
walls, doors). Some advantages of using a global 3D model
and local surface patches are that only surfaces with sali-
ent intensity variations need to be processed, while the 3D
model connects these together in a physically correct way.
We show experimentally that this approach yields more
stable and robust tracking than previous approaches, in
which each surface patch motion is computed
individually.

Previously [6] we have shown how 3D points estimated
using structure-from-motion techniques can be used to
constrain the SSD tracking. The current work focuses on
a more relaxed structure constraint, namely planar regions
constrained to lie on estimated 3D planes. We investigate
two ways of defining the 3D planes, one using plane equa-
tion parameters (normal and distance) and the other using
four control points. Related work of incorporating a 3D
model into SSD tracking is presented by Baker et al. [21]
that calculates the 3D model from a 2D active appearance
model (AMM) and use it to improve the tracking. In
another paper [3] they presented another related extension
of the original Lucas–Kanade tracking algorithm applied
to either 3D volumetric data (e.g., CT, MRI data) or
projection of 3D data in images.
The rest of the paper is organized as follows. We start
with a short review of the traditional 2D SSD tracking in
Section 2 followed by the general description of our 3D
SSD tracking approach in Section 3. In Section 4, we show
the particular parametrization of the homography warp
induced by a 3D plane. Then, Section 5 presents existing
methods for estimating 3D planes from images. The
complete tracking system is presented in Section 6 and its
qualitative and quantitative evaluation in Section 7
followed by conclusions and a discussion in Section 8.
2. Background: 2D SSD tracking

The goal of the SSD tracking algorithm, as originally
formulated by Lucas–Kanade [15], is to find an image warp
W(x; l) that aligns a 2D template region T(x) with the cur-
rent image region I(x) (see Fig. 1). The warp is parame-
trized by a set of parameters l and defines how a pixel x
in template space maps to the location W(x; l) in the space
of image I. Commonly used warps include the translational
(2 parameters) that is used in modeling optic flow, the
affine warp (6 parameters), or the more complex homogra-
phy warp (8 parameters).

SSD tracking is based on the image constancy assump-
tion often used in motion detection and tracking [11]. More
explicitly, it assumes that (1) the tracking regions are tex-
tured and (2) the scene is Lambertian, the illumination does
not change. Therefore the reference and the current image
region can be related by a warp. The goal of the Lucas–
Kanade algorithm is to find the warp (parameters l) that
minimize the error between the template and the image
warped in the space of the template

T ðxÞ ¼ I tðW ðx; ltÞÞ ð1Þ

The problem is efficiently solved iteratively by computing
an incremental update Dl for the parameters of the warp
from frame It�1 to It that is added to the current warp.
The advantage of this formulation is that if the change
Dl is small the problem can be linearized. We write the
update through function composition (‘‘�’’) instead of say
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simple addition to allow a more general set of transforms
[2]. Mathematically lt = lt�1�Dl can be obtained by min-
imizing the following objective function with respect to an
image warp Dl:X

x

½T ðxÞ � I tðW ðx; lt�1 � DlÞÞ�2 ð2Þ
3. 3D SSD tracking problem formulation

We modified the 2D SSD tracking algorithm by
constraining the motion of a set of Q patches in a sequence
of images through a 3D rigid model M (refer to Fig. 2). As
a consequence the 2D motions of the image patches are
defined as 2D warps W ðxk; lðP t;MÞÞ induced by the 3D
motion Pt of the model M.

The main differences in our approach compared to the
2D SSD tracking [15,2,9] are:

• We track full 3D camera pose Pt (position and orienta-
tion) instead of 2D image warp parameters lt.

• The warp parameters lðP t;MÞ are defined by the model
M and its 3D pose Pt. Hence 2D warp parameters for
the patches are no longer independent but a function
of the 3D pose Pt. The model M is also estimated from
video in a bootstrapping phase as described in Section 5.

• The algorithm tracks several regions unified by the same
rigid motion through the model.

