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The geometry of binocular projection is analyzed in relation to the primate visual system. An oculomotor pa-
rameterization that includes the classical vergence and version angles is defined. It is shown that the epipolar
geometry of the system is constrained by binocular coordination of the eyes. A local model of the scene is
adopted in which depth is measured relative to a plane containing the fixation point. These constructions lead
to an explicit parameterization of the binocular disparity field involving the gaze angles as well as the scene
structure. The representation of visual direction and depth is discussed with reference to the relevant psycho-
physical and neurophysiological literature. © 2008 Optical Society of America
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1. INTRODUCTION

Information about the 3D structure of a scene is present
in binocular images as a result of the spatial separation of
the two viewpoints. If the projections of corresponding
points can be identified in the left and right views, then
the 3D information can, in principle, be recovered. In ad-
dition to the image data, the process of recovery involves
the parameters of the binocular projection; in particular,
the relative orientation of the eyes is important. If some,
or all, of the projection parameters remain unknown, then
the 3D information that can be recovered may be limited
to affine or projective properties of the scene [1-3].

Psychophysical evidence suggests that nonvisual infor-
mation about the current orientation of the eyes is very
limited [4]. Hence, to facilitate the 3D interpretation of
the binocular disparity field, it would be desirable to keep
the eyes stationary with respect to the head. Human vi-
sion, however, involves frequent eye movements of several
different types [5]. For example, the eyes may be moved
in order to direct the field of view, or to foveate an object of
interest. Eye movements are also used to stabilize the
retinal image with respect to head movements [6], and to
track moving visual targets. It would be undesirable to
suspend these functions, which are essentially monocular,
during the binocular analysis of a scene.

The geometry of binocular stereopsis is complicated by
movements of the eyes, as described above. However, the
two eyes typically move in a coordinated fashion, such
that a single point in the scene is fixated. This can be
achieved, in particular, by vergence eye movements,
which are driven by binocular disparity [7]. These coordi-
nated eye movements benefit stereopsis, as they align the
two retinal images at the respective foveas. It follows that
the amount of disparity around the fixation point tends to
be reduced, assuming that the scene is locally smooth.
This is important, given the relatively short range of bio-
logical disparity detectors [8,9]. It should, however, be
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noted that stereopsis also exists in animals that do not
move their eyes significantly, such as owls [10].

There may be other ethological reasons for the exis-
tence of binocular eye movement, despite the resulting
complication of stereopsis. It has been suggested that the
evolution of binocular vision was motivated by the ability
to detect camouflaged prey, by segmentation in depth,
with respect to the background [11]. Another impetus may
have been the improvement in image quality that can be
achieved by combining two views, especially in nocturnal
conditions [12]. Both of these processes would benefit
from binocular eye movements, which allow the scene to
be scanned without moving the head and which help to
register the two views. These image-segmentation and
enhancement processes do not require geometric recon-
struction of the scene, and so the disadvantages of moving
the eyes are limited.

It is clear that the binocular vision of humans (and
other primates) has evolved beyond simple tasks such as
camouflage-breaking. Psychophysical evidence shows
that the geometric properties of a typical 3D scene can be
estimated by stereopsis, and that these estimates can be
combined as the eyes fixate successive visual targets [13].
Furthermore, it is clear that most types of eye movement
are binocularly coordinated [5]. The combination of eye
movement and stereopsis raises important questions
about oculomotor parameterization, disparity processing,
and representation of the visible scene [14,15]. These
three questions are developed in more detail below, in
Subsections 1.A-1.C, respectively.

It will be emphasized in this paper that the structure of
the disparity field depends on the epipolar geometry of
the visual system. Furthermore, it will be shown that this
can be obtained directly from the appropriate oculomotor
parameterization. The combination of oculomotor and epi-
polar constraints leads, finally, to a simple model of the
local scene structure. The epipolar geometry of biological
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vision, respresented by the appropriate “essential ma-
trix,” has not been developed elsewhere. The scope and
novelty of the present approach is detailed in Subsections
1.D and 1.E.

A. Oculomotor Parameterization

The first question to be addressed is: How should binocu-
lar eye movement be parameterized? This is an important
issue, because it determines the complexity of the control
problem that the oculomotor system must solve. In par-
ticular, it is important to establish the minimal number of
parameters that are compatible with the observed range
of oculomotor behaviour. The combination of two sensors,
each of which can rotate in space, results in a system that
has six angular degrees of freedom. However, if Donders’
law is obeyed [5], then the rotation of each eye around the
corresponding line of sight is determined by the direction
of that line of sight. This removes one degree of freedom
from each eye. Furthermore, binocular fixation implies co-
planarity of the visual axes, which removes one elevation
angle from the parameterization. This leaves three de-
grees of freedom, which can be conveniently assigned to
the elevation, azimuth, and distance of the fixation point.
These variables are most naturally specified in relation to
the “cyclopean point” [16], which, in the present work, is
situated halfway along the interocular axis. The trigo-
nometry of this cyclopean parameterization is defined in
Section 3, and its relationship to the classical vergence/
version model [17] is stated.

B. Disparity Processing

The second question to be addressed is: How does the ori-
entation of the eyes affect the structure of the binocular
disparity field? The difference in position between the left
and right projections of a given scene point is, by conven-
tion, called the “absolute disparity” of the point [18]. This
is the quantity that can be measured most directly, by
disparity-sensitive mechanisms [19]. It is important to
note that the response of such a mechanism must depend
on the orientation of the eyes. Indeed, for a typical scene
and a typical fixation point, it may be hypothesized that
the relative orientation of the eyes will be the dominant
source of absolute disparity.

It is important, for the reasons given above, to establish
exactly how the disparity field is affected by eye move-
ment. This question is approached in Section 4, in which
the horopter of the fixating system is defined; this is the
set of scene points that project to the same location in
each image [16]. The horopter is used in Section 5 to con-
struct the epipolar geometry [20] of the system, which is
effectively parameterized by the vergence and version
angles. If a projected point is identified in one image, then
the epipolar constraint restricts the location of the corre-
sponding point to a line in the other image. This impor-
tant relationship can be expressed for any configuration
of the eyes. In principle, the epipolar geometry could be
used to “rectify” the retinal images, thereby removing the
effect of eye movement on the disparity field. However,
this would not be consistent with the observed depen-
dence of early binocular processing on absolute retinal
disparity [19]. Hence it is desirable to parameterize the
disparity field with respect to the orientation of the eyes.
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The epipolar geometry is the basis of such a parameter-
ization.

C. Scene Representation

The two questions described above are part of a third,
more general question: How can the geometric structure
of the scene be represented by the visual system? This is-
sue is complicated by the fact that the early mechanisms
of primate binocular vision are sensitive to a quite limited
range of disparities [8,9]. The region of space that can be
resolved in depth depends, consequently, on the relative
orientation of the eyes. Specifically, only those points in
Panum’s area (which is centered on the fixation point) can
be fused [18,21]. It follows that any global representation
of the scene must be assembled piecewise over a series of
fixations. It is natural to formulate this process as the
measurement of scene structure with respect to a refer-
ence surface followed by an integration of the resulting lo-
cal models [22,23]. The plane that passes through the
fixation point, and that is orthogonal to the cyclopean vi-
sual direction, is a convenient local model for binocular
scene representation, as will be shown in Section 6.

