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Cyclopean geometry of binocular vision
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The geometry of binocular projection is analyzed in relation to the primate visual system. An oculomotor pa-
rameterization that includes the classical vergence and version angles is defined. It is shown that the epipolar
geometry of the system is constrained by binocular coordination of the eyes. A local model of the scene is
adopted in which depth is measured relative to a plane containing the fixation point. These constructions lead
to an explicit parameterization of the binocular disparity field involving the gaze angles as well as the scene
structure. The representation of visual direction and depth is discussed with reference to the relevant psycho-
physical and neurophysiological literature. © 2008 Optical Society of America
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. INTRODUCTION
nformation about the 3D structure of a scene is present
n binocular images as a result of the spatial separation of
he two viewpoints. If the projections of corresponding
oints can be identified in the left and right views, then
he 3D information can, in principle, be recovered. In ad-
ition to the image data, the process of recovery involves
he parameters of the binocular projection; in particular,
he relative orientation of the eyes is important. If some,
r all, of the projection parameters remain unknown, then
he 3D information that can be recovered may be limited
o affine or projective properties of the scene [1–3].

Psychophysical evidence suggests that nonvisual infor-
ation about the current orientation of the eyes is very

imited [4]. Hence, to facilitate the 3D interpretation of
he binocular disparity field, it would be desirable to keep
he eyes stationary with respect to the head. Human vi-
ion, however, involves frequent eye movements of several
ifferent types [5]. For example, the eyes may be moved
n order to direct the field of view, or to foveate an object of
nterest. Eye movements are also used to stabilize the
etinal image with respect to head movements [6], and to
rack moving visual targets. It would be undesirable to
uspend these functions, which are essentially monocular,
uring the binocular analysis of a scene.
The geometry of binocular stereopsis is complicated by
ovements of the eyes, as described above. However, the

wo eyes typically move in a coordinated fashion, such
hat a single point in the scene is fixated. This can be
chieved, in particular, by vergence eye movements,
hich are driven by binocular disparity [7]. These coordi-
ated eye movements benefit stereopsis, as they align the
wo retinal images at the respective foveas. It follows that
he amount of disparity around the fixation point tends to
e reduced, assuming that the scene is locally smooth.
his is important, given the relatively short range of bio-

ogical disparity detectors [8,9]. It should, however, be
1084-7529/08/092357-13/$15.00 © 2
oted that stereopsis also exists in animals that do not
ove their eyes significantly, such as owls [10].
There may be other ethological reasons for the exis-

ence of binocular eye movement, despite the resulting
omplication of stereopsis. It has been suggested that the
volution of binocular vision was motivated by the ability
o detect camouflaged prey, by segmentation in depth,
ith respect to the background [11]. Another impetus may
ave been the improvement in image quality that can be
chieved by combining two views, especially in nocturnal
onditions [12]. Both of these processes would benefit
rom binocular eye movements, which allow the scene to
e scanned without moving the head and which help to
egister the two views. These image-segmentation and
nhancement processes do not require geometric recon-
truction of the scene, and so the disadvantages of moving
he eyes are limited.

It is clear that the binocular vision of humans (and
ther primates) has evolved beyond simple tasks such as
amouflage-breaking. Psychophysical evidence shows
hat the geometric properties of a typical 3D scene can be
stimated by stereopsis, and that these estimates can be
ombined as the eyes fixate successive visual targets [13].
urthermore, it is clear that most types of eye movement
re binocularly coordinated [5]. The combination of eye
ovement and stereopsis raises important questions

bout oculomotor parameterization, disparity processing,
nd representation of the visible scene [14,15]. These
hree questions are developed in more detail below, in
ubsections 1.A–1.C, respectively.
It will be emphasized in this paper that the structure of

he disparity field depends on the epipolar geometry of
he visual system. Furthermore, it will be shown that this
an be obtained directly from the appropriate oculomotor
arameterization. The combination of oculomotor and epi-
olar constraints leads, finally, to a simple model of the
ocal scene structure. The epipolar geometry of biological
008 Optical Society of America
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ision, respresented by the appropriate “essential ma-
rix,” has not been developed elsewhere. The scope and
ovelty of the present approach is detailed in Subsections
.D and 1.E.

. Oculomotor Parameterization
he first question to be addressed is: How should binocu-

ar eye movement be parameterized? This is an important
ssue, because it determines the complexity of the control
roblem that the oculomotor system must solve. In par-
icular, it is important to establish the minimal number of
arameters that are compatible with the observed range
f oculomotor behaviour. The combination of two sensors,
ach of which can rotate in space, results in a system that
as six angular degrees of freedom. However, if Donders’

aw is obeyed [5], then the rotation of each eye around the
orresponding line of sight is determined by the direction
f that line of sight. This removes one degree of freedom
rom each eye. Furthermore, binocular fixation implies co-
lanarity of the visual axes, which removes one elevation
ngle from the parameterization. This leaves three de-
rees of freedom, which can be conveniently assigned to
he elevation, azimuth, and distance of the fixation point.
hese variables are most naturally specified in relation to
he “cyclopean point” [16], which, in the present work, is
ituated halfway along the interocular axis. The trigo-
ometry of this cyclopean parameterization is defined in
ection 3, and its relationship to the classical vergence/
ersion model [17] is stated.

. Disparity Processing
he second question to be addressed is: How does the ori-
ntation of the eyes affect the structure of the binocular
isparity field? The difference in position between the left
nd right projections of a given scene point is, by conven-
ion, called the “absolute disparity” of the point [18]. This
s the quantity that can be measured most directly, by
isparity-sensitive mechanisms [19]. It is important to
ote that the response of such a mechanism must depend
n the orientation of the eyes. Indeed, for a typical scene
nd a typical fixation point, it may be hypothesized that
he relative orientation of the eyes will be the dominant
ource of absolute disparity.

It is important, for the reasons given above, to establish
xactly how the disparity field is affected by eye move-
ent. This question is approached in Section 4, in which

he horopter of the fixating system is defined; this is the
et of scene points that project to the same location in
ach image [16]. The horopter is used in Section 5 to con-
truct the epipolar geometry [20] of the system, which is
ffectively parameterized by the vergence and version
ngles. If a projected point is identified in one image, then
he epipolar constraint restricts the location of the corre-
ponding point to a line in the other image. This impor-
ant relationship can be expressed for any configuration
f the eyes. In principle, the epipolar geometry could be
sed to “rectify” the retinal images, thereby removing the
ffect of eye movement on the disparity field. However,
his would not be consistent with the observed depen-
ence of early binocular processing on absolute retinal
isparity [19]. Hence it is desirable to parameterize the
isparity field with respect to the orientation of the eyes.
he epipolar geometry is the basis of such a parameter-
zation.

. Scene Representation
he two questions described above are part of a third,
ore general question: How can the geometric structure

f the scene be represented by the visual system? This is-
ue is complicated by the fact that the early mechanisms
f primate binocular vision are sensitive to a quite limited
ange of disparities [8,9]. The region of space that can be
esolved in depth depends, consequently, on the relative
rientation of the eyes. Specifically, only those points in
anum’s area (which is centered on the fixation point) can
e fused [18,21]. It follows that any global representation
f the scene must be assembled piecewise over a series of
xations. It is natural to formulate this process as the
easurement of scene structure with respect to a refer-

nce surface followed by an integration of the resulting lo-
al models [22,23]. The plane that passes through the
xation point, and that is orthogonal to the cyclopean vi-
ual direction, is a convenient local model for binocular
cene representation, as will be shown in Section 6.