Compared to feature-based tracking main difference is
that our model directly influences (constrains) the
parameters lðP t;MÞ of each 2D patch. In feature-based
approaches the positions of patches are first computed
independently from local 2D image information, and the
3D pose is computed only after these 2D alignments are
fixed.
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Fig. 2. Overview of the 2D–3D tracking system. In standard SSD tracking
2D surface patches are related through a warp W between frames. In our
system a 3D model is estimated (from video alone), and a global 3D pose
change DP is computed, and used to enforce a consistent update of all the
surface warps.
• It computes the globally optimal 3D alignment Pt with
respect to the chosen measure (normally sum of squared
differences SSD, but other norms would be possible).
This is not the case for feature-based methods. Even if
2D SSD tracking is used to find the locally optimal
parameters lk for each feature patch k, these parameters
are not normally the same as those giving the globally
optimal 3D alignment of all patches.

• By restricting movement of 2D patches to those consis-
tent with a rigid 3D scene transform, individual feature
trackers do not lose track even if an individual image
signature is weak.

We first develop the general theory without committing
to a particular 3D model or 2D warp. Later, in the next
section, we present the algorithm for tracking planar patch-
es constrained to lie on estimated 3D planes.

A model of the scene M is projected into the image
space It through a projective transformation Pt (defined
by its parameters pt). In the calibrated case, Pt is an Euclid-
ean transformation Pt = [Rt, tt], where R = Rx(ax)Ry(ay)
Rz(az) represents the rotation matrix and t = [tx, ty, tz]

T is
the translation vector. Therefore pt contains the rotation
angles and the components of the translation p =
[ax,ay,az, tx, ty, tz]

T.
Having defined a set of Q regions on the model, the goal

of the 3D SSD tracking algorithm is to find the (camera)
motion Pt (motion parameters pt) that best align the
regions in the template space [kT(xk) with the regions in
the current image [kIt(xk). As we track the 3D Euclidean
motion, we assume that the image pixels xk have been nor-
malized with respect to the internal camera parameters. As
mentioned before, the 3D motion Pt of M induces a 2D
warp for each patch denoted for convenience with W(xk;
l(pt)). As an example, we look at the case of the motion
of a planar patch. It is known that the motion in image
space induced by the 3D motion of a planar patch is per-
fectly modeled by a homography (2D projective transfor-
mation). We show in Section 4 that the 8 parameters of
the homography that define the warp between two images
can be calculated from the 3D parameters of the plane and
the relative motion between the images. Note that the 3D
motion for the model is global, but each individual local
region has a different 2D motion warp Wk.

Mathematically, we are looking for the set of 3D
parameters pt such as the image constancy assumption
holds

[kT ðxkÞ ¼ [kI tðW ðxk; lðPtÞÞÞ ð3Þ

As in the case of the 2D algorithm, the motion is computed
as an incremental update Dp from frame It�1 to It that is
composed to the current motion pt = pt�1�Dp and can be
obtained by minimizing the following objective function
with respect to Dp:X

k

X
x

½T ðxkÞ � I tðW ðxk; lðpt�1 � DpÞÞÞ�2 ð4Þ



Fig. 3. Examples of derivative images, columns of M for the image patch on the front of the house in Fig. 2. The images were reshape from 1D to 2D for
visualization. The images from left to right corresponding to the three rotation angles and the three translations on X,Y,Z axes.
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The update in position Dp is based on the image difference
between the template image and the current image warped
in the space of the template. Note that the update in posi-
tion is taking place on the side of the current image. As a
consequence, the computations are performed in the space
of the current image.

For efficiency, we solve the problem by an inverse com-
positional algorithm [2] that minimize the error between
the template image T and the current image I(t) warped
in the space of the template image, with the update on
the template image (see Eq. (6)). As shown below, working
in the space of the template image, speeds up the tracking
as more computations can be done only once at the initial-
ization. The goal then is to find Dp that minimizesX

k

X
x

½T ðW ðxk; lðDpÞÞÞ � I tðW ðxk; lðpt�1ÞÞÞ�
2 ð5Þ

where in this case the 3D motion parameters are updated
as:

P t ¼ invðDP Þ � P t�1 ð6Þ

where inv(P) = [RT|�RTt] for P = [R|t]. As a consequence,
if the 2D warp W is invertible, the individual warp update
is (see Fig. 2)