D. Scope and Assumptions

The word “cyclopean” has in the present context several
possible meanings. As described in Subsection 1.A, the
“cyclopean point” is a notional center of projection located
halfway along the interocular axis (see Helmholtz [16]). It
is convenient to use this point as the origin of the binocu-
lar coordinate system, although there is a useful alterna-
tive, as will be shown in Section 3. The word “cyclopean”
is used elsewhere in a more general sense with reference
to visual information that is intrinsically binocular, such
as the “edges” that can be perceived in a random-dot ste-
reogram (see Julesz [11]). The phrase “cyclopean geom-
etry,” as used here, refers to the fact that the binocular
configuration of a fixating visual system can be param-
eterized by the direction and distance of the fixation point
with respect to a single eye (see Hering [17]). Further-
more, it is convenient to make this parameterization with
respect to the cyclopean point, as will be explained in
Section 3.

It will be assumed here that the retinal projections can
be described by the usual pinhole camera equations, and
that these projections are “internally calibrated.” This
means that the visual system is able to relate the mo-
nocular retinal separation of any two points to the angle
between the corresponding optical rays [2]. A weaker as-
sumption could be made, given that the visual system
does not ultimately achieve a Euclidean representation of
the scene [24]. Indeed, the main constructions developed
here, including the horopter and the epipolar geometry,
can be obtained directly in the projective setting based
only on the pinhole model [2,3]. However, the effects of
the oculomotor configuration on binocular vision are em-
phasized in the present analysis, and these effects are
more readily studied by Euclidean methods.

A distinction should be made between descriptions and
models of binocular vision. The present work aims to de-
scribe binocular geometry in the most convenient way.
This leads to cyclopean parameterizations of visual direc-
tion and binocular disparity. Whether these parameter-
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izations are actually used by the visual system is a fur-
ther question [25]. In particular, it is not necessary to
assume that the cyclopean representation has any biologi-
cal reality. Discussion of the psychophysical and physi-
ological evidence that can be used to make such claims is
confined to Section 7. The present work aims to provide a
useful description of binocular geometry, not to construct
a detailed model of biological stereopsis. For this reason,
the estimation of scene and gaze parameters is not consid-
ered in detail. Indeed, the present geometric account is
compatible with a range of algorithmic models.

It will not be assumed that the orientation of the eyes is
known. Rather, the binocular disparity field will be pa-
rameterized by a set of gaze variables as well as by the
scene structure. If the visual system is to recover the un-
known gaze parameters from the observed disparity field,
then this is the required representation. Although the ori-
entation of the eyes is unknown, some qualitative con-
straints on oculomotor behavior will be observed. For ex-
ample, it will be assumed here that the left and right
visual axes intersect at a point in space. This is approxi-
mately true, and moreover, in the absence of an intersec-
tion, it would be possible to define an appropriate chord
between the left and right visual axes and to choose a no-
tional fixation point on this segment. In particular, it
would be straightforward to extend the analysis of the
disparity field (Section 6) to allow for misalignment of the
eyes.

In addition to the fixation constraint, it will be assumed
that each eye rotates in accordance with Donders’ law,
meaning that the cyclorotation of the eyes can be esti-
mated from the gaze direction [5]. The “small baseline”
assumption (that the interocular separation is small with
respect to the viewing distance) will not be required here.
Nor will it be assumed that the disparity function is con-
tinuous from point to point in the visual field.

E. Relation to Previous Work

The geometry of binocular vision has been analyzed else-
where, but with different objectives, methods, and as-
sumptions. The present work will be contrasted with the
principal existing approaches, which are recalled below.
A more detailed summary of these models is given by
Garding et al. [26].

It was shown by Koenderink and van Doorn [27] that
the gradient of reciprocal distance to a visible surface can
be recovered from the first-order structure of the corre-
sponding disparity field. This differential approach can be
extended in several ways; for example, it is possible to re-
cover measures of surface shape from the second-order
structure of the disparity field [28—30]. These models are
essentially local, and require that the disparity field is (or
can be made) continuous. The small-baseline assumption
is also an important part of such models. The work that
will be described here is not concerned with the differen-
tial structure of the disparity field, and so none of above
assumptions are needed. The present analysis, unlike the
differential approach, makes the epipolar geometry ex-
plicit and does not involve derivatives of the disparity
field. Although the results of Section 6 can be extended to
include surface orientation (as indicated in Subsection
7.C), it would also be possible to combine the differential
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and epipolar analyses. For example, the former could be
used to estimate orientation and shape, and the latter to
estimate gaze parameters. The differential and epipolar
methods are, in this sense, complementary.

An alternative, nondifferential approach to binocular
vision was initiated by Mayhew and Longuet-Higgins
[31,32]. This approach is based on the fact that the hori-
zontal and vertical components of the disparity field con-
tain different information. In particular, it is possible to
estimate the viewing distance and azimuth from the ver-
tical component. The full scene structure can then be ap-
proximated by combining the estimated viewing param-
eters with the horizontal component of the original
disparity field. Related decompositions have been de-
scribed by Garding et al. [26], and by Weinshall [33]. The
present approach, quite unlike these models, represents
each disparity as a scalar offset in a variable epipolar di-
rection. Note that the epipolar direction is not, for finite
fixation points, horizontal. The advantage of the epipolar
decomposition is that the gaze and structure components
of the disparity field can be identified directly, as will be
shown in Section 6. It may also be noted that the small-
baseline assumption, which is used to simplify the
horizontal/vertical decomposition, is not needed in our
work.

A large amount of psychophysical work has been based
on the horizontal/vertical disparity decomposition
[34-37]. It should be emphasized that the present work is
entirely compatible with this literature. Any geometri-
cally possible disparity field can be represented in terms
of horizontal and vertical components, or in terms of
(variably oriented) epipolar lines and offsets. The main
practical difference is that the epipolar model is much
more compact, because it automatically incorporates the
physical constraints that must otherwise be imposed on
the vertical disparity field [26,32].

Both the differential and horizontal/vertical decomposi-
tions are, like the present work, based on purely visual in-
formation. If additional (e.g., oculomotor) information
about the orientation of the eyes is available, then the
situation is greatly altered. This is because, given the
viewing configuration, it is possible to directly triangulate
points in 3D space. Erkelens and van Ee developed this
approach, which leads to the definition of “head-centric”
disparity [38]. Unlike the head-centric approach, the
present work develops the disparity field in the images
without assuming that the orientations of the eyes are
known. Nonetheless, it would be straightforward to incor-
porate oculomotor information in the present analysis; for
example, initial estimates of the gaze parameters could be
based on efference-copy signals.

