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Abstract Processing images acquired by multi-cam-
era systems is nowadays an effective and convenient way
of performing 3D reconstruction. The basic output, i.e.
the 3D location of points, can easily be further processed
to also acquire information about additional kinematic
data: velocity and acceleration. Hence, many such recon-
struction systems are referred to as 3D kinematic sys-
tems and are very broadly used, among other tasks, for
human motion analysis. A prerequisite for the actual
reconstruction of the unknown points is the calibration
of the multi-camera system. At present, many popular
3D kinematic systems offer so-called wand calibration,
using a rigid bar with attached markers, which is from the
end user’s point of view preferred over many traditional
methods. During this work a brief criticism on differ-
ent calibration strategies is given and typical calibra-
tion approaches for 3D kinematic systems are explained.
In addition, alternative ways of calibration are proposed,
especially for the initialization stage. More specifically,
the proposed methods rely not only on the enforce-
ment of known distances between markers, but also on
the orthogonality of two or three rigidly linked wands.
Besides, the proposed ideas utilize common present
calibration tools and shorten the typical calibration
procedure. The obtained reconstruction accuracy is
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quite comparable with that obtained by commercial 3D
kinematic systems.

Keywords Calibration · 3D kinematic system

1 Introduction

Three-dimensional reconstruction of points is a basic
task in a variety of areas and applications: entertain-
ment, animation, industrial design, sports/medicine, etc.
Different applications contributed to parallel develop-
ments of a variety of principles (and instrumentations)
to obtain 3D information, including for instance the use
of electromagnetic or acoustic sensors, accelerometers,
photogrammetric principles [7,9,29], etc. Perhaps one
of the major advantages of photogrammetric methods
is the fact that they are practically 100% non-invasive,
being based on processing images acquired by cameras.
That feature is almost an imperative in many applica-
tions such as human motion analysis. The image created
by a camera represents a 2D projection of a 3D object.
Two such images are sufficient to yield 3D coordinates
by the means of photogrammetric reconstruction [10].
However, there are cases where under certain assump-
tions a single camera is sufficient [19]. One of those spe-
cial cases includes the use of structured light where the
role of one camera is substituted by a light source, for
instance a video-projector [15,18,36,37,39,41]. In this
paper, we only consider multi-camera systems, without
structured light or other additional devices.

Prior to the reconstruction of the unknown object
points, the multi-camera system has to be calibrated. The
projection of a 3D point to a 2D camera image plane is
described by a camera projection model and parameters
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thereof. Calibration is the process during which these
parameters are determined [49]. Over the course of the
years different methods/tools have been developed in
order to make calibration as simple as possible and at
the same time satisfying a high degree of reconstruction
accuracy. Typically, this is based on acquiring images of a
scene with known geometry. An easy way to do this is to
build a special calibration object, such as the traditional
3D calibration cages. Such an approach, apart from the
apparent advantages of being rather accurate and reli-
able, has many disadvantages that nowadays are less
and less acceptable. For instance, accurate fabrication,
manipulation and storage of 3D cages very often ask for
considerable amounts of money, patience (sometimes
even with no guarantee that calibration will be success-
ful after all) and space, respectively. All those condi-
tions are somewhat relaxed if we use planar calibration
objects [51,44]. However, the accurate calibration of a
multi-camera system requires that the planar object be
well visible in several cameras at each instant; this puts
too many requirements on the calibration procedure,
especially for non-expert users, to be acceptable for use
in commercial systems.

Taking one more step in simplifying things is to use
1D calibration objects, or wands [12]; this further alle-
viates the above problems and solves the mentioned
visibility issue. There is an ongoing tendency to make
calibration methods as simple as possible and use as
few data as possible. These approaches heavily rely on
(hopefully) readily available scene constraints and/or
assumptions about camera parameters (spatial configu-
rations) [25,14,32]. Finally, the most flexible calibration
approach is autocalibration, which is based on acquiring
images of an object without known geometry besides the
assumption of being rigid [34,26]. One potential prob-
lem is image matching that is required for all calibra-
tion approaches; this may be solved as proposed in [46],
where calibration is done using images of a single LED,
moved throughout the working volume by the user. Nev-
ertheless, although autocalibration is theoretically fea-
sible and works well for moving cameras, it requires
expert knowledge in order to apply it for a static system
of multiple cameras, especially with respect to camera
placement, due to the existence of degenerate condi-
tions, which commonly occur in practice [45]. Overall, it
is difficult to provide performance guarantees (accuracy
and required time) for autocalibration, which makes it
difficult to use in commercial systems.

In our work, we thus adhere to the use of wands, i.e.
1D calibration objects with attached markers, located
at known distances from one another. In this paper,
we investigate the use of two or three rigidly linked
wands. The aims are to obtain both, a more accurate

calibration and a shorter calibration procedure, due to
requiring fewer images. We study how to use the con-
straint of orthogonality of wands, besides known dis-
tances between markers.

2 Typical 3D kinematic system calibration

The commercial value of nowadays’ popular kinematic
systems is highly dictated by how user-friendly they
are, which is in turn largely influenced by the particu-
lar calibration method involved [8,3,6,1,4,2]. Presently,
many commercially available systems are offering cam-
era calibration using simple wand(s) of known length,
for example [3]. A typical calibration procedure con-
sists of two steps. The first step requires imaging two or
three orthogonal wands, placed on the ground (Fig. 1).
The position and orientation of these wands actually
determine the spatial coordinate system in accordance
with user requirements. The second purpose of this first
calibration phase is the initialization of camera parame-
ters. Each wand has a certain number of markers, whose
relative positions are accurately known. Thus correspon-
dences between 3D space and camera image
planes can be readily established and used to initialize
camera parameters (internal parameters as well as exter-
nal ones, i.e. position and orientation). Due to the exis-
tence of various sources of errors or noise, primarily
those caused by lens imperfections and non-perspec-
tive distortions, these initial estimates are only rough
approximations [27].