W ðxk; lðptÞÞ ¼ W ðxk; lðDpÞÞ�1 � W ðxk; lðpt�1ÞÞ ð7Þ

For the numerical computation of Dp, Eq. (5) is linearizing
through a Taylor expansion (Dpt is represented as a column
vector of motion parameters)

X
k

X
x

T ðW ðxk;lð0ÞÞÞþrT
oW
ol

ol
op

Dp� I tðW ðxk;lðpt�1ÞÞÞ
� �

ð8Þ

As the motion of the template image is zero (the model is
aligned with the template frame) T = T(W(xk; l(0))).
Denote the image derivatives by M

M ¼
X

k

X
x

rT
oW
ol

ol
op

ð9Þ

and the error between the template regions and the
corresponding current warped image regions by et,
flattened as a column vector on intensities

et ¼ T � I tðW ðxk; lðpt�1ÞÞÞ ð10Þ
Eq. (8) can be rewritten as an overdetermined linear equa-
tion system in matrix form

MDp ’ et ð11Þ
where each column in M represents the spatial derivatives
of a particular parameter pi (i.e., the derivative images
shown in Fig. 3 flattened into column vectors) and the mo-
tion Dp is computed as the least squares solution to Eq.
(11).

The image derivatives M are evaluated at the reference
pose p = 0 and they are constant across iterations and can
be precomputed, resulting in an efficient tracking algo-
rithm that can run in real time (see Section 6). Fig. 3
shows examples of the six derivative images (components
of M) corresponding to the three rotation angles and
the three translations on X,Y,Z axes. For visualization
the derivative images were reshaped from ID vector to
2D. Note that several of the derivative images for one
patch look perceptually similar. While they are linearly
independent, they are not very well separated. For
instance image plane translation and translation along
the optic axis will be similar if the image patch used is
wholly on one side of the optic axis – see the rightmost
two images. Hence tracking of several DOF from one pla-
nar patch as in 2D SSD tracking is relatively ill-condi-
tioned (more on this in the experiments section).
However in 3D tracking, the combination of several
planar patches gives a well-conditioned problem.
4. Homography induced by a plane

The proposed tracking algorithm is based on the
assumption that the motion in image space induced by
the motion of the model regions can be expressed as
a 2D warp W(xk; l(pt)) that depends on the model
M and the current motion parameters pt We now show,
for the case of a planar patch, the explicit formulation
of the homography warp function of the plane model
and its relative position to the camera. We consider
two cases, one (case 1), where the plane is defined
using the normal and distance to origin and the other
(case 2) when the plane is defined using four control
points. The second case can be reduced to the first
one but numerically different as it enforces stronger
constraints.



1 In the current parametrization of the homography warp we set the last
value from the 3 · 3 matrix l9 = 1 (fixing the scale) which does not allow
this value to be 0. In the present case this is not a limitation since all points
on the tracked patch remain finite (l9 = 0 when the image center is
mapped to infinity).

D. Cobzas et al. / Image and Vision Computing 27 (2009) 69–79 73
4.1. Parametrized plane

It is well known that the projections of points on a 3D
plane in two views are related by a homography [10]. In
general, a homography warp H has 8 independent para-
meters represented as a vector l. For Euclidean planes in
general positions, H is uniquely determined by the plane
equation, and thus there are only 6DOF in H. A 3D plane
is represented as p = [nT,d], where n is the unit normal and
d is the signed distance from the origin to the plane. For
points X on the plane, nTX + d = 0. If the world coordinate
system is aligned with the first camera coordinate system,
the calibrated projection matrices have the form

P 0 ¼ K½I j 0� P t ¼ K½R j t� ð12Þ

where K is the camera matrix (internal parameters) and R, t

represents the 3D motion of the second camera with re-
spect to the first one. As mentioned before, there are six
motion parameters in p that determine R and t: the three
angles of the general rotation and the three components
of the translation.