The present analysis is related to established ap-
proaches in computer vision [2,3,39-41]. The derivations
however, are novel, and the details are specific to the bio-
logical context. The following results are of particular in-
terest:

I. the cyclopean parameterization of binocular orienta-
tion [Egs. (5), (6), and (9)],

II. the identification of the midline horopter as an axis
that passes through the pole of the visual plane [Egs. (17)
and (18)],
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III. the construction of the essential matrix from the
epipoles and midline horopter [Eq. (24)],

IV. the symmetric parameterization of binocular corre-
spondence [Egs. (28)], and,

V. the parameterization of binocular parallax as a
function of deviation from the fixation plane [Eq. (47)].

2. PROJECTION MODEL

The notation and coordinate systems used in this work
are described here. Points and vectors will be shown in
bold type, for example, q,v. The transpose of v is a row-
vector vT, and the Euclidean length is |v|. The notation
(v)g will be used to indicate the third component of the
vector v. Matrices are represented by upper-case letters,
for example, M. Appendix A gives a summary of the nota-
tion used in this paper.

The 3D Euclidean coordinates of a point will be distin-
guished by an overbar, e.g., q. Note that the difference of
two Euclidean points results in a vector, e.g., v=q-p. The
homogeneous image coordinates of points and lines are
written without a bar; for example, a point at retinal lo-
cation (x,y)7T is represented by q=(ux, uy, )T, with u# 0.
Note that the inhomogeneous coordinates can be recov-
ered from ¢/u. Scalar multiples of the homogeneous coor-
dinates represent the same image point. For example, if
p=0x,\y,N)T then q/u=p/\; this relationship will be
written as p~q.

A line in the image plane has homogeneous coordinates
n=(a,b,c)T such that q is on n if nTq=0. Scalar multiples
represent the same line; if m=(xa,«b,xc)T, then m~n,
with mTq=0, as before. If n is defined as n=p X q, then
nTp=nTq=0; hence n is the line through the two points.
Similarly, given any pair of lines m and n, if q=m Xn,
then mTq=n"Tq=0; hence, q is the intersection point of
the two lines [42].

The left and right optical centers are labeled ¢; and ¢,,
respectively. The difference between these locations de-
fines the “baseline” vector b, while the cyclopean point ¢,
is fixed halfway between the eyes [16,27]:

bzér_éb (1)

1
C,= 5(51 +¢C,). (2)

Only the ratio of the scene size to the baseline length
can be recovered from the images, in the absence of other
information. For this reason it is helpful to define the dis-
tance between the two optical centers as |b|=1, so that
Euclidean coordinates are measured in units of interocu-
lar separation. The location of the scene coordinate sys-
tem is immaterial, so it will be convenient to put the ori-
gin at the cyclopean point ¢,. The coordinates of the
optical centers, with reference to Fig. 1, will be

1 B 1 B
El=_ 5’030 ’ ér= 53010 . (3)
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Fig. 1. Visual directions. A visual plane V, is defined by the op-
tical centers ¢; and ¢, together with the fixation point py. The vi-
sual directions v, v;, and v, lie in this plane, which has an eleva-
tion angle a. The scene coordinates are located at the cyclopean
point €,=(0,0,0)T, such that V, coincides with the x, z plane.

The baseline vector (1) is therefore parallel to the x axis,
and a perpendicular axis z=(0,0,1)T will be taken as the
head-centric outward direction. These two vectors define
Cartesian coordinates in the horizontal plane. The down-
ward normal of this plane is y=(0,1,0)T, so that the axes
%, y, and z form a right-handed system, as shown in
Fig. 1.

The orientations of the left, right, and cyclopean eyes
are expressed by 3 X 3 rotation matrices R;, R,, and R, re-
spectively. A view of the scene is obtained by expressing
each point q relative to an optical center and applying the
corresponding rotation. The homogeneous perspective
projection into the left image 7, is, for example,

p.~R/q-¢), (4)

and similarly for the right image Z,. If the scale factor in
this equation is known, then p;=(x;,y;,z,)T, where the
“depth” z; is the distance to q along the optical axis of the
eye. The triple (x;,y;,2,)T will be called the (left) “eye co-
ordinates” of q.

The use of the above notation will now be illustrated in
a short example. Suppose that both eyes are looking
straight ahead with zero cyclorotation R;=R,=I. It fol-
lows that the projections of q=(x,y,z)T can be computed
easily; they are ql~(x+%,y,z)T and qr~(x—%,y,z)T. Divi-
sion by z gives the left and right coordinates [(x
+3)/z,y/2,1]" and [(x-3)/z,y/2,1]", respectively. The dif-
ference between these points, taken in the 2D image
plane, is the binocular disparity (1/z,0)T. Note that be-
cause the visual axes are parallel, the disparity vector is
confined to the horizontal direction. For general orienta-
tions of the eyes, disparity equations are more compli-
cated, as will be seen in Section 6.

3. BINOCULAR ORIENTATION

A cyclopean parameterization of binocular eye movements
is introduced in this section with its basis in the azimuth,
elevation, and distance of the fixation point. The role of
cyclorotation in the present work will also be discussed.
The classical binocular vergence and version parameters
are reviewed and related to the present account. The pa-
rameterization will be used to construct the geometric
horopter in Section 4, and the epipolar geometry in
Section 5.
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As was noted in Subsection 1.A, the degrees of freedom
of the binocular system can be reduced from six to three.
The reduction is achieved by imposing the fixation con-
straint, together with Donders’ law. An appropriate pa-
rameterization will be developed from the cyclopean azi-
muth, elevation, and distance of the fixation point. It will
be shown that this representation complements the clas-
sical vergence/version coordinates [17].

Suppose that the point py is to be fixated. The scene co-
ordinates of this point can be specified by a head-fixed di-
rection v from the cyclopean origin, in conjunction with a
distance p along the corresponding ray as

Po=pV. (5)

The direction v is a unit vector, and the positive scalar p
will be called the range of the fixation point py. The cyclo-
pean direction may be written in terms of the elevation
and azimuth angles « and B, respectively, as

v = (sin B,— sin « cos B,cos a cos B)T, (6)

where cos B is the projected length of v in the midsagittal
plane x=0, which divides one side of the head from the
other. Note that the elevation « is positive for points
above the horizontal plane (y <0) and that the azimuth 8
is positive for points to the right of the midsagittal plane
(x>0). These visual angles will each be in the range
[=m/2,7/2], so that any point with z=0 can be identified,
as shown in Fig. 1. If the fixation point po=(x,y,2)T is
given in Cartesian coordinates, then the corresponding
range and direction are

p= |l_)0|7 (7)

v =Do/p, 8)

respectively. The elevation and cyclopean azimuth angles
can be obtained from the equations tan a=-y/z and
sin B=x/p, respectively. The vector (a,B,p)T contains the
Helmholtz coordinates of the point pg.