The task of the second calibration step is to refine
the initial estimates by waving with a wand of known
length (so-called wand dance) throughout the desired
calibration volume. The goal is to acquire images of the
wand for as many locations and orientations as possible.
This refinement leads usually to non-linear optimization
algorithms [16]. A detailled analysis of issues concerned
with non-linear optimization algorithms is not within a
scope of this paper. However, a few general remarks
can be given. Problems concerning local/global minima,
convergence and speed of convergence, etc. are very
much influenced by the quality of the initial estimates
of parameters, especially by how close they are to the
optimal values [38]. It is not rare in practice, particularly
with older versions of 3D kinematic systems, that the
user is explicitly asked to repeat the entire calibration or
strongly suggested to do so, based on various quantita-
tive measures of calibration quality. Common causes are
a bad positioning of the orthogonal triad with respect to
the cameras (leading to bad initial parameter estimates)
and/or badly performed wand dance such that the wand
does not cover a sufficient amount of the cameras’ field
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Fig. 1 Image of the orthogonal triad with attached markers.
Marker distances with respect to the triad origin, i.e. ‘marker’
10 are as follows. X-axis: 1 (15 cm), 2 (30 cm), 3 (45 cm), 4 (60 cm);
Y-axis: 5 (15 cm), 6 (45 cm), 7 (60 cm); Z-axis: 8 (30 cm), 9 (60 cm)

Fig. 2 Single calibration wand used for ‘wand dance’

of view (leading to an insufficient geometric redundancy
and thus prohibiting the estimation of accurate and pre-
cise parameter estimates even during non-linear optimi-
zation, especially if the initial estimates are poor). It is
thus crucial to obtain good initial estimates for camera
parameters. This is the aim of the methods proposed and
evaluated in this paper.

3 Background

In this section, we very briefly summarize some notions
of projective and Euclidean geometry that are used in
our calibration methods. A comprehensive treatment
can be found in [42] as well as in [21,26] for more com-
puter vision related descriptions.

Perspective projection is modeled using so-called
intrinsic and extrinsic parameters, encapsulated in a 3×4
projection matrix:

P = KR
(
I3×3 −t

)

The upper triangular 3 × 3 matrix K contains the intrin-
sic parameters, such as focal length, and the vector t
and rotation matrix R constitute the camera’s extrin-
sic parameters. The usual definition of calibration is the
determination of K. In this paper, the goal is to compute

the intrinsic parameters of all cameras in the multi-cam-
era system, as well as their (relative) extrinsic parame-
ters. This is done using images of wands; the available
pieces of information are: matches between images (of
markers on the wand), known distances between mark-
ers, orthogonality of wands (we use two or three rigidly
attached, mutually orthogonal, wands). It is well known
that from image matches alone, a projective reconstruc-
tion of the scene and the cameras is already possible [20,
22,24]. The additional information mentioned above, as
well as assumptions on the intrinsic parameters (e.g.
zero skew) then allow to obtain a Euclidean recon-
struction, i.e. to compute intrinsic and extrinsic camera
parameters. Note that not all proposed methods follow
this scheme, i.e. start with a projective reconstruction;
this discussion is simply to show the feasibility of the
problem.

In the following, we summarize a few ways of using
the available information to obtain a Euclidean recon-
struction. The ‘absolute dual quadric’ [47] is the only
quadric invariant to Euclidean transformations; its
determination in a projective reconstruction allows to
upgrade the latter to a Euclidean reconstruction. One
may use constraints on the scene, the camera intrinsic or
extrinsic parameters to compute the absolute dual quad-
ric. In this paper, we use constraints given by mutually
perpendicular scene planes: two such planes Π1 and Π2
give the following linear equation on the matrix repre-
senting the dual absolute quadric Ω :

ΠT
1 ΩΠ2 = 0

This constraint is used in method 2a below.
The upgrade from a projective to a Euclidean recon-

struction can also be done via an intermediate affine
reconstruction. An affine reconstruction is possible if the
plane at infinity can be identified in a projective recon-
struction. To do so, it is sufficient to determine three or
more points at infinity. When using wands with three or
more markers with known distances, their point at infin-
ity can be computed using the cross-product. This way,
a projective reconstruction of wands in three or more
positions can be upgraded to affine. As for the additional
upgrade to a Euclidean reconstruction, one may deter-
mine the ‘absolute conic’ on the plane at infinity. Like
for the dual absolute quadric, constraints on the scene
or the camera intrinsic or extrinsic parameters may be
used. In method 2b below, we use constraints given by
mutually orthogonal wands. Let V1 and V2 be the 2D
coordinates of the points at infinity of two orthogonal
wands. We then have a linear equation on the matrix
representing the absolute conic:

VT
1 Ω∞V2 = 0
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The information about orthogonal wands can also
be used differently. Instead of determining the abso-
lute conic in a projective reconstruction, one may aim
at computing its image, the so-called IAC (image of the
absolute conic). Contrary to the actual absolute conic,
this encodes only intrinsic parameters. The IAC is given
by ω = K−TK−1. Let v1 and v2 be the vanishing points of
two orthogonal wands, i.e. the projections of their points
at infinity. We then have the following linear equation
on ω:

vT
1 ωv2 = 0

This is used in method 1a below.

4 Proposed methods

4.1 Motivation

One of our main goals is to simplify the current typi-
cal calibration procedure for 3D kinematic systems (cf.
previous section). We also aim at proposing alternative
methods for camera parameter initialization and opti-
mization, that should be at least as accurate as current
ones. It is imperative to use the commonly used cali-
bration tools (Figs. 1, 2), in order to ensure a relatively
easy incorporation into 3D kinematic systems and to
confront the user with as small changes as possible in
the calibration procedure.

In order to shorten and simplify the calibration pro-
cedure it is desirable to transform the two typical cal-
ibration phases (initialization and wand dance) into a
single one, i.e. to start right away with the wand dance.
Theoretically this is possible, using autocalibration (see
above). Autocalibration algorithms typically proceed by
first estimating a projective 3D reconstruction. This is
then upgraded to a Euclidean reconstruction by estimat-
ing an appropriate 3D homography H. Unfortunately,
practical implementations of several autocalibration
algorithms did not give satisfactory results in the pres-
ence of real, noisy data. In the following paragraphs we
will describe a few experiences regarding this.

We for example experimented with the Kruppa equa-
tions approach, using the assumptions of square pixels,
zero skew and known principal point [25]. Hence, only
the focal lengths were searched for. A few other similar
approaches that also only compute focal lengths, were
implemented too, e.g. [12]. All tested algorithms have
proven to be extremely sensitive to nonlinear lens dis-
tortions, which is, generally speaking, true for most aut-
ocalibration algorithms. When preprocessing the images
for distortion removal, the algorithms gave much better

results. However, in practice this would mean that an
additional calibration phase is required, for the com-
pensation of lens distortion.1

A typical approach for the off-line calibration of dis-
tortion parameters relies on imaging straight line pat-
terns (plumbline calibration). In distortion-free images,
the imaged patterns should be straight, whereas they
appear curved in distorted images. It is possible to esti-
mate distortion parameters such that an associated dis-
tortion correction brings the curved patterns back to
straight ones [13,17]. When working with fixed camera
lenses and/or when not using the cameras’ zoom, such
an off-line calibration may have to be done only once
per camera. This might thus be an acceptable solution in
practice. However, in our case the idea of the proposed
methods was to make them robust and flexible, appli-
cable when the user wants to change lenses or to use
the cameras’ zoom. In that case, the potential nonlinear
distortion calibration has to be done transparently for
the user.