. Scope and Assumptions
he word “cyclopean” has in the present context several
ossible meanings. As described in Subsection 1.A, the
cyclopean point” is a notional center of projection located
alfway along the interocular axis (see Helmholtz [16]). It

s convenient to use this point as the origin of the binocu-
ar coordinate system, although there is a useful alterna-
ive, as will be shown in Section 3. The word “cyclopean”
s used elsewhere in a more general sense with reference
o visual information that is intrinsically binocular, such
s the “edges” that can be perceived in a random-dot ste-
eogram (see Julesz [11]). The phrase “cyclopean geom-
try,” as used here, refers to the fact that the binocular
onfiguration of a fixating visual system can be param-
terized by the direction and distance of the fixation point
ith respect to a single eye (see Hering [17]). Further-
ore, it is convenient to make this parameterization with

espect to the cyclopean point, as will be explained in
ection 3.
It will be assumed here that the retinal projections can

e described by the usual pinhole camera equations, and
hat these projections are “internally calibrated.” This
eans that the visual system is able to relate the mo-
ocular retinal separation of any two points to the angle
etween the corresponding optical rays [2]. A weaker as-
umption could be made, given that the visual system
oes not ultimately achieve a Euclidean representation of
he scene [24]. Indeed, the main constructions developed
ere, including the horopter and the epipolar geometry,
an be obtained directly in the projective setting based
nly on the pinhole model [2,3]. However, the effects of
he oculomotor configuration on binocular vision are em-
hasized in the present analysis, and these effects are
ore readily studied by Euclidean methods.
A distinction should be made between descriptions and
odels of binocular vision. The present work aims to de-

cribe binocular geometry in the most convenient way.
his leads to cyclopean parameterizations of visual direc-

ion and binocular disparity. Whether these parameter-
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zations are actually used by the visual system is a fur-
her question [25]. In particular, it is not necessary to
ssume that the cyclopean representation has any biologi-
al reality. Discussion of the psychophysical and physi-
logical evidence that can be used to make such claims is
onfined to Section 7. The present work aims to provide a
seful description of binocular geometry, not to construct
detailed model of biological stereopsis. For this reason,

he estimation of scene and gaze parameters is not consid-
red in detail. Indeed, the present geometric account is
ompatible with a range of algorithmic models.

It will not be assumed that the orientation of the eyes is
nown. Rather, the binocular disparity field will be pa-
ameterized by a set of gaze variables as well as by the
cene structure. If the visual system is to recover the un-
nown gaze parameters from the observed disparity field,
hen this is the required representation. Although the ori-
ntation of the eyes is unknown, some qualitative con-
traints on oculomotor behavior will be observed. For ex-
mple, it will be assumed here that the left and right
isual axes intersect at a point in space. This is approxi-
ately true, and moreover, in the absence of an intersec-

ion, it would be possible to define an appropriate chord
etween the left and right visual axes and to choose a no-
ional fixation point on this segment. In particular, it
ould be straightforward to extend the analysis of the
isparity field (Section 6) to allow for misalignment of the
yes.

In addition to the fixation constraint, it will be assumed
hat each eye rotates in accordance with Donders’ law,
eaning that the cyclorotation of the eyes can be esti-
ated from the gaze direction [5]. The “small baseline”

ssumption (that the interocular separation is small with
espect to the viewing distance) will not be required here.
or will it be assumed that the disparity function is con-

inuous from point to point in the visual field.

. Relation to Previous Work
he geometry of binocular vision has been analyzed else-
here, but with different objectives, methods, and as-

umptions. The present work will be contrasted with the
rincipal existing approaches, which are recalled below.

more detailed summary of these models is given by
årding et al. [26].
It was shown by Koenderink and van Doorn [27] that

he gradient of reciprocal distance to a visible surface can
e recovered from the first-order structure of the corre-
ponding disparity field. This differential approach can be
xtended in several ways; for example, it is possible to re-
over measures of surface shape from the second-order
tructure of the disparity field [28–30]. These models are
ssentially local, and require that the disparity field is (or
an be made) continuous. The small-baseline assumption
s also an important part of such models. The work that
ill be described here is not concerned with the differen-

ial structure of the disparity field, and so none of above
ssumptions are needed. The present analysis, unlike the
ifferential approach, makes the epipolar geometry ex-
licit and does not involve derivatives of the disparity
eld. Although the results of Section 6 can be extended to

nclude surface orientation (as indicated in Subsection
.C), it would also be possible to combine the differential
nd epipolar analyses. For example, the former could be
sed to estimate orientation and shape, and the latter to
stimate gaze parameters. The differential and epipolar
ethods are, in this sense, complementary.
An alternative, nondifferential approach to binocular

ision was initiated by Mayhew and Longuet-Higgins
31,32]. This approach is based on the fact that the hori-
ontal and vertical components of the disparity field con-
ain different information. In particular, it is possible to
stimate the viewing distance and azimuth from the ver-
ical component. The full scene structure can then be ap-
roximated by combining the estimated viewing param-
ters with the horizontal component of the original
isparity field. Related decompositions have been de-
cribed by Gårding et al. [26], and by Weinshall [33]. The
resent approach, quite unlike these models, represents
ach disparity as a scalar offset in a variable epipolar di-
ection. Note that the epipolar direction is not, for finite
xation points, horizontal. The advantage of the epipolar
ecomposition is that the gaze and structure components
f the disparity field can be identified directly, as will be
hown in Section 6. It may also be noted that the small-
aseline assumption, which is used to simplify the
orizontal/vertical decomposition, is not needed in our
ork.
A large amount of psychophysical work has been based

n the horizontal/vertical disparity decomposition
34–37]. It should be emphasized that the present work is
ntirely compatible with this literature. Any geometri-
ally possible disparity field can be represented in terms
f horizontal and vertical components, or in terms of
variably oriented) epipolar lines and offsets. The main
ractical difference is that the epipolar model is much
ore compact, because it automatically incorporates the

hysical constraints that must otherwise be imposed on
he vertical disparity field [26,32].

Both the differential and horizontal/vertical decomposi-
ions are, like the present work, based on purely visual in-
ormation. If additional (e.g., oculomotor) information
bout the orientation of the eyes is available, then the
ituation is greatly altered. This is because, given the
iewing configuration, it is possible to directly triangulate
oints in 3D space. Erkelens and van Ee developed this
pproach, which leads to the definition of “head-centric”
isparity [38]. Unlike the head-centric approach, the
resent work develops the disparity field in the images
ithout assuming that the orientations of the eyes are
nown. Nonetheless, it would be straightforward to incor-
orate oculomotor information in the present analysis; for
xample, initial estimates of the gaze parameters could be
ased on efference-copy signals.
The present analysis is related to established ap-

roaches in computer vision [2,3,39–41]. The derivations
owever, are novel, and the details are specific to the bio-

ogical context. The following results are of particular in-
erest:

I. the cyclopean parameterization of binocular orienta-
ion [Eqs. (5), (6), and (9)],

II. the identification of the midline horopter as an axis
hat passes through the pole of the visual plane [Eqs. (17)
nd (18)],
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III. the construction of the essential matrix from the
pipoles and midline horopter [Eq. (24)],

IV. the symmetric parameterization of binocular corre-
pondence [Eqs. (28)], and,

V. the parameterization of binocular parallax as a
unction of deviation from the fixation plane [Eq. (47)].

. PROJECTION MODEL
he notation and coordinate systems used in this work
re described here. Points and vectors will be shown in
old type, for example, q ,v. The transpose of v is a row-
ector vT, and the Euclidean length is �v�. The notation
v�3 will be used to indicate the third component of the
ector v. Matrices are represented by upper-case letters,
or example, M. Appendix A gives a summary of the nota-
ion used in this paper.