In addition to the cyclopean visual axis v defined in Eq.
(6), there exist left and right axes v; and v,, respectively.
If the eyes are fixating the point py as described above,
then v, and v, can be derived from v and p, as will be
shown below. The optical centers ¢; and ¢,, together with
the fixation point py, define a visual plane V, as shown in
Fig. 1. The three visual axes intersect at py, and so v;, v,,
and v lie in V,. All of the possible visual planes contain
the baseline b, and may be parameterized by the dihedral
angle a between V, and the horizontal plane V,. The azi-
muth angles B, B, and B, will now be defined in the visual
plane V,.

First it will be shown that if the eyes are fixating, then
the left and right visual directions can be simultaneously
parameterized by the cyclopean direction and distance of
the fixation point. It is convenient to begin by assuming
that the fixation point is in the horizontal plane, such
that a=0. The role of this assumption will be discussed
subsequently. It can be seen, with reference to Fig. 2, that
if the baseline separation is |b|=1, then tan ; and tan 8,
are equal to (psin ,8:%)/ (pcos B). Some rearrangement
leads to the definitions
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Fig. 2. Binocular coordinates. The fixation point p, in the visual
plane V, is shown. The optical centers are indicated by ¢; and ¢,.
The azimuth angles B and B, are positive in this example,
whereas B, is negative. The cyclopean range of the fixation point
is p.

sec B sec
tan B;=tan B+ PYSE tan B.=tan B -
p

)

It is clear from these equations that for a given cyclo-
pean azimuth B, the visual directions become more equal
as the fixation distance p increases. It may also be noted
that if B=0, then the fixation is symmetric, with left and
right azimuths of :tan‘l(%/ p), as is commonly assumed in
the literature. If the fixation point pg is in V,, then the
matrices representing the orientation of the eyes are eas-
ily constructed. For example, the matrix R; in relation (4)
is

cos B 0 —sinpf;
R,=| 0 1 0 . (10)
sinf; 0 cosp

Analogous definitions are made for the matrices R and
R, with angles B8 and S,, respectively.

Although the Helmholtz coordinates are convenient for
specifying visual directions, the eyes do not, in general,
rotate about the corresponding axes. An important char-
acteristic of actual eye movements is that, for general
fixation points, each eye will be cyclorotated around the
corresponding visual direction. Although the observed cy-
clorotation angles y, and v, are nonzero, Donders’ law
states that they are completely determined by the corre-
sponding visual directions; hence, there exist functions
v(a,B;) and vy.(a,B,). The definitions of these functions
can be obtained from Listing’s law and its extensions
[43-45].

Cyclorotation, like the azimuth and distance of the
fixation point, has a significant effect on the binocular dis-
parity field [15,27]. The angles 7y, and v, are, however, de-
termined by the cyclopean parameters «, 8, and p. This
follows from Donders’ law via relations (6) and (9), as in-
dicated above. Hence, in order to develop a minimal ocu-
lomotor parameterization, it is convenient to make the
simplifying assumption

71(“::81) = Yr(a7ﬂr) = O, (11)
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which is (trivially) consistent with Donders’ law. The
practical advantage of this restriction is that any depen-
dence on the elevation angle « is removed from the analy-
sis. This makes it possible to study the binocular geom-
etry with respect to fixation points in a single visual
plane. Furthermore, Listing’s law (including the “L-2” ex-
tension) agrees with relation (11) when the elevation « is
zero [44,45]. This makes it useful as well as convenient to
choose the horizontal plane V), for further investigation
[14].

The above approximation (11) is good for =0 and, in
general, it is straightforward to incorporate any cycloro-
tation model (e.g., L-2) into the geometric framework de-
scribed below. For example, in Section 6, the scalar bin-
ocular disparity is defined at each retinal point in the
direction of the epipole. Both the point and the epipole
can be cyclorotated as a function of the fixation point.
Furthermore, note that these rotations do not change the
magnitude of the disparity vectors. Although this proce-
dure can be used to describe the effect of cyclorotation, it
does not say how the visual system should cope with it.
Some suggestions will, however, be made in Section 7.

The vergence angle & will be defined as the angle be-
tween the lines of sight at the fixation point; the version
angle € will be defined as the average gaze azimuth. In re-
lation to the Helmholtz coordinates, this means that

5=:Bl_ﬁr’ (12)

1
€= 5(:81+ﬁr)' (13)

The vergence angle §is nonnegative owing to the inequal-
ity B,.=<pf;, which follows from the signs and limits of g
and B, as defined above. The equality B;,=8, occurs for in-
finitely distant fixation points, for which §=0. These defi-
nitions are illustrated in Fig. 3.

The properties of the vergence and version parameters
can be understood with reference to the Vieth-Miiller
circle [46], which is defined by the two optical centers ¢;
and ¢, together with the fixation point p,. The vergence
is the inscribed angle at p, being opposite the interocular
axis b. The law of sines gives the diameter of the circum-

Cq

Fig. 3. Vergence geometry. The Vieth-Miiller circle is defined by
the positions of the optical centers ¢; and ¢, together with the
fixation point p,y. The forward (z>0) are of the circle intersects
the midsagittal plane at the point ¢,. The vergence angle & is in-
scribed at p, by ¢; and ¢,. The same angle is inscribed at all other
points on the circle, including ¢,.
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Fig. 4. Version geometry. The points ¢, and p, inscribe the ver-
sion angle € at an optical center ¢ that is located on the backward
(2<0) are of the Vieth-Miiller circle. The same angle is inscribed
at ¢; and ¢,. It follows that as p, is fixated, ¢, lies in the same
visual direction from each eye. Furthermore, the triangle defined
by ¢;, ¢,, and ¢, is isosceles, so the point ¢, is at the same dis-
tance from each eye.

circle as 1/sin 8, with |b|]=1 as usual. The angle sub-
tended by b from the center of the circle is 25, being twice
the inscribed angle. The isosceles triangle formed by ¢,
¢,, and the center of the circle can be split into two right-
angled triangles, such that tan 6:%/ ., where ( is the z co-
ordinate of the center. It follows that the Vieth-Miiller
circle is centered at the point (0,0,)T and has radius 7,
where

1

= 3 cot &, (14)
1

n= 5 csc d. (15)

The optical centers ¢; and ¢, divide the Vieth-Miiller
circle into two arcs according to the sign of z. The forward
(z=0) arc contains the fixation point py with inscribed
angle 6. Furthermore, the inscribed angles at all other
points qyy on this arc must be equal; hence the Vieth-
Miiller circle contains the locus of isovergence.

The version angle € gives the azimuth of p, from a cy-
clopean point €=(0,0, - )T, which lies at the back of the
Vieth-Miiller circle, as shown in Fig. 4. Evidently the lo-
cation of the point ¢ varies according to the vergence
angle, as the radius of the circle is determined by the lat-
ter. This is one reason for deriving the (J,€) parameter-
ization from the (B,p) parameterization, as above. The
present analysis has a fixed reference point ¢,=(0,0,0)T,
meaning that visual information can easily be combined
as the eyes refixate. Furthermore, the range parameter p
can be interpreted directly, whereas the vergence param-
eter & is measured in relation to the oculomotor system.
Nonetheless, the vergence and version parameters are es-
sential to the geometry of visual fixation, as will be shown
in the following sections.
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4. FIXED POINTS

In this section it will be shown that for a given vergence
angle, certain points in the scene project to the same lo-
cation in each image. These points constitute the geomet-
ric horopter of the fixating system. The constructions that
are given here will be used to construct the epipolar ge-
ometry of the two images in Section 5. For this purpose, it
will be convenient to study the horopter in the absence of
cyclorotation.