There exist methods for compensating for nonlinear
distortion, solely based on image point correspondences
between two cameras [23,50]. One of their (current)
disadvantages is that the two cameras are supposed to
have the same distortion parameters, which limits their
applicability for calibrating cameras of a 3D kinematic
system. Further, these methods are currently limited to
two cameras at a time and they only give good results if
the distortions are significant. With moderate distortions
though, results are weak. All this limits the applicability
of these methods in our case.

Finally, after some other negative experiences, we
ruled out a pure autocalibration concept for our system.
We also renounced on traditional calibration approaches
using 3D calibration cages. This was mainly due to the
requirement that the proposed method should be at least
equally as practical and user-friendly as with existing sys-
tems. We thus opted for the third approach mentioned in
the introduction, which in terms of (dis)advantages lies
somewhere in between the first two mentioned (auto-
calibration and traditional). It uses certain properties of
the scene such as orthogonality or parallelism of lines,
known distance ratios, etc. [14,25,32]. It does not require
accurate but cumbersome 3D structure, but can actually
work with calibration tools such as those shown in Figs. 1
and 2. The equipment is lighter than for traditional cal-
ibration approaches and offers a much better visibility:
markers are visible from all sides, which is essential for
a stable estimation of the camera poses. Further, due to
using geometrical information on the scene, i.e. the cal-
ibration tool, typical disadvantages of autocalibration

1 Some earlier versions of [2] relied on such a solution.
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methods are avoided, such as critical relative poses and
instability in their vicinity.

4.2 Definition of proposed methods

The idea of the proposed methods is to sweep the cal-
ibration volume, during the so-called wand dance, with
two (or three) rigidly attached orthogonal wands (wand
pair or triad) instead of a single one as usual. In fact,
such an approach effectively eliminates the need to
also undertake the usual calibration phase of placing
an orthogonal wand triad on the floor and imaging it
(Fig. 1), prior to the wand dance itself. The proposed
approach will allow us to set up constraints on some of
the mentioned geometric entities, compute them and
ultimately obtain the camera parameters from them.
Within a same calibration phase both, data for initial
parameter computation and data for refinement are pro-
vided, and there is no need for an extra calibration phase
and/or assumptions on initial estimates (except maybe
of the skew factor being zero, depending on the quality
of the cameras). In the following, four different calibra-
tion methods are defined and investigated, that exploit
the described input in different ways.

Method 1a

1. Perform the wand dance using two orthogonal
wands, each having at least two markers whose rel-
ative distances are known. Note that besides the
actual markers, we also extract the origin of the
wands (marker 10 in Fig. 1) by intersecting lines
fitted to the actual markers. Hence, for each wand,
we have three or more markers, with known relative
distances.

2. For every frame of every camera, find the vanishing
points of the wands’ directions from the known dis-
tance ratios between the markers (using the cross-
product, as mentioned above).

3. Use the constraint that the wands are perpendicu-
lar to one another to form a linear equation system
on the image of the absolute conic (IAC) ω, built
from equations of the following type (v1 and v2 are
vanishing points associated with two perpendicular
wands):

vT
1 ωv2 = 0 (1)

4. Compute a least-squares solution for the above
overdetermined equation system and apply the
Cholesky decomposition on the computed ω to
retrieve the camera’s internal parameters.

5. Repeat steps 2 to 4 for each camera.

6. Choose one camera as reference, form pairs with it
and all other cameras. Carry out steps 6 to 9 for each
such pair.

7. Compute the fundamental matrix using all marker
positions that were extracted in synchronous frames.

8. Knowing the internal camera parameters and fun-
damental matrix, compute the essential matrix and
decompose it to obtain the second camera’s pose
relative to the reference camera (external parame-
ters). At this stage, the translational part of the pose
is only known up to a scale.

9. Perform a metric 3D reconstruction of marker posi-
tions using the known internal and external camera
parameters. Compute the scaling for upgrading the
metric to a Euclidean reconstruction and pose, as
the ratio of the known wand lengths and the aver-
age of those computed from the 3D reconstruction.
Then upgrade the 3D reconstruction and camera
pose.

10. Refine the above calculated initial camera param-
eters enforcing the known wands lengths and/or
orthogonality of wands (see Sect. 4.3).

Method 1b

1. Perform the wand dance using two orthogonal
wands, each with at least two markers. The relative
positions of the markers of both wands are assumed
known.

2. For every frame of every camera, compute the ho-
mography H between the plane in space (formed by
the two wands) and the image plane.

3. Compute the images of the two so-called circular
points: h1 ± Ih2 where h1 and h2 are the first two
columns of H. Both of these points lie on the IAC
ω, i.e.:

(h1 ± Ih2)
Tω (h1 ± Ih2) = 0 (2)

The real and imaginary parts of the two equations
(one for ‘+’ and one for ‘−’) are identical (up to
sign for the imaginary parts) and correspond to the
following two linear equations on ω:

hT
1 ωh1 − hT

2 ωh2 = 0 (3)

hT
1 ωh2 = 0 (4)

4. Solve the overdetermined linear equation system
composed of equations of type (3) and (4) and apply
the Cholesky decomposition on the computed ω in
order to retrieve the camera’s internal parameters.
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This approach is effectively using the plane-based
calibration method developed in [44,51].

5. Repeat steps 2 to 4 for every camera.
6. Follow steps 6 to 10 of Method 1a.

Method 2a
1. Perform the wand dance using the three orthogonal

wands, each having at least two markers with known
relative distances.

2. Choose one camera as reference, form pairs with it
and all other cameras. Perform steps 3 to 6 for all
such pairs.

3. Compute the fundamental matrix F and perform a
projective 3D reconstruction. To do so, compute the
pair of canonical projection matrices P1 and P2 from
F:

P1 = (
I|0)

P2 = ([e2]× + F + e2vT|λe2
)

(5)

Here, e2 is the epipole of the second camera and v
and λ are an arbitrary vector and scalar, respectively.
Using these projection matrices, compute a projec-
tive 3D reconstruction of the wand dance. This dif-
fers from the true one by an unknown projective
transformation H4 × 4.