The homography induced by the plane p has the form

H ¼ K R� t

d
nT

� �
K�1 ð13Þ

Image points in the two views I1, I2 are then related by
u2 = Hu1. If the image points are normalized with respect
to camera internal parameters x = K�1u = [R|t]X, the
homography becomes

H ¼ R� t

d
nT ð14Þ

Using the notation from the previous section, the 2D warp
W induced by the motion p then has the form

W ðx; lðpÞÞ ¼ Hx ¼ R� t

d
nT

� �
x ð15Þ

Therefore, for the first plane parametrization (case 1) the
model has two parameters n and d. The explicit dependency
for the warp parameters l as function of p and p = [nT,d]
can be calculated from Eq. (14). But this is not necessary,
as the image derivatives M can also be calculated directly
using the warp derivatives oW

op
obtained from the derivation

of Eq. (14).

4.2. Plane defined through four control points

In a projective space, a plane can be defined using four
control points Yj, j = 1, . . . , 4. This is the model (plane)
parametrization that we chose for the second case (case
2). Denote the projection of the control points in the cur-
rent image by yj = K[R|t]Yj, where R and t represents the
motion of the camera for the current image relative to
the template frame. The parameters l of the homography
H between the reference view and the current view are
determined by the projection of the control points in the
two views. This explicit dependency of the 2D warp
parameters l, as function of 3D motion parameters p

and model 3D points Yj is difficult to obtain analytically.
Instead we calculate the oW

op
terms, required by the image

derivatives M, using the implicit function theorem in the
warp equation

y0j ¼ Hyj ¼ HK½R j t�Y j; j ¼ 1;N ð16Þ

where y0j = KYj represents the projection of the control
points in the first frame and H is parametrized as1

H ¼
l1 l2 l3

l4 l5 l6

l7 l8 1

2
64

3
75 ð17Þ

Eq. (16) can be rewritten in the form

AðpÞl ¼ BðpÞ ð18Þ
with

AðpÞ ¼

y1
1 y2

1 1 0 0 0 �y1
1y1

01 �y2
1y1

01

0 0 0 y1
1 y2

1 1 �y1
1y2

01 �y2
1y2

01

..

.

y1
N y2

N 1 0 0 0 �y1
N y1

0N �y2
N y1

0N

0 0 0 y1
N y2

N 1 �y1
N y2

0N �y2
N y2

0N

2
66666664

3
77777775
ð19Þ

BðpÞ ¼ ½y1
01; y

2
01; . . . ; y1

0N ; y
2
0N �

T ð20Þ

where [y1
j , y2

j , 1]T are the normalized homogeneous
coordinates for yj.

Taking the derivatives in Eq. (18) with respect to each
component p of p we obtain

oA
op

lþ A
ol
op
¼ oB

op
ð21Þ

For a given p, the value l can now be linearly computed
from Eq. (18) and then ol

op is computed from Eq. (21).

5. Estimating the structure

The 3D model used to constrain the tracking is estimated
from images in a bootstrapping phase using structure-
from-motion (SFM). SFM methods use corresponding
features in several images to estimate both their structure
and the camera positions. For getting correspondences,
we track salient feature points using standard (2D image-
plane) SSD trackers as in [2,9]. We next present a method
for estimating parameters of 3D planes followed by a
method that reconstructs 3D points. The resulting models
are matching the models required for tracking planar
regions using homographies as described in Sections 4.1
and 4.2.
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5.1. Estimating plane equations from images

The plane equations are estimated from tracked feature
points on each plane. The grouping of the points into
planes is done in the initialization phase by having the user
mark planar regions in the first frame. (Since SSD tracking
does not depend on a particular identifiable feature type it
is commonly initialized manually to particular image
regions.) We designed a simple user interface that allows
the user to draw the planar regions in the first video frame
as quadrilaterals.

We first present the algorithm that computes a plane
equation from two images. It is a special case of the struc-
ture-from-motion problem where the camera is internally
calibrated and the feature points belong to a physical
plane. The homography H induced by the plane, is robustly
computed using RANSAC from four or more correspond-
ing points. Having H of the form H = R � tnT/d, it can be
decomposed into the motion and structure parameters
fR; 1

d t; ng [16]. There are in general four solutions to this
decomposition, but only at most two are physically valid
by imposing the positive depth constraint (model points
are in front of the camera). We disambiguate between the
two remaining solutions using multiple frames.