It was shown in Section 3 that the Vieth-Miiller circle is
defined by the optical centers ¢; and ¢, together with the
fixation point py. Consider another scene point qyy; that
lies on the forward section of the Vieth-Miiller circle. This
point is in the visual plane ), and therefore satisfies the
equation y=0, as well as the conditions

2+ z-02=7 z=0. (16)

The two points pg and qyy;, both of which are on the for-
ward section of the Vieth-Miiller circle, must inscribe
equal angles at the optical centers. The point pg is being
fixated and therefore appears in the fovea of each image.
Hence the projected point qyy is “fixed” with respect to
the mapping between the left and right images [40,42]. It
appears on the horizontal meridian of each retina, at the
same angular offset from the corresponding fovea. This
can be restated in eye coordinates as x;/z;=x,/z, and
vi/z;=y,/z,=0 for any point on the Vieth-Miiller circle.

The Vieth-Miiller circle does not, however, constitute
the complete horopter. The remaining points can be
found, in this case, by solving the equations x;=x,, y;=v,,
and z;=z,. Any scene point that satisfies these equations
is fixed with respect to the rigid-body transformation be-
tween the left and right eyes, as well as with respect to
the mapping between the images. Recall that the Euclid-
ean coordinates of g=(x,y,2)T in the left and right eye
frames are q;=R;(q-¢;) and q,=R,.(g-¢c,), respectively.
The point q is fixed with respect to the left/right transfor-
mation if q;=q,, which in turn implies that |q;/%>=|q,|.
The squared lengths are preserved by the rotation matri-
ces R; and R,, and so |q-¢;|?>=|q—-¢,|2. From the definition
of ¢; and ¢, in relation (3), this is equivalent, in scene co-
ordinates, to the condition (x+3)*=(x-1)%. Hence it can be
seen that any such point must lie in the midsagittal plane
x=0 that divides one side of the head from the other. Sub-
stituting x=0 into conditions (16) leads immediately to z
={+7, leaving y free to vary. In general, y;=y,, because
the axis of the vergence rotation is perpendicular to the
visual plane V,.

This argument has established that there is an axis of
points q, that are fixed with respect to the rigid-body
transformation between the left and right eyes. This axis
intersects the Vieth-Miiller circle at a point ¢, and is per-
pendicular to the visual plane. If, as previously supposed,
a=0, then the coordinates of these points are

¢, =(0,0,0+ )", 17

=€, +(0,y,0)". (18)

This axis of points q,, which has been identified else-
where [46,47], is the geometric midline horopter. The
point ¢, is the pole of the planar transformation induced
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by the translation b and vergence rotation RrR;r. The
points q, lie on the associated screw axis [39,40].

It will be useful to compute the image coordinates of
the axis, which are common to both eyes, as shown in Fig.
4. The points pg and ¢, inscribe equal angles at ¢;, ¢,, and
¢; moreover, the angle at ¢ is, by definition, the binocular
version e. Having established that the angular direction
of q, from either optical center is €, the common distance
of this point will also be computed. The points ¢;, ¢,, and
¢, form an isosceles triangle, from which it can be seen
that [¢,/sin(6/2)=3. It follows that in the coordinates of ei-
ther eye, the axis is specified by

1
€= 5 ese(42)(~sin ,0,cos 9", (19)
q,=¢C, + (O’y,O)T' (20)

These image points lie on a vertical line a that has the
same coordinates in each eye. The equation of the line is
ana=0, and so it follows from Eq. (19) that the coordi-
nates of the line are determined by the version angle e:

a ~ (cos €,0,—sin )T. (21)

The results of this section can be summarized as fol-
lows. If a scene point q is on the geometric horopter, then
the image coordinates of the corresponding points are
equal, q;~q,. The geometric horopter, in the absence of
cyclorotation, consists of the forward part of the Vieth-
Miiller circle together with the midline component. Fur-
thermore, the image coordinates (21) of the midline part
are determined by the binocular version angle. It will be
seen in the following section that the epipolar geometry
can be constructed via the vertical horopter. The epipolar
geometry extends the cyclopean parameterization out of
the visual plane and leads to geometric constraints that
are defined across the entire left and right images.

It should be noted that, in the presence of cyclorotation,
the geometric horopter takes the form of a twisted cubic
curve [16]. This curve coincides with the Vieth-Miiller
circle as it passes through the optical centers and has as-
ymptotes at €,+(0,y,0)T.

5. EPIPOLAR GEOMETRY

It was established in the preceding section that certain
scene points have the same coordinates in both images.
The related epipolar constraint is weaker, but much more
useful, as it applies to all scene points. The epipolar ge-
ometry of the fixating system will now be described; in
particular, the image of the midline horopter (21), will be
used to construct the appropriate essential matrix [20].
The epipolar constraint is as follows: Given an image
point q; in 7, the corresponding point q, in Z, must lie on
a known epipolar line u, such that u;rq,=0. The geomet-
ric interpretation of this is that the scene point @ must be
located on the ray defined by the optical center ¢; and the
image point q;; the ray projects to a line u, in the other
view, S0 q,, being another image of q, must lie on the line.
Furthermore, note that the optical centre ¢; is common to
all such rays, so the resulting lines u, must intersect at a
single point in Z,. This point is the right epipole e,. Simi-
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lar arguments can be used to introduce the left epipole ¢,
as well as the associated lines w; in Z;.

Suppose that the point q; is given; then, with reference
to Fig. 5, w;=e; X (;. Furthermore, this line intersects the
projection a of the midline horopter (21) at the image
point q,=a X u;. Any point on u; must be the projection of
a scene point in the plane defined by ¢;, ¢,, and q,. This
scene point must, therefore, also project onto the other
epipolar line u,. Hence u, can be constructed from e, and
the point in Z, that corresponds to q,. Furthermore, q, is
a fixed point (being on a), so its coordinates are un-
changed in Z,. It follows that u,=e, X q,. The preceding
construction may be summarized as

u,~e, X [a X (el X ql)] (22)

This equation will now be put into a more useful form.
Suppose that w=(x,y,z)T; then the cross product wXp
can be expressed as a matrix-vector multiplication,
[w]xp, where

0 -z y
[wl=| 2 0 -x (23)
-y x 0

is a 3 X 3 antisymmetric matrix constructed from the com-
ponents of w. Consider the part of Eq. (22) that does not
depend on the particular choice of point q;; the equiva-
lence (23) can be used to express this as a transformation,