4. For each time instant of the wand dance, compute
the coordinates of the three planes formed by pairs
of wands of the orthogonal triad. The perpendicular-
ity of two planes Π1 and Π2 gives linear constraints
on the absolute dual quadric Ω :

ΠT
1 ΩΠ2 = 0 (6)

5. Solve the system of above equations, i.e. compute
the absolute dual quadric Ω . Find a projective trans-
formation H4 × 4 that will put the computed Ω , back
into its canonical position, i.e. where it has the matrix
representation2

(
I3×3 0
0T 0

)

Apply the same H4 × 4 on the 3D projective recon-
struction of the wand dance to obtain a metric recon-
struction of it. Similarly, apply the transformation
H4 × 4 on the initially computed canonical projec-
tion matrices to obtain projection matrices coherent
with the metric 3D reconstruction.

2 The transformation H4 × 4 is not unique of course, since con-
catenating it with any metric transformation will still give a valid
solution.

6. Use the information about true wand lengths to
compute the scale factor needed to transform the
metric reconstruction to Euclidean (step 9 of
method 1a).

7. Follow step 10 described in method 1a.

Method 2b

1. Perform the wand dance using two orthogonal
wands, each having at least two markers with known
relative distances.

2. For every frame of one camera find the vanishing
points of the wand directions using the known dis-
tance ratios of markers.

3. Choose one camera as reference, form pairs with it
and all other cameras. Perform steps 4 to 8 for all
such pairs.

4. Compute the fundamental matrix F and perform a
projective 3D reconstruction, as in step 3 of method
2a. The 3D reconstruction includes the points at
infinity associated with the wands’ directions, recon-
structed based on the wands’ vanishing points
extracted in the images.

5. Compute the plane at infinity Π∞ by fitting it to the
reconstructed points at infinity and find the homog-
raphy H4 × 4 that maps it to its canonical position,
i.e. to coordinates (0, 0, 0, 1)T. Apply H to the recon-
structed marker positions, to obtain an affine recon-
struction of them.

6. Consider the fact that points at infinity are effec-
tively representing directions of lines, in our case
orthogonal lines (the two wands at each instant of
the wand dance). The perpendicularity of wands
allows to form constraints on the absolute conic Ω∞:

VT
1 Ω∞V2 = 0 (7)

Here, V1 and V2 are 2D coordinates of points at
infinity and Ω∞ is a 2D conic, all lying on the plane
at infinity.

7. Solve the overdetermined system of above equa-
tions, i.e. compute the absolute conic Ω∞. Find an
affine transformation H4 × 4 that will put the com-
puted Ω∞, back into its canonical position, i.e.
where it is represented by the identity matrix. Apply
the same H on the 3D affine reconstruction of the
wand dance which is in turn equivalent to obtain-
ing a metric reconstruction of it. Similarly, apply
both transformation matrices, from projective to
affine and from affine to metric, on the initially
computed canonical projective matrices to obtain
projection matrices that correspond to a metric 3D
reconstruction.
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8. Use the information about true wand lengths to
compute the scale factor needed to transform the
metric reconstruction to Euclidean (step 9 of
method 1a).

9. Follow step 10 described in method 1a.

One of the common details of all four proposed meth-
ods is the last step, i.e. the refinement of parameters. That
fine tuning was performed using the bundle adjustment
(BA) approach, as described in the following section.

4.3 Bundle adjustment

Bundle adjustment essentially means the simultaneous
optimization of the unknowns in a 3D reconstruction
or any other structure-from-motion problem [48]. This
comes usually down to a non-linear optimization, with a
cost function based on the so-called reprojection error
(geometric distance between measured image points
and image points generated by projecting current esti-
mates of 3D points via current estimates of projection
matrices). Concretely, if measurement errors on image
point coordinates are identically and independently dis-
tributed according to a normal, or Gaussian, distribu-
tion, then minimizing the sum of squared reprojection
errors gives the maximum likelihood solution. Note that
this optimization problem may have many local minima,
so recently researchers have started to develop meth-
ods for global solutions, using modified cost functions,
for certain classes of structure-from-motion problems
[30,31].

Bundle adjustment is usually formulated for recon-
structing individual points, but if geometric constraints
on them are available, they should be used. There exist
approaches for incorporating various types of geomet-
ric constraints, such as known distances between points
(often together with an estimate of the uncertainty of
that knowledge), collinearity of points, perpendicularity
of lines, etc. [33,35,43]. These usually proceed by adding
terms to the cost function, that express the amount of
deviation of the estimates from the given constraints.
Another approach is to use the given constraints to
reduce the number of unknowns to optimize. The main
drawback of such an approach is that constraints are
supposed to hold exactly, whereas in the first approach,
an uncertainty on them can be incorporated. On the
other hand, the first approach requires tuning param-
eters, regulating the relative influence of the different
types of expressions in the cost function (reprojection
error, deviation from a given distance or a given angle,
etc.). Further, the second approach, due the reduction
of the number of unknowns and the smaller number

of terms in the cost function, allows for more time and
memory efficient computations.

In our application, we have rather precise geometric
constraints, since purpose-made wands are employed;
constraints are the known distances between markers
and the orthogonality of wands. Instead of using these
constraints individually, we encode them simulta-
neously: if besides orthogonality of wands we also know
their positional offsets, then we can encode all marker
positions in a single 3D coordinate system. By definition,
the encoded points will satisfy all constraints. Instead of
optimizing the coordinates of all markers, it is now suffi-
cient to optimize euclidean transformations: for each
instant of the wand dance, one euclidean transforma-
tion represents the positions of all markers on the two
or three wands used.

Bundle adjustment thus comes down to optimizing:
internal camera parameters (including radial distortion),
relative pose of all cameras, one euclidean transforma-
tion per time instant that represents the pose of the set
of wands. Although smaller than at the outset, the num-
ber of unknowns is still rather huge, being larger than
six times the number of frames (time instants), i.e. of the
order of 10,000 for a 1-min wand dance and a fram rate of
25 frames per second. It would be possible to reduce this
by sub-sampling the number of frames or by partitioning
data into several sets and merging those later, alternat-
ing minimizing reprojection error by varying the cam-
eras with minimizing reprojection error by varying the
points [48]. However, these mentioned methods have
the common weakness of not actually using all available
data simultaneously.