In a more general case, when multiple planes are viewed
in multiple images, a reference view is chosen, and the corre-
sponding plane homographies, that relate the reference view
with additional views, are computed. To reduce the solution
to the decomposition of H to one, we assume a smooth posi-
tion change between adjacent views, and only the solution
that corresponds to the motion closest to the previous one
is chosen. For the first pair, one of the two physically valid
solutions is chosen. The scale of the scene is also disambig-
uated by fixing the distance to one plane. The global motion
R, t for each frame is averaged over the individual motions
estimated from each plane homography and the plane
parameters are averaged over the ones computed from sev-
eral views. At the end a nonlinear optimization using Leven-
berg-Marquardt algorithm is performed over all the frames.
The optimization locally minimizes the symmetric transfer
error for points related through a homography

fR2; t2 . . . Rm; tm; n1; d1; . . . ; dkg

¼ argmin
X

t

X
k

X
xtk

d2ðxtk;H tkx1kÞ

þ d2ðx1k;H�1
tk xtkÞ ð22Þ

This is close to but not exactly the maximum likelihood
estimator under the Gaussian noise assumption. It is
nevertheless more practical in our case, as it will give
the best motion and plane structure without explicitly
computing the 3D point coordinates.

5.2. Incorporating constraints between planes

Known constraints between planes such as perpendicu-
larity or parallelism of walls that naturally appear in
man-made environments result in better structure and
can potentially further stabilize the tracking. We impose
constraints by a minimum parametrization of the plane
parameters as in Bartoli and Sturm [4].

Consider two planes p1 ¼ ½nT
1 ; d1�; p2 ¼ ½nT

2 ; d2�. A
perpendicularity constraint can be algebraically expressed
by a vanishing dot product between the plane normals

n11n21 þ n12n22 þ n13n23 ¼ 0 ð23Þ

This bilinear constraint is enforced by eliminating one
plane parameter. We chose to eliminate the parameter,
nik, such that the absolute value of the corresponding
parameter on the second plane, njk, is maximal over all
the parameters.

For the other type of constraint when the planes are par-

allel we impose that the normals of the two planes are the
same. This eliminates all parameters that represent the unit
normal of one plane.

n1k ¼ n2k; k ¼ 1; 2; 3 ð24Þ

The resulting plane parameters and the recovered motions
are then optimized using Eq. (22). A full parametrization of
the planes is recovered for every plane from Eqs. (23) and
(24). A potentially somewhat more accurate approach
would involve obtaining a minimal parameterization of
3D points on constrained planes, and estimating the struc-
ture of those points and the camera motion from feature
correspondences. This would allow defining a maximum
likelihood estimator under Gaussian image noise. The
plane parameters are then computed from the estimated
3D points.
5.3. Estimating 3D points

For estimating the 3D positions of the control points
that define planar regions (as described in Section 4.2)
we use standard SFM techniques and the stratified uncali-
brated approach [10] (projective reconstruction that is
upgraded to a Euclidean structure using automatic self-cal-
ibration). There are several well-known estimation algo-
rithms to recover the projective structure and motion of a
scene using the fundamental matrix (2 views), the trilinear
tensor (3 views) or multi view tensors for more than 3
views. In our system, we used the method developed by
Werner et al. [20] that estimates the trilinear tensors for
triplets of views, and then recovers epipoles from adjoining
tensors. The projection matrices are computed at once
using the recovered epipoles. New views are integrated
through the trilinear tensor between the new and two
previous views. Assuming that the cameras have zero skew
and aspect ratio (au = av and s = 0) and that the principal
point (uc,vc) is approximately known, the Euclidean projec-
tions are recovered using self-calibration [19]. There is still
an absolute scale ambiguity that cannot be recovered with-
out additional metric scene measurements, but, since this
scale remains fixed over a video sequence, we can use a
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6DOF Euclidean motion model for tracking the motion
between frames.

When tracking planar regions, each region is defined by
four control points. The user would specify which model
points form a plane. We provide a GUI that projects the
model in some frames and the user clicks on groups of four
points.