E ~[e, ] [al.[e/]x, (24)

which is the 3 X 3 essential matrix [20]. Given a point q,
the corresponding point g, must be on a certain epipolar
line u, as described above. This constraint is expressed
via the essential matrix as

q'Eq;=0, (25)

where u,~Eq;. The analogous constraint q;rETqrzo ap-
plies in the opposite direction, the epipolar line being

Fig. 5. Construction of the epipolar geometry. Point q; is given,
so the epipolar line in 7; is u;=q; X €;. This line intersects the im-
age a of the midline horopter in 7, at q,=a Xu,. The point q, is
on a, and is therefore fixed, having the same coordinates q, in Z,.
It follows that the epipolar line in Z, is u,=e, X q,. The location of
q, that corresponds to q; is unknown, but it must lie on u,. The
Vieth-Miiller circle determined by the fixation point p, is shown
in the figure, as is the midline horopter, which passes through
points ¢, and q,.
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u;~ET"q, in this case. The epipoles as described above are
each the image of the “other” optical center. This means
that e;~R;(b), and e,~R,.(-b), where b is the vector be-
tween the optical centers. Equations (1), (3), and (4) can
be used to show that the epipoles are simply

e~ (COS BlyO’Sin Bl)Ty e, ~ (_ Ccos Bmo’_ sin Br)T'
(26)

These equations can be combined with the definition of
the geometric midline horopter (21) to give a parametric
structure to the essential matrix. The nonzero terms E;;
in the matrix product (24) are found to be E;,
=_Er sin ,3,., E21 =El sin Bl’ E23= _El cos Bl’ and EZZ
=E, cos B,, where E;=cosf,cose+sinfS,.sine and E,
=cos B; cos e+sin B; sin e. The factors E; and E, are seen to
be the angle-difference expansions of cos(B8;—¢) and
cos(B,—€), respectively. Furthermore, by reference to rela-
tions (12) and (13) the arguments B;—€ and B,—€¢ are
equal to £5/2, and so it follows from the even symmetry of
the cosine function that E;=E,=cos(5/2). The essential
matrix is defined here as as a homogeneous transforma-
tion [see Eq. (25)], so this common scale factor can be dis-
regarded, which leaves

0 -sing, 0

E ~ |sin g 0 —cos B |. (27)
0 cos B, 0

It is straightforward to verify that E is indeed an essen-
tial matrix having one singular value equal to zero and
two identical nonzero singular values (here equal to
unity).

The same result can be obtained from a variant of the
more traditional definition of the essential matrix [20,48],
E~Rr[b]XR;F. This definition is, however, not specific to
the case of visual fixation, and offers correspondingly less
insight into the present configuration. The essential ma-
trix has, in general, five degrees of freedom: three for rela-
tive orientation, three for translation, minus one for over-
all scaling [3]. The essential matrix (27) obtained above
has just two parameters B; and B,. This simplification of
the epipolar geometry is due to the fixation constraint in
conjunction with Donders’ law.

6. BINOCULAR DISPARITY

It was established in the preceding section that projected
points in the left and right images must obey the epipolar
constraint. In particular it was shown that, given a point
q; in 7;, the corresponding point q, must lie on a line u,
~Eq; in the other image Z,. The structure of the scene
displaces the left and right image points along the corre-
sponding lines, which pass through the left and right epi-
poles, respectively. These image displacements are quan-
tified in this section. In particular, it is shown that a scene
point q which is in cyclopean direction p, will be projected
to corresponding image points q; and q,, where

q=p;+4(s)d;, Q. =p,+t.(s)d,. (28)

The unit vectors d; and d, point toward the respective
epipoles e; and e,.
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The relation to the epipolar geometry developed in Sec-
tion 5 is that q; and p; are on the same epipolar line;
hence, in addition to qrrFqu=0 as in Eq. (25), it is true
that q;FEpl:O. Formulation (28) makes an approximate
correspondence between points p; and p, that is corrected
by parallax functions ¢;(s) and ¢,(s). The common param-
eter s is the signed orthogonal distance of q from the fr-
ontoparallel plane P that passes through the fixation
point py. This representation makes it possible, in prin-
ciple, to estimate a “local” cyclopean depth map at each
fixation point. The local depth is a function S(p.;S,p),
where p, parameterizes the cyclopean field of view given
the azimuth and range (8, p) of the fixation point.

Decomposition (28) has three important properties.
First, the unknown parallax variables are scalars; there
is no need to consider horizontal and vertical disparities
separately. Second, each image correspondence is param-
eterized by a single variable s, which has a direct inter-
pretation as a Euclidean distance in the scene. Third, for
points close to the fixation plane, the predictions p; and p,
will be close to q; and q,, respectively. In particular, the
predicted correspondence will be exact if the point q lies
in the fixation plane; #;(0)=¢,.(0)=0. Decomposition (28)
will now be described in detail with respect to Fig. 6.

The fixation plane P by definition passes through the
fixation point py, and is perpendicular to the cyclopean
gaze direction. Hence the plane has an outward normal
vector v, as defined in relation (8). The plane consists of
scene points in the set

P={p:v'(P-Po)=0}. (29)

(67 C

Fig. 6. Geometry of cyclopean parallax. The fixation plane P is
defined by the fixation point and is parallel to the cyclopean im-
age plane. Any point p,. defines a cyclopean ray that intersects
the fixation plane at p and the scene at q. The scene point q has
depth s with respect to P. The predicted image projections of g
are at p; and p,. The true projections q; and q, are displaced
along the corresponding epipolar lines u; and u,, respectively.
The displacement can be parameterized by s as described in the
text.
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The orthogonal distance from P to the cyclopean origin is
equal to the range p of the fixation point as defined in re-
lation (7). The orthogonal distance from P to the scene
point q will be s; hence

p=v"Dy, (30)

s=v"(@- D). (31)

The range p is strictly positive, whereas s is negative,
positive, or zero according to whether q is closer than, far-
ther than, or in the plane P, respectively. Note that s rep-
resents the structure of the scene with respect to P. Equa-
tions (30) and (31) can now be used to decompose the
cyclopean depth z, of the point q as

z2,=vigq=p+s. (32)

The cyclopean ray through q intersects the fixation plane
at p. Hence the cyclopean coordinates of q can be ex-
pressed as z,p,=Rq, where p, has been normalized such
that (p.)s=1, and R encodes the orientation of the cyclo-
pean eye [defined by the angle B; see Eq. (10)]. The scene
coordinates of points on the corresponding visual ray pa-
rameterized by z, can be obtained by inverting this equa-
tion. In particular, the intersection p of the ray with the
fixation plane P can be obtained, as can the original scene
point q:

p=pR"p,, (33)

a=zR"p.. (34)

These two points, which lie on the same cyclopean ray,
will now be projected into the left image 7Z;, and the dif-
ference ¢;(s)d; between the two projections will be evalu-
ated. The analogous derivation applies to the other image
7, with subscripts [ and r exchanged. The left coordinates
are

1
pip; = pPRRp, + 2& (35)

1
zq;=2RR"p, + 2e (36)

where %elle(—cl), as the left, right, and cyclopean opti-
cal centers are collinear.