We thus use a typical remedy used in bundle adjust-
ment, namely to benefit from the sparse structure of
the cost function’s Jacobian matrix [26,43]. In our case,
the euclidean transformations associated with different
time instants, are not directly coupled in the cost func-
tion and the associated entries in the Jacobian matrix
are zero. We straightforwardly follow the recipes given
in [26,43] to implement a sparse version of Levenberg-
Marquardt (LM) optimization [38]. In our case, each
iteration of LM requires, among others, the inversion
of n symmetric 6 × 6 matrices (n being the number
of frames) and that of one symmetric m × m matrix
(m being the number of optimized camera parameters:
6 extrinsic and 1–4 intrinsic parameters per camera). The
most costly computation is the latter inversion; impor-
tantly, its complexity is independent of the number of
frames used. The complexity of the other computations
is linear in the number of frames.

Besides the actual optimization, we have to discuss
the initialization of the unknowns. Part of this is
described in the above methods: they all compute
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Euclidean camera projection matrices in some com-
mon coordinate system, from which initial intrinsic and
extrinsic parameters can be extracted. As for the
remaining unknowns, the Euclidean transformations
representing the pose of wands pairs or triads, they can
be computed easily from the reconstructed 3D marker
positions. One can for example use the absolute
orientation procedure of [28], to compute an optimal
estimate of the translation and rotation between the
reconstructed markers and the ones in the model of the
wand pair (triad). More details on the actual procedure
we use are given in [40].

5 Equipment and methods

In order to test the proposed methods, a popular com-
mercially available system was used, Smart from the
eMotion company [3]. The system version used (ver-
sion 1.10, Build 2.39) consists of nine cameras (50 Hz).
It is a so-called opto-electronic system which actually
reconstructs positions of passive retro-reflective mark-
ers, attached to the subject’s points of interest. Mark-
ers are illuminated by stroboscopic IR sources of light
attached to the cameras. The Smart system used is
installed in the Biomechanic laboratory of Peharec Poly-
clinic in Pula, Croatia [5].

The first experiment consisted of a typical system cal-
ibration as proposed by the system manufacturer. An
orthogonal triad of wands (60 cm long each) was posi-
tioned on the floor. Each wand defined one of the world
coordinate axes and had a certain number of retro-
reflective markers on it. The vertical axis has three mark-
ers and the two horizontal axes 4 and 2, respectively (cf.
Fig. 1). The relative positions of markers are accurately
known. A visual check was performed that each camera
‘sees’ all triad wands, i.e. the markers on it and image
acquisition was undertaken for a few seconds. After-
wards, as apart of the second step, the orthogonal triad
was removed and a wand dance with a single wand was
performed for another couple of minutes. The entire
procedure was carried out by trained polyclinic staff to
ensure calibration results would not be impaired by the
user’s inexperience. Finally, Smart’s software routines
were run to compute camera parameters based on the
acquired images from these two calibration steps.

The second experiment used our approaches where
the wand dance started right away with the orthogonal
pair or triad of axes. It lasted roughly 60 s (half of the
time proposed by Smart for its wand dance with a single
wand). At the end the wand pair/triad was simply put
on the floor to set the origin of the coordinate system
of the working volume, according to user preferences,

if needed (sometimes the user does not care where the
spatial coordinate system origin is). The working vol-
ume was approximately 3.2 m × 2.2 m × 2.0 m, in both
experiments.

Among a rather comprehensive analyzing software
Smart also has the capability to export/import various
data into/from Matlab: 2D image data of marker cent-
roids from the acquired sequences, 3D reconstructed
marker positions, camera projection matrices, etc. The
following data were exported for further analysis: 2D
image data of markers on the wands when putting them
on the floor which otherwise serves for camera parame-
ter initialization in case of the Smart calibration proce-
dure. Then, camera projection matrices calculated by the
Smart calibration procedure and finally the 2D image
sequence of the wand dance with the two (three) orthog-
onal axes, used for the proposed calibration methods.

6 Evaluation of the proposed calibration methods

There are various ways of evaluating the accuracy of a
calibration result. We mainly use a rather common prin-
ciple in the evaluation of 3D kinematic systems which
is easy to understand and very informative. We have
chosen the so-called static test where a wand of known
length is imaged and reconstructed for a large number of
positions/orientations in space. Essentially, we process
a separate data set, obtained for another wand dance
than the one used for calibration. That wand dance also
covers the entire calibration volume on contains over
3,000 positions/orientations. The absolute mean error
between the true wand length (30 cm) and the recon-
structed ones is used as accuracy measure.

We also considered some more complex evaluation
methods such as dynamic testing where for instance
some ‘unknown’ velocity and/or acceleration is com-
puted and tested against expected values. However,
those are frequently combined with static testing, as
the one just explained, and serve usually as confirma-
tion of conclusions reached otherwise based on static
evaluation tests. Another common way of evaluating
calibration (and implicitly then also reconstruction)
quality is computing the image residual between mea-
sured and predicted image point coordinates. Neverthe-
less, we have refrained from such an evaluation. We have
experienced that this approach is not necessarily consis-
tent with ground truth values (not only in case of our
proposed methods). In other words, calibrations giving
smaller image coordinate residuals do not always yield
smaller 3D reconstruction errors.

The results shown below are samples from an exten-
sive number of experiments with the Smart and
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proposed calibration methods. We thus consider it
reasonable to assume that the shown results are rep-
resentative enough so that we can draw general conclu-
sions from them. Nevertheless, one should always carry
in mind that practically all calibration methods are sub-
ject to various individual factors, for instance (in)expe-
rience, time and dedication devoted to the calibration
procedure and so forth. As mentioned, we have tried
to eliminate the impact of such and similar influences
so that we can justifiably regard the presented accuracy
figures as representative.

6.1 Results and discussion: initialization part

Let us first consider results on the initial values of inter-
nal camera parameters, before bundle adjustment
(Tables 1, 2, 3, 4, 5, 6). Table 2 shows internal parame-
ters after refinement (bundle adjustment), as output by
the Smart system. These are taken as reference for this
evaluation. Although they are not perfectly accurate,
they can be considered in the present context as close
to the true ones, i.e. the values the optimization should
converge to. Hence, the initialization method which pro-
duces parameters closest to those of Table 2 can be,

Table 1 Internal camera parameters

Camera f (pixels) Skew pp (pixels)

x y x y

1 751.9 387.0 12.7 400.0 175.3
2 755.6 381.0 18.3 330.3 233.5
3 676.6 343.3 7.4 272.3 200.5
4 704.1 367.4 6.4 320.7 171.3
5 765.2 399.0 5.0 335.9 170.2
6 746.8 386.4 19.0 376.9 215.3
7 691.0 354.6 9.2 285.3 164.5
8 672.7 343.3 14.4 297.2 142.7
9 672.8 348.2 10.3 292.1 156.2