One important consideration for the proposed 3D
tracking is whether the estimated 3D model is accurate
enough to make the 3D tracking converge. In another
paper [5], where we compared the accuracy of the SFM
algorithms for different geometries (affine, projective,
Euclidean), we found that the model obtained from a
scene can be reprojected into new (different from the
training) views with a reprojection accuracy of about
1–3 pixels (if bundle adjusted). This accuracy of the
reconstructed model is in the convergence range for the
tracking algorithm.

6. Tracking system overview

We incorporated the proposed plane tracking algorithm
into a system that first initializes the model (plane equa-
tions or 3D points) from 2D image tracking over a limited
motion and then switches to track points on the estimated
3D planes. Refer to Fig. 4.

6.1. Bootstrapping phase

(1) 2D SSD tracking: The user marks planar regions in
the first frame and specifies plane constraints
(parallelism, perpendicularity) as applicable. Feature
points inside these regions are tracked using standard
SSD 2D trackers. We designed a simple GUI for
manually drawing the planar regions in the image
as quadrilaterals.

(2) Model computation: For the first model described in
Section 4.1, plane parameters p = [nT,d] are first ini-
tialized by averaging close form solutions from
homographies H that relate points on planes from a
frame to the reference (first) frame. Then a minimal
parametrization is optimized together with the
BOOTSTRAPPING

corresponding features

(1) 2D Tracking

(2) SFM

(3)Init

Fig. 4. Overview of the tracking system and phases. To bootstrap 3D tracking,
3D model. Then the 2D patches are integrated into the 3D tracking which dir
estimated motion over all the training frames, as
described in Section 5.1.
For the model described in Section 4.2, the 3D coor-
dinates of plane’s control points Yj are estimated
using projective structure-from-motion and self-cali-
bration (Section 5.3). The user specifies the groups
of model points that form a plane.

(3) Initialize 3D tracking: The 3D planes are related to
the current frame using the 2D tracked points. This
will align the origin of the world coordinate system
with the current frame (initial camera is [I|0]). Then,
the 3D plane-based tracking is initialized by comput-
ing the derivative images M (Eq. (9)).

6.2. Tracking phase

The tracking now continues in 3D with the 2D surface
patches integrated into the 3D model of the planes. This
enforces a globally consistent motion for all surface
patches as described in Section 3.

(1) An incremental position update Dp is computed
based on image differences between the regions in
the reference template and the warped regions from
the current image (Eq. (11)).

(2) The global camera position Pt is updated based on
Eq. (6).

7. Experimental results

Two important properties of tracking methods are con-
vergence and accuracy. Tracking algorithms based on opti-
mization and spatio-temporal derivatives (Eq. (8)) can fail
to converge because the image difference between consecu-
tive frames It�1, It is too large (more than just few pixels),
and the first order Taylor expansion (Eq. (8)) around
pt�1 is no longer valid, or some disturbance causes the
image constancy assumption to be invalid.

In the numerical optimization, the pose update Dp is com-
puted by solving an overdetermined equation system, Eq.
 3D Tracking

3D pose

3D SSD Tracking

TRACKING

first regular 2D SSD tracking is used for an initial 100 frames to calculate a
ectly computes 3D pose updates from temporal intensity variation.
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(11). Each pixel in a tracking patch provides one equation
and each model freedom (DOF) one variable. The condition
number of the linearized motion model M affects how mea-
surement errors propagate into Dp, and ultimately if the
computation converges or not. In general, it is more difficult
to track many DOF. In particular, the homography warp
(that incorporates scaling and out-of-plane rotations) causes
less apparent image change compared to a 2D translational
warp. By tracking a connected 3D model, the tracking con-
vergence is no longer solely dependent on one surface patch
alone, and the combination of differently located and orient-
ed patches can give an accurate 3D pose estimate even when
each patch would be difficult to track individually.