Note that the image-points are normalized such that
(P)s=(a;)3=1, as in the case of p,. It is necessary to con-
sider the third components of the vectors R;RTp, and %el
in coordinates (35) and (36), respectively; these are

N = (RR P =x.sin(B - B) +cos(B- B),  (37)

1 1
M=\ e 3= 2 sin f. (38)

The actual image point q; will now be decomposed into
a sum of the predicted point p; and a scalar parallax in
the direction of a unit vector d;. The vector d; should be in
the direction of q; with respect to the epipole e;. Further-
more, the vector d; must lie in the image plane (d;)3=0.
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However, it is desirable to avoid defining d; from p;
—%el/ 1y, because p;=0 whenever B3,=0, as is clear from
Eq. (38). Hence it is better to use

1 1
d;=—| wp - e, (39)
Kl 2

where (,ulpl)3=(%el)3=,ul, hence (d;)3=0. The scalar x;
=|wPp;- 3€;| has been introduced, so that d; is a unit vec-
tor. This is not strictly necessary, but has the advantage
of imposing the original unit of measurement |b| on the
parallax function ¢;(s) that is associated with each scene
point.

The function ¢(s) will now be derived. It follows from
Eqgs. (35) and (36), along with the requirement (p;);
=(q;)3=1, that the depth variables p, and z; can be ex-
pressed as affine functions of the corresponding cyclopean
parameters p and z,:

pr=Np + g, (40)

21= N2+ 1y, (41)

where \; and u; are the scalars identified by Egs. (37) and
(38). A solution for \; can be obtained from either of these
equations and substituted into the other. The resulting
expression can then be solved for y;:

PiRc — PR

= ———. (42)
Zc—pP

Equation (42) is independent of the point g that is asso-
ciated with depths z, and z;. The result q;=p;+¢;(s)d;, as
in Eq. (28), can now be derived in full. Equations (35) and
(36) are used to express the actual projection q; as a func-

tion of the predicted projection p;:

1
pzi9; = PP~ (20— P)Eek (43)

The quantity pz;p; is now subtracted from both sides of
Eq. (43), and the resulting equation is rearranged as

1
pzi(a; = Py) = (pze = pz)Pr = (20— p)Eel

pEc—pz; 1
=@.-p)| ——Pi- s
Z.—p 2

c

1

=(z. - P)(,U«lpl - 591) ; (44)
where the substitution of x; has been made with reference
to Eq. (42). Both sides of Eq. (44) are now divided by pz;,
and comparison with Eq. (39) leads to

Zc_p( 1 ): Kl(zc_p)d Kis

P — € 1=y,
2 Pz Pz

qQ-P=
Pz

(45)

where Eq. (32) has been used to make the substitution
s=2z,-p.

The practical problem with Eq. (45) is that in addition
to the free parameter s, the variable z; is apparently un-
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known. This is resolved by making the substitution z
=N/(p+s)+pu;, which follows from Eqgs. (32) and (41).
Therefore, if p; is added to both sides of Eq. (45), the re-
sult is

q;=p; +£(s)d;, (46)

Ky (s/p)

with £,(s) = —
N(p+8)+

(47)

The analogous definitions are made for Z,, with sub-
scripts [ and r exchanged. Equations (45)—(47) can be in-
terpreted as follows. Suppose that (hypothetical) cyclo-
pean coordinates (v,p) of the fixation point p, are
specified. Then, given the cyclopean direction p. of an-
other point, it is possible to compute the predicted point
p; (35) as well as the vector «;d; (39). The scalars \; and g,
are obtained from Egs. (37) and (38), respectively. The un-
known parallax ¢#;(s) is proportional to s/z;; this ratio is
the depth of the scene point q; with respect to the fixation
plane P divided by the depth of the point with respect to
the left viewing direction.

For points that are on the fixation plane, s=0; therefore
it is clear from Eq. (47) that #;(s)=0. It follows from Eqs.
(28) that q;=p; and q,=p,. This makes it interesting to
consider the relationship between p; and p,. It can be
shown that the points p; can be mapped onto the corre-
sponding points p, by the projective transformation

p,=Hp, (48)

where H is the homography induced by the fixation plane
P. If w; is the perpendicular distance from ¢; to P, then
the transformation is represented by the 3 X 3 matrix

bvT
H=R,|I-— |R]. (49)
wy
In the general case of s # 0, Egs. (28), (48), and (49) can
be combined, leading to the well-known “plane plus par-
allax” decomposition [3,41]

q,= le + tr(s)dr (50)

The symmetric representation (28) is, however, preferable
in the present context. This is because it encodes the
depth map directly in cyclopean coordinates S(p.;3,p). It
is interesting to note that any essentially 2D transforma-
tion, such as a relative cyclorotation or a change of focal
length, can be readily absorbed into the homographic part
H of the mapping (50). This is convenient, because it
means that the analysis of the binocular disparities ¢;(s)
and ¢,(s) is unchanged by such image transformations.

7. DISCUSSION

Three problems of binocular vision were identified in Sec-
tion 1 concerning oculomotor parameterization, disparity
processing, and scene representation. A unified geometric
treatment of these problems has been given in Sections
2—6. The main psychophysical and physiological findings
that relate to each of the proposed geometric solutions
will now be reviewed.
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A. Oculomotor Parameterization

As described in Section 3, the binocular orientation of the
eyes can be described in the visual plane by the vergence
and version angles § and e. Furthermore, these variables
are convenient for the specification of coordinated eye
movement from one fixation point to another. It was sug-
gested by Hering that the oculomotor system actually en-
codes binocular eye movements in terms of vergence and
version [5,17]. Specifically, Hering’s law of equal innerva-
tion states that the eyes are oriented by signals (8, e€)
where, according to Egs. (12) and (13), the corresponding
azimuths are B;=€+6/2 and B.=€e- /2. Each eye moves
according to the sum of the appropriate vergence and ver-
sion components, which may cancel each other. The exis-
tence of physiological mechanisms that encode pure ver-
gence has been demonstrated in the midbrain [49], and it
has been suggested that the vergence/version decomposi-
tion is used to represent the difference between the cur-
rent and target fixation points. However, the actual tra-
jectories of large binocular eye movements are not
consistent with the simple vergence/version decomposi-
tion [50]. Furthermore, it has been found that the visual
axes can be significantly misaligned during REM sleep
[51], which seems more consistent with the independent
parameterization of each eye.

It may be that the application of Hering’s law is limited
to those situations in which the existence of a 3D fixation
point can be ensured by the foveal correspondence of the
images. This condition would, for example, distinguish
the vergence response from the disconjugate component
of a binocular saccade. This is because vergence is driven
by visual feedback [7], which is not generally available
during the course of a binocular saccade. Likewise, when
the eyes are closed, there is no visual information to en-
sure the existence of a 3D fixation point. In summary, the
evidence for Hering’s law of equal innervation is mixed,
but it seems clear that there are situations in which it is
not a satisfactory model.