Initial values given by the Smart system

Table 2 Internal camera parameters

Camera f (pixels) Skew pp (pixels)

x y x y

1 727.7 375.9 0.0 349.4 153.7
2 723.8 374.6 0.0 304.4 145.4
3 723.9 375.2 0.0 290.3 138.4
4 724.3 374.7 0.0 325.4 140.0
5 724.2 375.1 0.0 347.7 137.0
6 724.8 375.0 0.0 349.9 143.4
7 719.2 371.8 0.0 328.9 134.7
8 730.1 377.2 0.0 350.7 133.4
9 715.9 370.5 0.0 345.0 138.6

Final optimized values given by the Smart system

Table 3 Internal camera parameters

Camera f (pixels) Skew pp (pixels)

x y x y

1 724.82 376.17 0.02 376.90 127.97
2 749.74 390.04 0.67 321.94 135.95
3 743.38 390.71 −0.49 267.50 132.06
4 728.30 376.46 −0.25 346.85 133.46
5 715.60 373.75 −1.46 332.82 145.18
6 734.55 380.96 0.17 381.45 136.57
7 715.34 372.93 −2.26 274.41 126.25
8 704.35 370.23 0.87 307.96 122.16
9 723.27 373.40 0.48 341.93 136.22

Initial values given by method 1a

Table 4 Internal camera parameters

Camera f (pixels) Skew pp (pixels)

x y x y

1 683.91 354.36 0.0 379.76 128.79
2 689.64 357.33 0.0 322.63 135.05
3 669.16 346.71 0.0 260.05 138.78
4 699.19 362.27 0.0 343.82 138.23
5 695.17 360.19 0.0 368.39 141.00
6 709.06 367.39 0.0 391.62 140.19
7 640.20 331.71 0.0 312.66 172.37
8 688.78 356.88 0.0 362.46 131.42
9 676.49 350.52 0.0 357.15 143.89

Initial values given by method 1b

Table 5 Internal camera parameters

Camera f (pixels) Skew pp (pixels)

x y x y

1 702.17 360.00 10.12 354.64 118.81
2 769.14 400.99 3.24 303.50 137.59
3 725.01 373.57 5.33 249.41 165.19
4 729.18 376.74 1.24 359.99 132.02
5 792.97 406.88 20.98 331.10 123.50
6 709.51 371.12 16.55 382.62 139.25
7 717.49 371.11 0.81 229.15 122.72
8 747.16 386.62 5.24 327.04 128.71
9 805.36 415.67 14.58 309.63 136.89

Initial values given by method 2a

generally speaking, considered as the method of choice:
the closer the initial values to the final optimal ones, the
higher the chance of avoiding convergence problems in
the bundle adjustment. A close comparison clearly indi-
cates that method 1a (Table 3) provides the best results.
It also seems that the other three proposed methods
(Tables 4, 5, 6) provide about equally good initial values
for the intrinsic parameters. Furthermore, all proposed
methods give better results than Smart’s initialization
method (Table 1).
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Table 6 Internal camera parameters

Camera f (pixels) Skew pp (pixels)

x y x y

1 681.09 351.90 1.36 360.18 138.47
2 626.55 323.14 2.45 376.80 151.26
3 728.38 383.59 7.58 316.53 140.14
4 784.64 408.48 8.18 245.79 154.05
5 704.46 364.10 4.46 371.56 132.72
6 695.91 363.57 1.83 360.04 125.76
7 721.62 381.06 16.88 317.97 80.85
8 692.93 362.10 8.85 347.91 106.75
9 780.96 407.29 5.95 226.52 136.23

Initial values given by method 2b

The superiority of method 1a is further demonstrated
through the 3D reconstruction accuracy, cf. Table 7.
Here, the accuracy is evaluated for all 36 possible pairs
among the nine cameras used. Table 7 shows that the
reconstruction accuracy for method 1a is roughly iden-
tical to that obtained using Smart’s refined projection
matrices. Remind that the latter were obtained after
bundle adjustment, whereas the results for the other
methods are given before bundle adjustment.

The reconstruction results of method 1b are not as
good as those of method 1a, however they are still better
than the results provided using Smart’s initial parame-
ter values. Methods 2a and 2b perform the worst among
the proposed methods, in two respects. First, for some
camera pairs we end up with an unacceptable recon-
struction accuracy (values in italics in Table 7). Second,
even when considering the average results after leav-
ing out these ‘outliers’, they are worse than those for
methods 1a and 1b.

In the following, we discuss on potential reasons for
the different performances of the proposed methods and
also on some heuristic measures we took to improve
performance.
Method 1b Method 1b requires the computation of ho-
mographies between planes in space, defined by a pair
of wands, and the image plane. This needs a minimum of
four pairs of point matches, with no three being collinear.
In general, the larger the number of point matches and
the more they are distributed, the more stable the com-
putation of homographies. Unfortunately, in our case
neither a large number of point pairs nor a favorable
distribution of them is available. Consequently, the steps
following the computation of the homography may be
negatively impacted. These issues come particularly into
effect in those frames where the angle between wands,
measured in the image plane, is small. We have found
empirically that it proves to be beneficial to exclude all
those frames where that angle is smaller than 80◦. This

Table 7 Mean error (mm) between reconstructed and true wand
lengths

Pair SI SF 1a 1b 2a 2b

12 29.26 9.54 14.27 11.99 6.68 32.43
13 15.97 7.74 10.36 7.33 13.05 5.16
14 14.59 6.54 4.53 7.84 10.37 21.68
15 14.01 6.17 5.23 8.03 25.84 4.71
16 19.83 8.81 6.81 6.74 9.43 6.87
17 12.17 10.74 4.20 13.04 17.02 11.17
18 14.03 6.61 5.43 7.57 795.66 6.65
19 13.53 9.45 5.31 10.02 36.37 670.53
23 20.79 6.20 7.73 9.06 15.92 15.85
24 17.36 4.48 4.79 6.72 4.51 15.03
25 18.26 4.38 4.50 8.37 23.46 24.19
26 25.11 6.14 8.75 7.18 5.99 12.08
27 15.45 8.62 4.58 16.80 23.55 15.71
28 17.12 4.47 6.44 7.75 15.20 135.56
29 35.36 6.55 5.37 8.06 634.62 16.68
34 16.20 4.96 3.61 7.20 4.26 9.95
35 38.67 13.40 5.73 11.71 210.52 9.99
36 23.71 6.45 7.72 6.17 12.41 6.54
37 15.29 11.20 11.11 52.41 7.46 6.63
38 15.77 5.43 6.22 9.82 13.50 5.15
39 13.69 5.60 3.65 8.50 33.26 11.22
45 15.62 4.29 5.10 5.94 7.98 13.92
46 24.66 5.86 5.59 8.21 10.66 15.64
47 14.28 7.17 3.57 15.72 4.27 29.03
48 17.74 5.85 6.02 6.67 4.12 19.29
49 12.42 4.68 3.47 7.46 8.26 19.98
56 23.89 5.44 5.15 8.26 10.17 4.32
57 19.00 11.97 5.38 14.68 101.77 17.02
58 14.70 4.45 6.10 7.04 13.18 12.00
59 9.56 4.34 6.67 10.08 9.04 16.56
67 20.03 8.63 4.83 9.16 10.40 17.98
68 23.76 6.93 5.76 7.28 12.03 5.23
69 20.07 5.51 4.21 9.17 31.55 19.32
78 14.42 7.85 5.95 11.12 11.29 10.51
79 11.23 7.86 3.68 9.24 12.22 13.07
89 15.20 4.54 11.80 7.35 6.45 17.16