The 3D Euclidean coordinates of a point will be distin-
uished by an overbar, e.g., q̄. Note that the difference of
wo Euclidean points results in a vector, e.g., v= q̄− p̄. The
omogeneous image coordinates of points and lines are
ritten without a bar; for example, a point at retinal lo-

ation �x ,y�T is represented by q= ��x ,�y ,��T, with ��0.
ote that the inhomogeneous coordinates can be recov-

red from q /�. Scalar multiples of the homogeneous coor-
inates represent the same image point. For example, if
= ��x ,�y ,��T then q /�=p /�; this relationship will be
ritten as p�q.
A line in the image plane has homogeneous coordinates

= �a ,b ,c�T such that q is on n if nTq=0. Scalar multiples
epresent the same line; if m= ��a ,�b ,�c�T, then m�n,
ith mTq=0, as before. If n is defined as n=p�q, then
Tp=nTq=0; hence n is the line through the two points.
imilarly, given any pair of lines m and n, if q=m�n,
hen mTq=nTq=0; hence, q is the intersection point of
he two lines [42].

The left and right optical centers are labeled c̄l and c̄r,
espectively. The difference between these locations de-
nes the “baseline” vector b, while the cyclopean point c̄b

s fixed halfway between the eyes [16,27]:

b = c̄r − c̄l, �1�

c̄b =
1

2
�c̄l + c̄r�. �2�

Only the ratio of the scene size to the baseline length
an be recovered from the images, in the absence of other
nformation. For this reason it is helpful to define the dis-
ance between the two optical centers as �b�=1, so that
uclidean coordinates are measured in units of interocu-

ar separation. The location of the scene coordinate sys-
em is immaterial, so it will be convenient to put the ori-
in at the cyclopean point c̄b. The coordinates of the
ptical centers, with reference to Fig. 1, will be

c̄l = − �1

2
,0,0�T

, c̄r = �1

2
,0,0�T

. �3�
he baseline vector (1) is therefore parallel to the x axis,
nd a perpendicular axis z= �0,0,1�T will be taken as the
ead-centric outward direction. These two vectors define
artesian coordinates in the horizontal plane. The down-
ard normal of this plane is y= �0,1,0�T, so that the axes
, y, and z form a right-handed system, as shown in
ig. 1.
The orientations of the left, right, and cyclopean eyes

re expressed by 3�3 rotation matrices Rl, Rr, and R, re-
pectively. A view of the scene is obtained by expressing
ach point q̄ relative to an optical center and applying the
orresponding rotation. The homogeneous perspective
rojection into the left image Il is, for example,

pl � Rl�q̄ − c̄l�, �4�

nd similarly for the right image Ir. If the scale factor in
his equation is known, then pl= �xl ,yl ,zl�T, where the
depth” zl is the distance to q̄ along the optical axis of the
ye. The triple �xl ,yl ,zl�T will be called the (left) “eye co-
rdinates” of q̄.

The use of the above notation will now be illustrated in
short example. Suppose that both eyes are looking

traight ahead with zero cyclorotation Rl=Rr=I. It fol-
ows that the projections of q̄= �x ,y ,z�T can be computed
asily; they are ql��x+ 1

2 ,y ,z�T and qr��x− 1
2 ,y ,z�T. Divi-

ion by z gives the left and right coordinates ��x
1
2 � /z ,y /z ,1�T and ��x− 1

2 � /z ,y /z ,1�T, respectively. The dif-
erence between these points, taken in the 2D image
lane, is the binocular disparity �1/z ,0�T. Note that be-
ause the visual axes are parallel, the disparity vector is
onfined to the horizontal direction. For general orienta-
ions of the eyes, disparity equations are more compli-
ated, as will be seen in Section 6.

. BINOCULAR ORIENTATION
cyclopean parameterization of binocular eye movements

s introduced in this section with its basis in the azimuth,
levation, and distance of the fixation point. The role of
yclorotation in the present work will also be discussed.
he classical binocular vergence and version parameters
re reviewed and related to the present account. The pa-
ameterization will be used to construct the geometric
oropter in Section 4, and the epipolar geometry in
ection 5.

xy

z

α

p̄0

c̄�

c̄r

c̄b

v
v�

vr

V0

Vα

ig. 1. Visual directions. A visual plane V� is defined by the op-
ical centers c̄l and c̄r together with the fixation point p̄0. The vi-
ual directions v, vl, and vr lie in this plane, which has an eleva-
ion angle �. The scene coordinates are located at the cyclopean
oint c̄b= �0,0,0�T, such that V0 coincides with the x, z plane.
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As was noted in Subsection 1.A, the degrees of freedom
f the binocular system can be reduced from six to three.
he reduction is achieved by imposing the fixation con-
traint, together with Donders’ law. An appropriate pa-
ameterization will be developed from the cyclopean azi-
uth, elevation, and distance of the fixation point. It will

e shown that this representation complements the clas-
ical vergence/version coordinates [17].

Suppose that the point p̄0 is to be fixated. The scene co-
rdinates of this point can be specified by a head-fixed di-
ection v from the cyclopean origin, in conjunction with a
istance � along the corresponding ray as

p̄0 = �v. �5�

he direction v is a unit vector, and the positive scalar �
ill be called the range of the fixation point p̄0. The cyclo-
ean direction may be written in terms of the elevation
nd azimuth angles � and �, respectively, as

v = �sin �,− sin � cos �,cos � cos ��T, �6�

here cos � is the projected length of v in the midsagittal
lane x=0, which divides one side of the head from the
ther. Note that the elevation � is positive for points
bove the horizontal plane �y�0� and that the azimuth �
s positive for points to the right of the midsagittal plane
x	0�. These visual angles will each be in the range
−
 /2 ,
 /2�, so that any point with z�0 can be identified,
s shown in Fig. 1. If the fixation point p̄0= �x ,y ,z�T is
iven in Cartesian coordinates, then the corresponding
ange and direction are

� = �p̄0�, �7�

v = p̄0/�, �8�

espectively. The elevation and cyclopean azimuth angles
an be obtained from the equations tan �=−y /z and
in �=x /�, respectively. The vector �� ,� ,��T contains the
elmholtz coordinates of the point p̄0.
In addition to the cyclopean visual axis v defined in Eq.