B. Disparity Processing

It is possible to separate the initial estimation of image
correspondences from the interpretation of the resulting
disparity field; this distinction is made in several compu-
tational models of stereopsis [13,31,52]. It is supposed in
these models that the correspondence problem is first
solved, independently of the gaze parameters. The latter
are then recovered from the estimated disparity field [31],
and the two types of information are combined, leading to
a 3D (though not necessarily Euclidean) interpretation of
the scene [26,27]. This scheme is compatible with the
physiological basis of stereopsis. For example, it has been
demonstrated that the initial binocular mechanisms in
area V1 are tuned to absolute disparity [19] as described
in Subsection 1.B. This finding indicates that the low-
level mechanisms of stereopsis do not “compensate” for
any disparity that is imposed by the relative orientation
of the eyes.

The biological feasibility of a general solution to the
binocular correspondence problem will now be considered.
Individual disparity-tuned cells in area V1 typically re-
spond to a small range of absolute disparities centered on
some preferred value. The distribution of preferred dis-
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parities over the population of cells can also be inferred
from the experimental data [53]. This arrangement sug-
gests the following difficulty: It seems likely that for any
particular scene and any particular fixation point, a large
proportion of the V1 disparity response may be spurious.
This is because the occurrence of the preferred absolute
disparity, for a given detector, effectively depends on the
orientation of the eyes as well as on the scene structure.
Hence the possibility of detecting a “false match” is exac-
erbated by the fact that, because of the variable orienta-
tion of the eyes, the true match may not even be in the
range of a given detector.

One way to address this problem involves the use of
prior knowledge about the typical structure of the scene.
For example, it might be assumed that the scene is ap-
proximately planar in the neighborhood of the fixation
point. Such a model could then be used to define sets of
disparity detectors that are effectively tuned to the same
surface in depth. This is done by computing the image-to-
image mapping induced by the surface model and compar-
ing it to the disparity response. Note that this process is
entirely consistent with detectors that respond to abso-
lute disparity, as the scene model does not influence the
output of the individual mechanisms. Rather, the local
scene model is used to identify the relevant part of the V1
response.

If this approach is to be effective, then the induced
image-to-image mapping must be appropriately param-
eterized [54]. It is important to note that an appropriate
parameterization would allow prior knowledge to be used
in estimating the gaze parameters as well the scene struc-
ture. For example, image-to-image mappings associated
with extreme configurations of the eyes might be penal-
ized, and some mappings might be excluded altogether
(e.g., those associated with nonintersecting visual axes).

It is emphasized that this approach does not require
nonvisual information about the current gaze param-
eters; rather, it assumes that a model of gaze variation
can be learned from the image data. The geometric con-
straints described in Sections 3 and 5 would seem to
make this a biologically feasible task. For example, if the
scene is assumed to be approximately perpendicular to
the cyclopean gaze direction, then the appropriate scene/
gaze model has just three parameters, «, B, and p. Hence
the disparity field induced by the fixation plane, including
the full epipolar geometry, can be predicted from any hy-
pothesized fixation point. An appropriate cyclorotation
model, such as L-2, can easily be incorporated [44,45].
The form of the induced image-to-image mapping is as de-
scribed in Section 6.

C. Scene Representation

It was shown in Section 6 that binocular disparity can
conveniently be measured with respect to the fixation
plane P. This plane passes through the fixation point and
is orthogonal to the cyclopean viewing direction. This con-
struction is commonly used in physiological studies of ste-
reopsis. In particular, the shape of the disparity tuning
profile with respect to the depth of the fixation plane has
been used to classify binocular neurons [55]. Subsequent
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experiments have suggested that there exists a con-
tinuum of different disparity tuning curves [9] rather
than a number of distinct types. Nonetheless, the con-
tinuum of disparity tuning is clearly organized around
the fixation plane; for example, the majority of cells are
tuned to disparities close to that of the plane [56].

The importance of the fixation plane is also reflected in
psychophysical studies of stereopsis. As noted in Subsec-
tion 1.C, only those points in space that are in Panum’s
area can be binocularly fused [21]. It has further been
demonstrated, using simple stimuli, that stereo acuity is
highest for targets located close to the fixation plane
[18,21]. However, the representation of more complex bin-
ocular stimuli raises further questions. In particular, it
has been shown that judgment of the relative depth be-
tween nearby targets is much more accurate than judg-
ment of the deviation of a singe target from the fixation
plane [57]. Furthermore, the surface that is perceived in
depth is in some cases an interpolation of the pointwise
disparity stimulus [58]. These observations suggest that
the representation of binocular disparity may depend on
the local scene structure as well as on the gaze param-
eters [23]. The present model is compatible with this ap-
proach, and indeed, the fixation plane P(p,v) can be in-
terpreted as the zeroth-order approximation of the local
scene structure. It is straightforward to substitute the
first-order model P(p,Vv; 6, ¢), in which the angles 6 and ¢
represent the local surface orientation, and to repeat the
derivation of binocular disparity in Section 6.

The integration of visual information across the larger
scene will now be considered. The representation de-
scribed in Section 6 allows the estimated viewing distance
to be combined directly with the cyclopean depth map, be-
cause both are measured along the cyclopean gaze direc-
tion, as in Eqs. (30) and (31). The global structure of the
scene could therefore be encoded in a collection of local
depth maps of the type described above. Although each
depth map would be associated with a different fixation
point, it would be geometrically straightforward to com-
bine the encodings based on the corresponding gaze pa-
rameters.

Finally, it can be argued that the cyclopean representa-
tion is consistent with the perception of visual space [17].
Human binocular vision results, at least subjectively, in a
single view of the scene. If this synthetic view has a
meaningful center of projection, then it may be hypoth-
esized that it is located at the cyclopean point [59].

D. Conclusion

A cyclopean parameterization of binocular vision has been
developed in detail. The parameterization has been used
to construct the horopter and the epipolar geometry of a
fixating visual system. Furthermore, the effect of the ocu-
lomotor parameters on the binocular disparity field has
been described. It is clear that the interpretation of the
disparity field is complicated by the variable orientation
of the eyes. However, it has been argued here that this
complication is minimized by binocular coordination of
the eyes. The geometric and computational appeal of the
cyclopean representation has been emphasized, and the
biological relevance of the model has been indicated.
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APPENDIX A: SUMMARY OF NOTATION
USED

¢,.¢, Left, right optical centers

b.,c, Optical baseline, midpoint

R, R, Left, right eye rotation matrices
Po,V Fixation point, fixation direction
P.p Fixation plane, point in plane
a,B,p Elevation, azimuth, distance of p,
B, B, Left, right azimuths of p,,

Vs Yy Left, right cyclorotation angles

0, € Vergence, version angles

{,m,¢ Center, radius, rear point of VM circle
q:;q;,q, Scene point; left, right projections
€., q, Points on vertical horopter

a Image of vertical horopter

u,,u, Left, right epipolar lines

e e E Left, right epipoles; essential matrix
d;.d, Left, right disparity directions

s Distance of q from plane P

1,1, Left, right cyclopean parallax
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