In the first experiment (EXP1) we compared the track-
ing stability for the 6DOF plane based trackers (based on
plane parametrization: SSD + PL, and based on four con-
trol points: SSD + 3DPT – models proposed in Section 4)
and the most general form of traditional 2D image-plane
SSD tracking based on an 8DOF homography warp
(SSD) [2]. We also tested the influence of plane constraints
Fig. 5. EXP1: tracking performance. The figure shows four frames from the seq
regions are delimited by a red line (shown in dark gray on grayscale print). (First
individual patch trackers lose track of several regions during the test sequence. (S
region motion is rigidly related to the model, and tracking succeeds through the w
the constraint plane) in the second half of the sequence. (Third row) A better mo
(Forth row) The best results are obtained by controlling the planar regions w
observed in row two. In this case, a visibility test was performed to introduce/re
videol and video5 left. On-line mpeg movies of the experiments are availab
on tracking SSD + PLCT (e.g., roof planes perpendicular to
front plane) introduced as described in Section 5.2. The
results are shown in Fig. 5 (above) and summarized in
Table 1 (also on-line video1 and video5 left. On-line
mpeg movies of the experiments are available. See video
at http://www.cs.ualberta.ca/~dana/Movies/tracking/).
We found that all of the 3D model-based algorithms (that
track 6DOF global pose) perform better (in terms of stabil-
ity of tracking) the original 2D image plane SSD tracking
(that individually tracks an 8DOF homography for each
region). The better stability is indicated also by the differ-
ence in condition numbers of M that vary between
4 · 106 and 1 · 107 for the 2D image-plane SSD tracker
(indicating an ill conditioned problem), and drops to an
order of 103 for the 3D model based trackers. Qualitatively,
we observe that the tracker on the tall house is lost at about
frame #70 for the SSD while the first tracker starts drifting
only in frame #340 for the SSD + PL. The constraints have
generally small influence, but, nevertheless, we noticed a
better performance for SSD + PLCT vs. SSD + PL (drift
uence and the performance of four types of trackers (one per row). Tracked
row) Tracking individual patches using conventional 2D image SSD [2]. The
econd row) Through the 3D plane equations (model from Section 4.1) each
hole sequence but one of the trackers starts drifting (slightly turning within

del obtained by imposing constraints between planes improves the tracking.
ith four model points (model from Section 4.2). This prevents the drifting
move patches as they go in/out of view. (Results are also shown in on-line

le. See video at http://www.cs.ualberta.ca/~dana/Movies/tracking/).

http://www.cs.ualberta.ca/~dana/Movies/tracking/
http://www.cs.ualberta.ca/~dana/Movies/tracking/


Table 1
Comparison for the stability (EXP1) and accuracy (EXP2a and EXP2b) of our 3D SSD tracking algorithm: SSD + PL uses estimated plane parameters;
SSD + PLCT uses estimated constrained planes; SSD + 3DPT uses planes defined through four control points

Model Stability EXP1 Accuracy EXP2a Accuracy EXP2b

Failure framed
#

Cond. num. for M (Eq.
(11))

Dev. plane
(cm)

Dev. line
(cm)

Err.
length

Dev. plane
(cm)

Dev. line
(cm)

Err.
angle

SSD [2] 70 107

SSD + PL 240 103

0.025 2.42 15% 0.79 1.47 15%
SSD + PLCT 340 103

0.023 2.36 13% 0.66 1.35 15%
SSD + 3DPT – 103

0.02 0.95 8% 0.56 0.99 9%

For the stability of the trackers we compared our approach with the conventional 2D image-plane SSD as in [2].
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appears later). The last method SSD + 3DPT performs the
best and is able to track the whole 512 frames without
problems. This is due to the fact that stronger constraints
are imposed to the region when it is defined through four
points compared to when it is defined as part of a plane.
In the first case, all degrees of freedom are defined, whereas
in the last case, the region still has 2DOF as it can drift on
the defined plane. The last model also allows detection and
removal of occluded regions and introduction of new
regions using a Z-buffer algorithm. In the case when the
regions are constrained by parametrized planes, the remov-
al/addition of regions cannot be performed as the corre-
sponding 3D region on the planes is unknown.

One of the main advantages of the proposed approach
over traditional SSD tracking is that true Euclidean 3D
camera pose can be directly tracked. This is useful for
example in robotics or augmented reality applications. In
the next experiment, we evaluate the accuracy of 3D track-
ing in an indoor lab scene tracked by a moving camera.
Ground truth was obtained by measuring the camera path
and performing a Euclidean calibration of the model.
Fig. 6 shows two tracked frames of the sequence and the
sequence can be seen in video4. On-line mpeg movies
of the experiments are available. See video at http://
www.cs.ualberta.ca/~dana/Movies/tracking/.