6), there exist left and right axes vl and vr, respectively.
f the eyes are fixating the point p̄0 as described above,
hen vl and vr can be derived from v and �, as will be
hown below. The optical centers c̄l and c̄r, together with
he fixation point p̄0, define a visual plane V� as shown in
ig. 1. The three visual axes intersect at p̄0, and so vl, vr,
nd v lie in V�. All of the possible visual planes contain
he baseline b, and may be parameterized by the dihedral
ngle � between V� and the horizontal plane V0. The azi-
uth angles �, �l, and �r will now be defined in the visual

lane V�.
First it will be shown that if the eyes are fixating, then

he left and right visual directions can be simultaneously
arameterized by the cyclopean direction and distance of
he fixation point. It is convenient to begin by assuming
hat the fixation point is in the horizontal plane, such
hat �=0. The role of this assumption will be discussed
ubsequently. It can be seen, with reference to Fig. 2, that
f the baseline separation is �b�=1, then tan �l and tan �r
re equal to �� sin �± 1

2 � / �� cos ��. Some rearrangement
eads to the definitions
tan �l = tan � +
sec �

2�
, tan �r = tan � −

sec �

2�
. �9�

It is clear from these equations that for a given cyclo-
ean azimuth �, the visual directions become more equal
s the fixation distance � increases. It may also be noted
hat if �=0, then the fixation is symmetric, with left and
ight azimuths of ±tan−1� 1

2 /��, as is commonly assumed in
he literature. If the fixation point p̄0 is in V�, then the
atrices representing the orientation of the eyes are eas-

ly constructed. For example, the matrix Rl in relation (4)
s

Rl = 	
cos �l 0 − sin �l

0 1 0

sin �l 0 cos �l

 . �10�

Analogous definitions are made for the matrices R and
r with angles � and �r, respectively.
Although the Helmholtz coordinates are convenient for

pecifying visual directions, the eyes do not, in general,
otate about the corresponding axes. An important char-
cteristic of actual eye movements is that, for general
xation points, each eye will be cyclorotated around the
orresponding visual direction. Although the observed cy-
lorotation angles �l and �r are nonzero, Donders’ law
tates that they are completely determined by the corre-
ponding visual directions; hence, there exist functions
l�� ,�l� and �r�� ,�r�. The definitions of these functions
an be obtained from Listing’s law and its extensions
43–45].

Cyclorotation, like the azimuth and distance of the
xation point, has a significant effect on the binocular dis-
arity field [15,27]. The angles �l and �r are, however, de-
ermined by the cyclopean parameters �, �, and �. This
ollows from Donders’ law via relations (6) and (9), as in-
icated above. Hence, in order to develop a minimal ocu-
omotor parameterization, it is convenient to make the
implifying assumption

� ��,� � = � ��,� � = 0, �11�

β

β�

βr

|b| = 1

ρ

p̄0

c̄� c̄rc̄b

ig. 2. Binocular coordinates. The fixation point p̄0 in the visual
lane V� is shown. The optical centers are indicated by c̄l and c̄r.
he azimuth angles � and �l are positive in this example,
hereas �r is negative. The cyclopean range of the fixation point

s �.
l l r r
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hich is (trivially) consistent with Donders’ law. The
ractical advantage of this restriction is that any depen-
ence on the elevation angle � is removed from the analy-
is. This makes it possible to study the binocular geom-
try with respect to fixation points in a single visual
lane. Furthermore, Listing’s law (including the “L-2” ex-
ension) agrees with relation (11) when the elevation � is
ero [44,45]. This makes it useful as well as convenient to
hoose the horizontal plane V0 for further investigation
14].

The above approximation (11) is good for ��0 and, in
eneral, it is straightforward to incorporate any cycloro-
ation model (e.g., L-2) into the geometric framework de-
cribed below. For example, in Section 6, the scalar bin-
cular disparity is defined at each retinal point in the
irection of the epipole. Both the point and the epipole
an be cyclorotated as a function of the fixation point.
urthermore, note that these rotations do not change the
agnitude of the disparity vectors. Although this proce-

ure can be used to describe the effect of cyclorotation, it
oes not say how the visual system should cope with it.
ome suggestions will, however, be made in Section 7.
The vergence angle  will be defined as the angle be-

ween the lines of sight at the fixation point; the version
ngle � will be defined as the average gaze azimuth. In re-
ation to the Helmholtz coordinates, this means that

 = �l − �r, �12�

� =
1

2
��l + �r�. �13�

he vergence angle  is nonnegative owing to the inequal-
ty �r��l, which follows from the signs and limits of �l
nd �r as defined above. The equality �l=�r occurs for in-
nitely distant fixation points, for which =0. These defi-
itions are illustrated in Fig. 3.
The properties of the vergence and version parameters

an be understood with reference to the Vieth-Müller
ircle [46], which is defined by the two optical centers c̄l
nd c̄r together with the fixation point p̄0. The vergence 
s the inscribed angle at p̄0, being opposite the interocular
xis b. The law of sines gives the diameter of the circum-

δ

δ

2δ

η

ζ

p̄0

c̄a

c̄� c̄r

ig. 3. Vergence geometry. The Vieth-Müller circle is defined by
he positions of the optical centers c̄l and c̄r together with the
xation point p̄0. The forward �z	0� are of the circle intersects
he midsagittal plane at the point c̄a. The vergence angle  is in-
cribed at p̄0 by c̄l and c̄r. The same angle is inscribed at all other
oints on the circle, including c̄ .
a
ircle as 1/sin , with �b�=1 as usual. The angle sub-
ended by b from the center of the circle is 2, being twice
he inscribed angle. The isosceles triangle formed by c̄l,
r, and the center of the circle can be split into two right-
ngled triangles, such that tan = 1

2 /�, where � is the z co-
rdinate of the center. It follows that the Vieth-Müller
ircle is centered at the point �0,0,��T and has radius �,
here

� =
1

2
cot , �14�

� =
1

2
csc . �15�

he optical centers c̄l and c̄r divide the Vieth-Müller
ircle into two arcs according to the sign of z. The forward
z�0� arc contains the fixation point p̄0 with inscribed
ngle . Furthermore, the inscribed angles at all other
oints q̄VM on this arc must be equal; hence the Vieth-
üller circle contains the locus of isovergence.
The version angle � gives the azimuth of p̄0 from a cy-

lopean point c̄= �0,0,�−��T, which lies at the back of the
ieth-Müller circle, as shown in Fig. 4. Evidently the lo-
ation of the point c̄ varies according to the vergence
ngle, as the radius of the circle is determined by the lat-
er. This is one reason for deriving the � ,�� parameter-
zation from the �� ,�� parameterization, as above. The
resent analysis has a fixed reference point c̄b= �0,0,0�T,
eaning that visual information can easily be combined

s the eyes refixate. Furthermore, the range parameter �
an be interpreted directly, whereas the vergence param-
ter  is measured in relation to the oculomotor system.
onetheless, the vergence and version parameters are es-

ential to the geometry of visual fixation, as will be shown
n the following sections.