Avg. 18.41 6.91 6.10 10.27 60.35 35.41
(19.41) (13.79)

SI using Smart’s initial data; SF using Smart’s optimized data
Values in the last row show the average computed only over values
not given in italics

rather strict threshold causes that we end up with few
usable calibration data (redundancy) to form the final
system of equations (2) for IAC computation.

Another issue we studied is the influence of assuming
standard values for the skew factor (being zero) and the
aspect ratio (being one). These assumptions are rather
justified given the quality of the cameras used. At first we
have used so-called soft constraints, by adding two more
equations, measuring the difference between estimated
and assumed values, to the otherwise largely overdeter-
mined system of equations. As intuitively expected, soft
constraining did not bring any significant improvement,



Calibration of 3D kinematic systems using orthogonality constraints

since adding two more equations to the overdetermined
system of several thousands of equations (solved by the
least squares method) can hardly do much difference.
Alternatively, one could assign different weights to the
added equations, but that has not been tried out yet.
The other option is to use hard constraints, i.e. to exactly
enforce the assumed values. This brought an improve-
ment in accuracy; the results for method 1b shown in
Table 4 were obtained this way (which is why the skew
factors are exactly equal to zero).
Method 1a For this method, a good distribution of points
in the image plane is considerably easier achievable than
with method 1b, since vanishing points are computed
for individual wands. Nevertheless, even here we face
at least two potential problems: the possibility of the
wand being (almost) perpendicular or parallel to the
image plane. The first occurrence is relatively easy to
handle by simply discarding all frames where the dis-
tance between the wand’s end markers is less than some
threshold. Similarly, the second problem could be taken
care of by neglecting all frames where the distance of
at least one vanishing point from the image center is
larger than some value. However, we have undertaken
another strategy: computations start by first using van-
ishing points close to the image center and gradually
including further and further vanishing points. For each
set of vanishing point data we obtain one set of internal
camera parameters, and we have to decide which one
to choose. Let us recall the fact that working with good
quality cameras it is reasonable to assume a zero value
for the skew parameter. Therefore we choose the set
of internal parameters that has the smallest computed
skew parameter.
Methods 2a and 2b Both methods are based on a pro-
jective reconstruction. The approaches for upgrading
this to a metric reconstruction are unhappily not
invariant to the choice of the initial projective recon-
struction, i.e. to the values for v and λ (cf. Eq. 5). In
practice we found that different values indeed gave final
Euclidean reconstructions with rather different accu-
racies. Besides this, we also face the issue of critical
motions, i.e. relative camera poses that lead to unstable
self-calibration [45]. In order to alleviate these issues,
we proceed the following way. Projective reconstruc-
tion and self-calibration are performed for every pos-
sible camera pair. For each camera, we select the pair
involving it, that gives a Euclidean reconstruction with
reconstructed wand lengths closest in average to the true
ones. The projection matrix associated with that pair is
used to compute the internal parameters for the con-
sidered camera. For instance, for the first camera and
method 2b, camera pair 15 was considered (last column,
fifth row in Table 7).

In the following, we summarize some more experi-
ences/discussions. In previous paragraphs, it has been
demonstrated that the application of certain thresholds
or strategies of exploiting the available data has a pos-
itive effect for methods 1a and 1b. Similar approaches
have also been tried for methods 2a and 2b. For example,
in the case of method 2a it might be beneficial to apply
thresholds on the angles between lines and/or planes in
space before the actual formation of equation systems
to compute the absolute dual quadric. However since
we work with projective reconstructions and angles are
metric characteristics, such an approach is not recom-
mended. As for method 2b, we apply the same scheme
as for method 1a, concerning the gradually increasing
amount of vanishing points used for the calibration.

In our system, non-perspective distortions are esti-
mated during bundle adjustment but not by the initiali-
zation methods 1a to 2b. Since radial distortion is most
prominent towards the image borders, one might only
use markers extracted within a certain distance from the
image center. However, the number of wand positions
where this holds for several cameras at the same time,
is limited, i.e. the amount of the available data that will
actually be used might be too small for an accurate cali-
bration.

Methods 2a and 2b have in common that they cali-
brate two cameras simultaneously, indirectly via estab-
lishing a 3D Euclidean reconstruction. The quality of
the Euclidean reconstruction depends on the cameras’
spatial configuration (angle between optical axes, ratio
of baseline and point depths, etc.), but also, as explained
above, on the coordinate frame of the initial, projec-
tive, reconstruction. This may explain the bad results
for some camera pairs, cf. Table 7.

For completeness, let us say that all proposed meth-
ods work equally well with noise-free synthetic data,
outputting perfectly accurate results in terms of camera
parameters and reconstructions. This simply proves the
correctness of their theoretical foundations and of their
implementation.