The first test trajectory (EXP2a) is a straight line in the
horizontal plane of l m in length. Fig. 7 (left) illustrates the
Fig. 6. Tracking 3D planes. Pose accuracy experiment (EXP2a and EXP2b). vi
http://www.cs.ualberta.ca/~dana/Movies/tracking/.
recovered trajectory. To measure the accuracy of the track-
ing algorithm we calibrated the 3D model for the planes
assuming given real dimensions (distance from camera to
one plane) so we could get the translation in meters. Here
the parallelism constraints imposed between planes (e.g.,
back wall and Syncrude sign) had a very small influence
on the pose accuracy. The results are displayed in Table
1. The motion in the second trajectory (EXP2b) was along
two perpendicular lines in the horizontal plane. In this
experiment, the real physical motion was not particularly
smooth, and the recorded image data therefore also some-
what jumpy.

We measured two types of errors, ones that are rela-
tive measurements between projective geometric entities
(e.g., deviation from lines, planes) and others that are
related to calibrated Euclidean measurements (e.g., error
in distance). The relative measurements were quite good
(on the average less than 0.5 cm deviation from plane
and about 1.5 cm deviation from straight line). But the
error in measure length was 8–15% and the error in
the angle between the two lines fitted to the recovered
positions (in the second experiment) was also relatively
large.

The experiments show that the accuracy of the measure-
ments connected to properties that are not directly related
to calibrated properties of the structure is higher than the
accuracy in measured distances. This is due to the difficulty
deo4. On-line mpeg movies of the experiments are available. See video at

http://www.cs.ualberta.ca/~dana/Movies/tracking/
http://www.cs.ualberta.ca/~dana/Movies/tracking/
http://www.cs.ualberta.ca/~dana/Movies/tracking/


20

0

20

40

60

80

25

20

15

10

5

0

5
2

0

2

4

6

8

10

Recovered position (planes)
Fitted line

50
0

50
100

150 10

0

10

20

30

40

15

10

5

0

5

Recovered positions (plane)
Fitted lines

Fig. 7. Recovered positions (in 3D space) for the straight line trajectory EXP2a (left) and the two perpendicular lines trajectory EXP 2b (left). The red line
are the fitted 3D lines to each line segment.

78 D. Cobzas et al. / Image and Vision Computing 27 (2009) 69–79
in making calibrated (Euclidean) measurements from an
initially uncalibrated (projective) camera.
8. Discussion

We have presented a tracking algorithm that extends
the existing SSD homography tracking by computing a
global 3D position based on precomputed plane equa-
tions. The parameters of the 3D planes are estimated
from an initial sequence (about 100 frames) where feature
points on the planes are tracked using regular SSD trans-
lational trackers. Constraints between planes are also
incorporated using a minimal parametrization of the
planes. It appears that the proposed tracking algorithm
is more stable due to the reduced DOF compared to
tracking individual homographies and can handle a
large range of motion (in our experiments over 90� of
rotation).

A main advantage of the method is that it tracks full 3D
camera position that might be required in applications like
robotics or augmented reality. The pose is computed
directly from image derivatives with respect to pose
parameters that guarantees the best 3D pose update from
the linearized model. This is unlike the other model based
approaches where 3D pose is estimated from tracked 2D
image correspondences.

We like to clarify the difference between our approach
and a related method publish by Baker et. al [3] that is also
tracking 3D data through its projection in images. The
main difference is that they track 3D points whereas in
our case the tracking is performed in 2D but the warp
is implicitly constrained by a 3D model. The consequence
is that in their case the inverse compositional algorithm is
not valid but in our case it is.

The present version of the algorithm does not handle
partial occlusions and illumination variation. This problem
can be solved by using a robust norm when measuring
image errors like in [9]. For dealing with occlusions, they
use robust statistics and treat occluded regions as statistical
outliers. The illumination change is modeled by a low
dimensional linear subspace.
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