ε
ε

ε

η − ζ

p̄0

c̄a

c̄� c̄r

c̄
ig. 4. Version geometry. The points c̄a and p̄0 inscribe the ver-
ion angle � at an optical center c̄ that is located on the backward
z�0� are of the Vieth-Müller circle. The same angle is inscribed
t c̄l and c̄r. It follows that as p̄0 is fixated, c̄a lies in the same
isual direction from each eye. Furthermore, the triangle defined
y c̄l, c̄r, and c̄a is isosceles, so the point c̄a is at the same dis-
ance from each eye.
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. FIXED POINTS
n this section it will be shown that for a given vergence
ngle, certain points in the scene project to the same lo-
ation in each image. These points constitute the geomet-
ic horopter of the fixating system. The constructions that
re given here will be used to construct the epipolar ge-
metry of the two images in Section 5. For this purpose, it
ill be convenient to study the horopter in the absence of

yclorotation.
It was shown in Section 3 that the Vieth-Müller circle is

efined by the optical centers c̄l and c̄r together with the
xation point p̄0. Consider another scene point q̄VM that

ies on the forward section of the Vieth-Müller circle. This
oint is in the visual plane V0 and therefore satisfies the
quation y=0, as well as the conditions

x2 + �z − ��2 = �2 z � 0. �16�

he two points p̄0 and q̄VM, both of which are on the for-
ard section of the Vieth-Müller circle, must inscribe
qual angles at the optical centers. The point p̄0 is being
xated and therefore appears in the fovea of each image.
ence the projected point qVM is “fixed” with respect to

he mapping between the left and right images [40,42]. It
ppears on the horizontal meridian of each retina, at the
ame angular offset from the corresponding fovea. This
an be restated in eye coordinates as xl /zl=xr /zr and
l /zl=yr /zr=0 for any point on the Vieth-Müller circle.

The Vieth-Müller circle does not, however, constitute
he complete horopter. The remaining points can be
ound, in this case, by solving the equations xl=xr, yl=yr,
nd zl=zr. Any scene point that satisfies these equations
s fixed with respect to the rigid-body transformation be-
ween the left and right eyes, as well as with respect to
he mapping between the images. Recall that the Euclid-
an coordinates of q̄= �x ,y ,z�T in the left and right eye
rames are q̄l=Rl�q̄− c̄l� and q̄r=Rr�q̄− c̄r�, respectively.
he point q̄ is fixed with respect to the left/right transfor-
ation if q̄l= q̄r, which in turn implies that �q̄l�2= �q̄r�2.
he squared lengths are preserved by the rotation matri-
es Rl and Rr, and so �q̄− c̄l�2= �q̄− c̄r�2. From the definition
f c̄l and c̄r in relation (3), this is equivalent, in scene co-
rdinates, to the condition �x+ 1

2 �2= �x− 1
2 �2. Hence it can be

een that any such point must lie in the midsagittal plane
=0 that divides one side of the head from the other. Sub-
tituting x=0 into conditions (16) leads immediately to z
�+�, leaving y free to vary. In general, yl=yr, because

he axis of the vergence rotation is perpendicular to the
isual plane V�.

This argument has established that there is an axis of
oints q̄a that are fixed with respect to the rigid-body
ransformation between the left and right eyes. This axis
ntersects the Vieth-Müller circle at a point c̄a and is per-
endicular to the visual plane. If, as previously supposed,
=0, then the coordinates of these points are

c̄a = �0,0,� + ��T, �17�

q̃a = c̄a + �0,y,0�T. �18�

his axis of points q̄a, which has been identified else-
here [46,47], is the geometric midline horopter. The
oint c̄ is the pole of the planar transformation induced
a
y the translation b and vergence rotation RrRl
T. The

oints q̄a lie on the associated screw axis [39,40].
It will be useful to compute the image coordinates of

he axis, which are common to both eyes, as shown in Fig.
. The points p̄0 and c̄a inscribe equal angles at c̄l, c̄r, and
; moreover, the angle at c̄ is, by definition, the binocular
ersion �. Having established that the angular direction
f q̄a from either optical center is �, the common distance
f this point will also be computed. The points c̄l, c̄r, and
a form an isosceles triangle, from which it can be seen
hat �c̄a�sin� /2�= 1

2. It follows that in the coordinates of ei-
her eye, the axis is specified by

ca =
1

2
csc�/2��− sin �,0,cos ��T, �19�

qa = ca + �0,y,0�T. �20�

hese image points lie on a vertical line a that has the
ame coordinates in each eye. The equation of the line is

a
Ta=0, and so it follows from Eq. (19) that the coordi-
ates of the line are determined by the version angle �:

a � �cos �,0,− sin ��T. �21�

The results of this section can be summarized as fol-
ows. If a scene point q̄ is on the geometric horopter, then
he image coordinates of the corresponding points are
qual, ql�qr. The geometric horopter, in the absence of
yclorotation, consists of the forward part of the Vieth-
üller circle together with the midline component. Fur-

hermore, the image coordinates (21) of the midline part
re determined by the binocular version angle. It will be
een in the following section that the epipolar geometry
an be constructed via the vertical horopter. The epipolar
eometry extends the cyclopean parameterization out of
he visual plane and leads to geometric constraints that
re defined across the entire left and right images.
It should be noted that, in the presence of cyclorotation,

he geometric horopter takes the form of a twisted cubic
urve [16]. This curve coincides with the Vieth-Müller
ircle as it passes through the optical centers and has as-
mptotes at c̄a± �0,y ,0�T.

. EPIPOLAR GEOMETRY
t was established in the preceding section that certain
cene points have the same coordinates in both images.
he related epipolar constraint is weaker, but much more
seful, as it applies to all scene points. The epipolar ge-
metry of the fixating system will now be described; in
articular, the image of the midline horopter (21), will be
sed to construct the appropriate essential matrix [20].
The epipolar constraint is as follows: Given an image

oint ql in Il, the corresponding point qr in Ir must lie on
known epipolar line ur such that ur

Tqr=0. The geomet-
ic interpretation of this is that the scene point q̄ must be
ocated on the ray defined by the optical center c̄l and the
mage point ql; the ray projects to a line ur in the other
iew, so qr, being another image of q̄, must lie on the line.
urthermore, note that the optical centre c̄l is common to
ll such rays, so the resulting lines ur must intersect at a
ingle point in I . This point is the right epipole e . Simi-
r r
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ar arguments can be used to introduce the left epipole el
s well as the associated lines ul in Il.
Suppose that the point ql is given; then, with reference

o Fig. 5, ul=el�ql. Furthermore, this line intersects the
rojection a of the midline horopter (21) at the image
oint qa=a�ul. Any point on ul must be the projection of
scene point in the plane defined by c̄l, c̄r, and q̄a. This

cene point must, therefore, also project onto the other
pipolar line ur. Hence ur can be constructed from er and
he point in Ir that corresponds to qa. Furthermore, qa is

fixed point (being on a), so its coordinates are un-
hanged in Ir. It follows that ur=er�qa. The preceding
onstruction may be summarized as

ur � er � �a � �el � ql��. �22�

This equation will now be put into a more useful form.
uppose that w= �x ,y ,z�T; then the cross product w�p
an be expressed as a matrix-vector multiplication,
w��p, where

�w�� = 	
0 − z y

z 0 − x

− y x 0

 �23�

s a 3�3 antisymmetric matrix constructed from the com-
onents of w. Consider the part of Eq. (22) that does not
epend on the particular choice of point ql; the equiva-
ence (23) can be used to express this as a transformation,