6.2 Results and discussion: optimization part

Table 8 shows mean errors for the proposed methods,
after optimization with bundle adjustment. Addition-
ally, the last column shows the results of our bundle
adjustment procedure, when being initialized with the
Smart’s initial set of parameters (as opposed to results of
Smart’s own optimization procedure). Given the avail-
able number of markers on two or three wands (depend-
ing on the method), the natural question arises whether
to use all available data during the optimization or only
a certain part of it. We thus have run bundle adjustments
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Table 8 Results of the bundle adjustment as described in section
4.3, i.e. enforcing distances between markers as well as orthogo-
nality between wands: mean error (mm) between true and recon-
structed wand lengths. In case of using all markers, the considered
true wand length was 30 cm, in the other cases 60 cm (distance
between end markers of wands)

Wands Markers used 1a 1b 2a 2b SI

XYZ All (9) 0.56 0.60 0.59 0.67 0.68
XY 4, 7, 10 0.48 0.49 0.50 0.59 0.59

All (7) 0.59 0.59 0.68 0.91 0.78
XZ 4, 9, 10 0.42 0.42 0.47 0.51 0.61

All (6) 0.74 0.69 0.74 0.92 0.84
YZ 7, 9, 10 0.67 0.69 0.70 0.66 0.84

All (5) 1.31 1.26 1.29 1.09 1.32

Table 9 Results when only enforcing distances between markers
in bundle adjustment: mean error (mm) between true and recon-
structed wand lengths. In case of using all markers, the considered
true wand length was 30 cm, in the other cases 60 cm (distance
between end markers of wands)

Wands Markers used 1a 1b 2a 2b SI

X 4, 10 0.57 0.50 0.51 0.59 0.67
Y 7, 10 0.82 0.63 0.75 0.84 0.69
Z 9, 10 0.52 0.46 0.58 0.54 0.65
XYZ 4, 7, 9, 10 0.58 0.42 0.48 0.46 0.58
XYZ All (9) 0.71 0.44 0.70 1.27 1.08

with different numbers of markers. The second column
of Table 8 gives the indices of the markers used (cf.
Fig. 1). For example in the case of calibrating with the
pair of wands X and Y, we either use all seven mark-
ers (1 through 7, cf. Fig. 1), or only a subset thereof, in
particular the end markers of both wands and the origin
(4, 7, 10). Note that this information only concerns the
bundle adjustment; initial values were computed using
all markers.

Another interesting issue is whether to enforce all
available geometric constraints during bundle adjust-
ment as described in Sect. 4.3, or only the known dis-
tances between markers, as in previous approaches.
Table 9 shows results of the latter approach. Similarly as
for Table 8, this was tested for different sets of
markers.

Considering the effect of using the maximum or
minimum number of markers for certain calibration
methods, it seems that it is better to perform bundle
adjustment using the minimal number of markers, inde-
pendently of the initialization method and the type of
constraints used in bundle adjustment. As a reminder,
the minimum number of markers is three in the case of
bundle adjustment as described in Sect. 4.3, or two if
only enforcing the known wand length. At a first glance
that may sound contradictory with the general principle

that using more calibration data (higher redundancy)
gives better results. However, at the same time, what
also matters for all proposed methods is the distance
between markers in the image plane which is also the
function of marker distance in 3D space. Namely, for
a calibration volume of a given size and a given image
resolution, the calibration tool has to have some appro-
priate minimal size. For too small calibration wands its
marker projections in the image would be too close to
one another and in the presence of noise the relative
error of their image distance (i.e. position) estimation
with BA would be greater than when markers are quite
apart. Thus, we believe that calibration wands of size
60 cm are optimal for the current spatial camera setup.
In other words, calibrating with smaller wands is not
recommendable at the present. Of course making cali-
bration wands too big would make their manipulation
harder and also would decrease the number of locations
where the tool is imaged in as many cameras as pos-
sible. For completeness, let us mention that throughout
the development of wand-based calibration approaches,
newer and newer versions of 3D kinematic systems use
smaller and smaller wands for calibration.

The importance of a good initialization of the parame-
ters before bundle adjustment, has already been empha-
sized. On the other hand, almost equally important, are
the constraints that can be enforced (like in our case,
angles and distances), which help to converge to cor-
rect values even starting from mediocre initial values.
Judging simply based on closeness of initial parameters
to refined ones, the highest hopes were put in method
1a, then in method 1b and so forth. And indeed, a
slight advantage goes in favor of methods 1a and 1b in
the sense of the reconstruction accuracy obtained after
optimization (Tables 8, 9). Moreover, all four proposed
methods appear to have better outcomes than one where
Smart’s set of initial parameters value was used (last col-
umn in Tables 8, 9).

It is expected that using all constraints is better than
only using, e.g. known wand lengths during bundle
adjustment. This is confirmed by comparing Tables 8
and 9, particularly if we consider the results of Table 8
corresponding to minimal numbers of markers.

Eventually, we have reconstructed the ‘unknown’
wand lengths and computed their mean error from the
true values using the 3D marker positions output by
Smart. The mean error, for a wand of 30 cm length
is 0.58 mm. 8). However, during the experiments we
have deliberately made the wand dance for our methods
twice shorter than for Smart calibration. Specifically, for
our calibration volume Smart recommends to perform
a wand dance of approximately 120 s, whereas we have
reduced this to 60 s for our methods.
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7 Conclusion

We have presented the problem of typical 3D kinematic
system calibration, in the procedural sense (what the
user is supposed to do) and also regarding many aspects
from the computational point of view. We have summa-
rized issues we encountered when trying to rely solely
on self-calibration. This lead us to another solution, tak-
ing advantage of scene constraints, which are easy to
provide in calibration tools for 3D kinematic systems.
We have proposed four such methods for the initiali-
zation and subsequent refinement of camera parame-
ters. The proposed methods use rather straightforward
computational procedures to initialize camera parame-
ters, using linear equation systems. For certain applica-
tions the accuracy obtained using these approaches may
be satisfactory. Otherwise, bundle adjustment is recom-
mended. Bundle adjustment should include all available
constraints (here, orthogonality and known distances)
and if necessary, should include non-linear lens distor-
tion parameters.

After analyzing the typical calibration procedure for
3D kinematic systems we have found a way of simpli-
fying and shortening it. Apart from being user-friendly
and relying on already existing calibration tools (which
warrants easy and fast implementation in present sys-
tems) our methods completely discard the necessity for
two separate calibration steps: typically one for initial-
ization and the other for parameter refinement—wand
dance. Our proposed methods successfully acquire data
for both in a single calibration step: wand dance with
two or three orthogonal wands. In addition, the time
required for wand dance is approximately twice shorter
for our methods compared to what is recommended for
the Smart system. One may argue that handling two or
three wands is not as convenient as a single one. How-
ever, we believe it is a reasonable compromise given
all mentioned advantages. Particularly, the fact that we
completely discard the additional step of positioning an
orthogonal triad on the floor which serves normally for
parameter initialization and is frequently a cause for
calibration to be completely repeated if a bad initial-
ization set is acquired. Further, the gain of time and
potential gain in accuracy, due to using richer geometric
constraints.

We have shown that our methods provide a recon-
struction accuracy at least as good as the commercial
3D kinematic system Smart. One could criticize that
we have based our comparisons on a single commercial
3D kinematic system. We believe that due to its popu-
larity, features and above all mostly positive critics, we
can reasonably assume that similar results would have

been obtained with any other high quality 3D kinematic
system.
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