E � �er���a���el��, �24�

hich is the 3�3 essential matrix [20]. Given a point ql,
he corresponding point qr must be on a certain epipolar
ine ur as described above. This constraint is expressed
ia the essential matrix as

qr
TEql = 0, �25�

here ur�Eql. The analogous constraint ql
TETqr=0 ap-

lies in the opposite direction, the epipolar line being

p̄0
c̄a

c̄� c̄r

q̄a

qa
qa
q�

aa

ē� ēr

u�
ur

ig. 5. Construction of the epipolar geometry. Point ql is given,
o the epipolar line in Il is ul=ql�el. This line intersects the im-
ge a of the midline horopter in Il at qa=a�ul. The point qa is
n a, and is therefore fixed, having the same coordinates qa in Ir.
t follows that the epipolar line in Ir is ur=er�qa. The location of
r that corresponds to ql is unknown, but it must lie on ur. The
ieth-Müller circle determined by the fixation point p̄0 is shown

n the figure, as is the midline horopter, which passes through
oints c̄ and q̄ .
a a
l�ETqr in this case. The epipoles as described above are
ach the image of the “other” optical center. This means
hat el�Rl�b�, and er�Rr�−b�, where b is the vector be-
ween the optical centers. Equations (1), (3), and (4) can
e used to show that the epipoles are simply

el � �cos �l,0,sin �l�T, er � �− cos �r,0,− sin �r�T.

�26�

These equations can be combined with the definition of
he geometric midline horopter (21) to give a parametric
tructure to the essential matrix. The nonzero terms Eij
n the matrix product (24) are found to be E12
−Er sin �r, E21=El sin �l, E23=−El cos �l, and E22
Er cos �r, where El=cos �r cos �+sin �r sin � and Er
cos �l cos �+sin �l sin �. The factors El and Er are seen to
e the angle-difference expansions of cos��l−�� and
os��r−��, respectively. Furthermore, by reference to rela-
ions (12) and (13) the arguments �l−� and �r−� are
qual to ± /2, and so it follows from the even symmetry of
he cosine function that El=Er=cos� /2�. The essential
atrix is defined here as as a homogeneous transforma-

ion [see Eq. (25)], so this common scale factor can be dis-
egarded, which leaves

E � 	
0 − sin �r 0

sin �l 0 − cos �l

0 cos �r 0

 . �27�

t is straightforward to verify that E is indeed an essen-
ial matrix having one singular value equal to zero and
wo identical nonzero singular values (here equal to
nity).
The same result can be obtained from a variant of the
ore traditional definition of the essential matrix [20,48],
�Rr�b��Rl

T. This definition is, however, not specific to
he case of visual fixation, and offers correspondingly less
nsight into the present configuration. The essential ma-
rix has, in general, five degrees of freedom: three for rela-
ive orientation, three for translation, minus one for over-
ll scaling [3]. The essential matrix (27) obtained above
as just two parameters �l and �r. This simplification of
he epipolar geometry is due to the fixation constraint in
onjunction with Donders’ law.

. BINOCULAR DISPARITY
t was established in the preceding section that projected
oints in the left and right images must obey the epipolar
onstraint. In particular it was shown that, given a point
l in Il, the corresponding point qr must lie on a line ur
Eql in the other image Ir. The structure of the scene

isplaces the left and right image points along the corre-
ponding lines, which pass through the left and right epi-
oles, respectively. These image displacements are quan-
ified in this section. In particular, it is shown that a scene
oint q̄ which is in cyclopean direction pc will be projected
o corresponding image points ql and qr, where

ql = pl + tl�s�dl, qr = pr + tr�s�dr. �28�

he unit vectors dl and dr point toward the respective
pipoles e and e .
l r
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The relation to the epipolar geometry developed in Sec-
ion 5 is that ql and pl are on the same epipolar line;
ence, in addition to qr

TEql=0 as in Eq. (25), it is true
hat qr

TEpl=0. Formulation (28) makes an approximate
orrespondence between points pl and pr that is corrected
y parallax functions tl�s� and tr�s�. The common param-
ter s is the signed orthogonal distance of q̄ from the fr-
ntoparallel plane P that passes through the fixation
oint p̄0. This representation makes it possible, in prin-
iple, to estimate a “local” cyclopean depth map at each
xation point. The local depth is a function S�pc ;� ,��,
here pc parameterizes the cyclopean field of view given

he azimuth and range �� ,�� of the fixation point.
Decomposition (28) has three important properties.

irst, the unknown parallax variables are scalars; there
s no need to consider horizontal and vertical disparities
eparately. Second, each image correspondence is param-
terized by a single variable s, which has a direct inter-
retation as a Euclidean distance in the scene. Third, for
oints close to the fixation plane, the predictions pl and pr
ill be close to ql and qr, respectively. In particular, the
redicted correspondence will be exact if the point q̄ lies
n the fixation plane; tl�0�= tr�0�=0. Decomposition (28)
ill now be described in detail with respect to Fig. 6.
The fixation plane P by definition passes through the

xation point p̄0, and is perpendicular to the cyclopean
aze direction. Hence the plane has an outward normal
ector v, as defined in relation (8). The plane consists of
cene points in the set

P = �p̄ : vT�p̄ − p̄0� = 0 . �29�

c̄� c̄r

q�
qr

p�
pr

q̄

p̄

pc

P

u� ur

ig. 6. Geometry of cyclopean parallax. The fixation plane P is
efined by the fixation point and is parallel to the cyclopean im-
ge plane. Any point pc defines a cyclopean ray that intersects
he fixation plane at p̄ and the scene at q̄. The scene point q̄ has
epth s with respect to P. The predicted image projections of q̄
re at pl and pr. The true projections ql and qr are displaced
long the corresponding epipolar lines ul and ur, respectively.
he displacement can be parameterized by s as described in the
mext.
he orthogonal distance from P to the cyclopean origin is
qual to the range � of the fixation point as defined in re-
ation (7). The orthogonal distance from P to the scene
oint q̄ will be s; hence

� = vTp̄0, �30�

s = vT�q̄ − p̄0�. �31�

The range � is strictly positive, whereas s is negative,
ositive, or zero according to whether q̄ is closer than, far-
her than, or in the plane P, respectively. Note that s rep-
esents the structure of the scene with respect to P. Equa-
ions (30) and (31) can now be used to decompose the
yclopean depth zc of the point q̄ as

zc = vTq̄ = � + s. �32�

he cyclopean ray through q̄ intersects the fixation plane
t p̄. Hence the cyclopean coordinates of q̄ can be ex-
ressed as zcpc=Rq̄, where pc has been normalized such
hat �pc�3=1, and R encodes the orientation of the cyclo-
ean eye [defined by the angle �; see Eq. (10)]. The scene
oordinates of points on the corresponding visual ray pa-
ameterized by zc can be obtained by inverting this equa-
ion. In particular, the intersection p̄ of the ray with the
xation plane P can be obtained, as can the original scene
oint q̄:

p̄ = �RTpc, �33�

q̄ = zcRTpc. �34�

hese two points, which lie on the same cyclopean ray,
ill now be projected into the left image Il, and the dif-

erence tl�s�dl between the two projections will be evalu-
ted. The analogous derivation applies to the other image
r with subscripts l and r exchanged. The left coordinates
re

�lpl = �RlRTpc +
1

2
el, �35�

zlql = zcRlRTpc +
1

2
el, �36�

here 1
2el=Rl�−cl�, as the left, right, and cyclopean opti-

al centers are collinear.
Note that the image-points are normalized such that

pl�3= �ql�3=1, as in the case of pc. It is necessary to con-
ider the third components of the vectors RlRTpc and 1

2el
n coordinates (35) and (36), respectively; these are

�l = �RlRTpc�3 = xc sin��l − �� + cos��l − ��, �37�

�l = �1

2
el�

3

=
1

2
sin �l. �38�

The actual image point ql will now be decomposed into
sum of the predicted point pl and a scalar parallax in

he direction of a unit vector dl. The vector dl should be in
he direction of ql with respect to the epipole el. Further-

ore, the vector dl must lie in the image plane �dl�3=0.
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owever, it is desirable to avoid defining dl from pl
1
2el /�l, because �l=0 whenever �l=0, as is clear from
q. (38). Hence it is better to use

dl =
1

�l
��lpl −

1

2
el� , �39�

here ��lpl�3= � 1
2el�3=�l, hence �dl�3=0. The scalar �l

��lpl−
1
2el� has been introduced, so that dl is a unit vec-

or. This is not strictly necessary, but has the advantage
f imposing the original unit of measurement �b� on the
arallax function tl�s� that is associated with each scene
oint.
The function tl�s� will now be derived. It follows from

qs. (35) and (36), along with the requirement �pl�3
�ql�3=1, that the depth variables �l and zl can be ex-
ressed as affine functions of the corresponding cyclopean
arameters � and zc:

�l = �l� + �l, �40�

zl = �lzc + �l, �41�

here �l and �l are the scalars identified by Eqs. (37) and
38). A solution for �l can be obtained from either of these
quations and substituted into the other. The resulting
xpression can then be solved for �l:

�l =
�lzc − �zl

zc − �
. �42�

quation (42) is independent of the point q̄ that is asso-
iated with depths zc and zl. The result ql=pl+ tl�s�dl, as
n Eq. (28), can now be derived in full. Equations (35) and
36) are used to express the actual projection ql as a func-
ion of the predicted projection pl:

�zlql = �lzcpl − �zc − ��
1

2
el. �43�

The quantity �zlpl is now subtracted from both sides of
q. (43), and the resulting equation is rearranged as

�zl�ql − pl� = ��lzc − �zl�pl − �zc − ��
1

2
el

= �zc − ����lzc − �zl

zc − �
pl −

1

2
el�

= �zc − ����lpl −
1

2
el� , �44�

here the substitution of �l has been made with reference
o Eq. (42). Both sides of Eq. (44) are now divided by �zl,
nd comparison with Eq. (39) leads to

ql − pl =
zc − �

�zl
��lpl −

1

2
el� =

�l�zc − ��

�zl
dl =

�ls

�zl
dl,

�45�

here Eq. (32) has been used to make the substitution
=zc−�.

The practical problem with Eq. (45) is that in addition
o the free parameter s, the variable z is apparently un-
l
nown. This is resolved by making the substitution zl
�l��+s�+�l, which follows from Eqs. (32) and (41).
herefore, if pl is added to both sides of Eq. (45), the re-
ult is

ql = pl + tl�s�dl, �46�

with tl�s� =
�l�s/��

�l�� + s� + �l
. �47�

The analogous definitions are made for Ir, with sub-
cripts l and r exchanged. Equations (45)–(47) can be in-
erpreted as follows. Suppose that (hypothetical) cyclo-
ean coordinates �v ,�� of the fixation point p̄0 are
pecified. Then, given the cyclopean direction pc of an-
ther point, it is possible to compute the predicted point
l (35) as well as the vector �ldl (39). The scalars �l and �l
re obtained from Eqs. (37) and (38), respectively. The un-
nown parallax tl�s� is proportional to s /zl; this ratio is
he depth of the scene point q̄l with respect to the fixation
lane P divided by the depth of the point with respect to
he left viewing direction.

For points that are on the fixation plane, s=0; therefore
t is clear from Eq. (47) that tl�s�=0. It follows from Eqs.
28) that ql=pl and qr=pr. This makes it interesting to
onsider the relationship between pl and pr. It can be
hown that the points pl can be mapped onto the corre-
ponding points pr by the projective transformation

pr = Hpl �48�

here H is the homography induced by the fixation plane
. If wl is the perpendicular distance from c̄l to P, then

he transformation is represented by the 3�3 matrix

H = Rr�I −
bvT

wl
�Rl

T. �49�

In the general case of s�0, Eqs. (28), (48), and (49) can
e combined, leading to the well-known “plane plus par-
llax” decomposition [3,41]

qr = Hpl + tr�s�dr. �50�

he symmetric representation (28) is, however, preferable
n the present context. This is because it encodes the
epth map directly in cyclopean coordinates S�pc ;� ,��. It
s interesting to note that any essentially 2D transforma-
ion, such as a relative cyclorotation or a change of focal
ength, can be readily absorbed into the homographic part

of the mapping (50). This is convenient, because it
eans that the analysis of the binocular disparities tl�s�

nd tr�s� is unchanged by such image transformations.

. DISCUSSION
hree problems of binocular vision were identified in Sec-

ion 1 concerning oculomotor parameterization, disparity
rocessing, and scene representation. A unified geometric
reatment of these problems has been given in Sections
–6. The main psychophysical and physiological findings
hat relate to each of the proposed geometric solutions
ill now be reviewed.
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. Oculomotor Parameterization
s described in Section 3, the binocular orientation of the
yes can be described in the visual plane by the vergence
nd version angles  and �. Furthermore, these variables
re convenient for the specification of coordinated eye
ovement from one fixation point to another. It was sug-

ested by Hering that the oculomotor system actually en-
odes binocular eye movements in terms of vergence and
ersion [5,17]. Specifically, Hering’s law of equal innerva-
ion states that the eyes are oriented by signals � ,��
here, according to Eqs. (12) and (13), the corresponding
zimuths are �l=�+ /2 and �r=�− /2. Each eye moves
ccording to the sum of the appropriate vergence and ver-
ion components, which may cancel each other. The exis-
ence of physiological mechanisms that encode pure ver-
ence has been demonstrated in the midbrain [49], and it
as been suggested that the vergence/version decomposi-
ion is used to represent the difference between the cur-
ent and target fixation points. However, the actual tra-
ectories of large binocular eye movements are not
onsistent with the simple vergence/version decomposi-
ion [50]. Furthermore, it has been found that the visual
xes can be significantly misaligned during REM sleep
51], which seems more consistent with the independent
arameterization of each eye.
It may be that the application of Hering’s law is limited

o those situations in which the existence of a 3D fixation
oint can be ensured by the foveal correspondence of the
mages. This condition would, for example, distinguish
he vergence response from the disconjugate component
f a binocular saccade. This is because vergence is driven
y visual feedback [7], which is not generally available
uring the course of a binocular saccade. Likewise, when
he eyes are closed, there is no visual information to en-
ure the existence of a 3D fixation point. In summary, the
vidence for Hering’s law of equal innervation is mixed,
ut it seems clear that there are situations in which it is
ot a satisfactory model.

. Disparity Processing
t is possible to separate the initial estimation of image
orrespondences from the interpretation of the resulting
isparity field; this distinction is made in several compu-
ational models of stereopsis [13,31,52]. It is supposed in
hese models that the correspondence problem is first
olved, independently of the gaze parameters. The latter
re then recovered from the estimated disparity field [31],
nd the two types of information are combined, leading to
3D (though not necessarily Euclidean) interpretation of

he scene [26,27]. This scheme is compatible with the
hysiological basis of stereopsis. For example, it has been
emonstrated that the initial binocular mechanisms in
rea V1 are tuned to absolute disparity [19] as described
n Subsection 1.B. This finding indicates that the low-
evel mechanisms of stereopsis do not “compensate” for
ny disparity that is imposed by the relative orientation
f the eyes.

The biological feasibility of a general solution to the
inocular correspondence problem will now be considered.
ndividual disparity-tuned cells in area V1 typically re-
pond to a small range of absolute disparities centered on
ome preferred value. The distribution of preferred dis-
arities over the population of cells can also be inferred
rom the experimental data [53]. This arrangement sug-
ests the following difficulty: It seems likely that for any
articular scene and any particular fixation point, a large
roportion of the V1 disparity response may be spurious.
his is because the occurrence of the preferred absolute
isparity, for a given detector, effectively depends on the
rientation of the eyes as well as on the scene structure.
ence the possibility of detecting a “false match” is exac-

rbated by the fact that, because of the variable orienta-
ion of the eyes, the true match may not even be in the
ange of a given detector.

One way to address this problem involves the use of
rior knowledge about the typical structure of the scene.
or example, it might be assumed that the scene is ap-
roximately planar in the neighborhood of the fixation
oint. Such a model could then be used to define sets of
isparity detectors that are effectively tuned to the same
urface in depth. This is done by computing the image-to-
mage mapping induced by the surface model and compar-
ng it to the disparity response. Note that this process is
ntirely consistent with detectors that respond to abso-
ute disparity, as the scene model does not influence the
utput of the individual mechanisms. Rather, the local
cene model is used to identify the relevant part of the V1
esponse.

If this approach is to be effective, then the induced
mage-to-image mapping must be appropriately param-
terized [54]. It is important to note that an appropriate
arameterization would allow prior knowledge to be used
n estimating the gaze parameters as well the scene struc-
ure. For example, image-to-image mappings associated
ith extreme configurations of the eyes might be penal-

zed, and some mappings might be excluded altogether
e.g., those associated with nonintersecting visual axes).

It is emphasized that this approach does not require
onvisual information about the current gaze param-
ters; rather, it assumes that a model of gaze variation
an be learned from the image data. The geometric con-
traints described in Sections 3 and 5 would seem to
ake this a biologically feasible task. For example, if the

cene is assumed to be approximately perpendicular to
he cyclopean gaze direction, then the appropriate scene/
aze model has just three parameters, �, �, and �. Hence
he disparity field induced by the fixation plane, including
he full epipolar geometry, can be predicted from any hy-
othesized fixation point. An appropriate cyclorotation
odel, such as L-2, can easily be incorporated [44,45].
he form of the induced image-to-image mapping is as de-
cribed in Section 6.

. Scene Representation
t was shown in Section 6 that binocular disparity can
onveniently be measured with respect to the fixation
lane P. This plane passes through the fixation point and
s orthogonal to the cyclopean viewing direction. This con-
truction is commonly used in physiological studies of ste-
eopsis. In particular, the shape of the disparity tuning
rofile with respect to the depth of the fixation plane has
een used to classify binocular neurons [55]. Subsequent
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xperiments have suggested that there exists a con-
inuum of different disparity tuning curves [9] rather
han a number of distinct types. Nonetheless, the con-
inuum of disparity tuning is clearly organized around
he fixation plane; for example, the majority of cells are
uned to disparities close to that of the plane [56].

The importance of the fixation plane is also reflected in
sychophysical studies of stereopsis. As noted in Subsec-
ion 1.C, only those points in space that are in Panum’s
rea can be binocularly fused [21]. It has further been
emonstrated, using simple stimuli, that stereo acuity is
ighest for targets located close to the fixation plane
18,21]. However, the representation of more complex bin-
cular stimuli raises further questions. In particular, it
as been shown that judgment of the relative depth be-
ween nearby targets is much more accurate than judg-
ent of the deviation of a singe target from the fixation

lane [57]. Furthermore, the surface that is perceived in
epth is in some cases an interpolation of the pointwise
isparity stimulus [58]. These observations suggest that
he representation of binocular disparity may depend on
he local scene structure as well as on the gaze param-
ters [23]. The present model is compatible with this ap-
roach, and indeed, the fixation plane P�� ,v� can be in-
erpreted as the zeroth-order approximation of the local
cene structure. It is straightforward to substitute the
rst-order model P�� ,v ;� ,��, in which the angles � and �
epresent the local surface orientation, and to repeat the
erivation of binocular disparity in Section 6.
The integration of visual information across the larger

cene will now be considered. The representation de-
cribed in Section 6 allows the estimated viewing distance
o be combined directly with the cyclopean depth map, be-
ause both are measured along the cyclopean gaze direc-
ion, as in Eqs. (30) and (31). The global structure of the
cene could therefore be encoded in a collection of local
epth maps of the type described above. Although each
epth map would be associated with a different fixation
oint, it would be geometrically straightforward to com-
ine the encodings based on the corresponding gaze pa-
ameters.

Finally, it can be argued that the cyclopean representa-
ion is consistent with the perception of visual space [17].
uman binocular vision results, at least subjectively, in a

ingle view of the scene. If this synthetic view has a
eaningful center of projection, then it may be hypoth-

sized that it is located at the cyclopean point [59].

. Conclusion
cyclopean parameterization of binocular vision has been

eveloped in detail. The parameterization has been used
o construct the horopter and the epipolar geometry of a
xating visual system. Furthermore, the effect of the ocu-

omotor parameters on the binocular disparity field has
een described. It is clear that the interpretation of the
isparity field is complicated by the variable orientation
f the eyes. However, it has been argued here that this
omplication is minimized by binocular coordination of
he eyes. The geometric and computational appeal of the
yclopean representation has been emphasized, and the
iological relevance of the model has been indicated.
PPENDIX A: SUMMARY OF NOTATION
SED

l , c̄r Left, right optical centers
, c̄b Optical baseline, midpoint
l ,Rr Left, right eye rotation matrices
0 ,v Fixation point, fixation direction
, p̄ Fixation plane, point in plane
,� ,� Elevation, azimuth, distance of p̄0

l ,�r Left, right azimuths of p̄0

l ,�r Left, right cyclorotation angles
,� Vergence, version angles
,� , c̄ Center, radius, rear point of VM circle
;ql ,qr Scene point; left, right projections

a , q̄a Points on vertical horopter
Image of vertical horopter

l ,ur Left, right epipolar lines
l ,er ;E Left, right epipoles; essential matrix
l ,dr Left, right disparity directions

Distance of q̄ from plane P
l , tr Left, right cyclopean parallax
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