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Abstract

In this paper we propose a general framework to solve
the articulated shape matching problem, formulated as find-
ing point-to-point correspondences between two shapes
represented by 2-D or 3-D point clouds. The original point-
sets are embedded in a spectral representation and the ac-
tual matching is carried out in the embedded space. We
analyze the advantages of this choice as well as the rea-
sons for which the task remains a difficult one. In par-
ticular, we show that although embedded-space matching
still has intrinsic combinatorial difficulties, it can be solved
by searching for an optimal orthogonal transformation that
aligns the two shape embeddings. Relying on the model
based clustering formalism, we propose a probabilistic for-
mulation which casts the matching into an EM algorithm.
Outliers are properly handled by the algorithm and a sim-
ple strategy is adopted to initialize it. Experiments are per-
formed with three embedding methods (Isomap, LLE, and
Laplacian embedding) and with 3-D voxelsets representing
a human-motion sequence.

1. Introduction

Shape matching for establishing shape similarities is a
central issue in computer vision. It can be used to find shape
classes for object recognition, to track objects over time, to
build spatio-temporal representations useful for shape mod-
elling, for action and/or gesture recognition, etc. Further-
more, shape matching has recently been found to be useful
in other domains such as biochemistry allowing one pro-
tein to be aligned with another [22], and in astronautics
where the attitude of rockets or satellites can be estimated
by matching the shape of a stellar constellation acquired
with an onboard camera with an empirical star catalog [17].

Although there are methods available both for rigid ob-
jects and for objects with deformable surfaces, articulated
shape matching remains a difficult problem. There is no
simple relationship between the underlying kinematic pa-

Figure 1. Illustration of our method. Each shape to be matched
is described by a set of 3-D points (left of top and middle rows).
Spectral embeddings of the sets (right of top and middle rows).
The eigenspaces associated with the two embedded representa-
tions are robustly aligned which results in a one-to-one correspon-
dence between the two sets of points (bottom row).

rameterization and the information that is actually observ-
able in the 2-D or 3-D visual data. Rigidity (and hence
isometry) is only locally preserved and knowledge about
how an articulated shape is split into rigid pieces is not nec-
essarily available.

In this paper we address the following problem: Let an
articulated shape be represented by a set of points (2-D sil-
houettes, 3-D visual hulls, meshes, voxels, etc.) We con-
sider two instances of this set of points in two different
poses (for example, at two different times) and we want
to establish a one-to-one assignment between the two point
sets, e.g., Figure 1. We consider difficult situations when
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the data are corrupted by occlusions (points present in one
set may be absent in the other set), missing data, outliers,
and noise.

A recurrent idea for non-rigid shape description and
matching is the use of dissimilarity matrices with entries
corresponding to pairwise distances between points of a
single shape. In a very simplified manner, matching two
shapes represented this way implies minimizing the discrep-
ancy between the two dissimilarity matrices over all possi-
ble pairings. [21], [5, 6], [11], [15].

In order to describe articulated shapes, it is desirable to
define the pairwise distance measure in such a way that lo-
cal isometric properties are preserved while allowing the
matrix to be “globally invariant” to shape deformations.
The dissimilarity matrix can be interpreted as the adja-
cency matrix of a weighted graph: nodes describe points
and weighted edges describe links to neighboring points. In
this context, the problem of shape matching can be cast as
graph isomorphism, namely finding a node-to-node assign-
ment that minimizes the Frobenius norm of the difference
between the two dissimilarity matrices. A modern approach
to graph isomorphism is to define probabilistic assignments
and to use variations of the EM algorithm [12, 9, 16]. These
deterministic algorithms guarantee that the error decreases
at each iteration but cannot escape from local minima, and
so a proper initialization is crucial. Furthermore, these
graph-matching methods usually fail to match very large
sets of points, to deal with graphs with very different sizes,
and to compare very different graphs, i.e., graphs that con-
tain many spurious nodes.

Spectral graph theory [7] unfolds several interesting
properties of Shape Matrices: its eigenvalues and eigenvec-
tors characterize the spectrum and the modes of the graph.
The eigenvalues alone may be used to compare shapes, al-
though distinct shapes may lead to the same eigenvalues
[14, 18] More interesting, the eigendecomposition itself
has been used to build a closed-form solution for matching
weighted graphs of equal size [24],and to solve for image
matching problems [20], [21], [5, 6].

It is generally conjectured that the embedded represen-
tation obtained through the spectral analysis of the dissimi-
larity matrix is appropriate for shape description and analy-
sis. An important reason for this is the fact that the matrix
encodes pairwise geometric invariants, which are also pre-
served in the embedding space. Techniques used for non-
linear manifold learning, have exploited this principle for
dimension reduction: building small dimensional represen-
tations of manifolds only known through samples that lie
in a high dimensional space. The main idea is that by us-
ing spectral analysis on adequately designed dissimilarity
matrices one can constrain the structure (global or local)
of the observed space to be preserved in the embedding

space. Indeed, methods such as Isomap [23], locally lin-
ear embedding (LLE) [19], Laplacian embedding [2], etc.,
use some more elaborate notions of distances and neighbor-
hoods to build a dissimilarity matrix, but converge at some
point to the computation of the eigenvalues and their asso-
ciated eigenvectors, to finally retain a reduced eigenspace
spanned by the most significant (the largest or the smallest)
eigenvalues/ eigenvectors pairs.

Let n × 2 or n × 3 be the dimension of the original
cloud of points, and n × n be the size of the dissimilar-
ity matrix where n is the number of points associated with
a shape. The former can be embedded into a vector space
of dimension k, k < n whose canonical basis corresponds
the the eigenvectors associated with the k largest eigenval-
ues of the matrix. It is therefore possible to project the set
of points onto this space. Two similar shapes should share
the same embedded representations due to the fact that their
matrices capture only local isometric properties and there-
fore matching shapes in this space is only weakly affected
by articulated deformations. It is therefore tempting to con-
jecture that shape matching is now reduced to eigenspace
alignment [11], [15]. Nevertheless, several problems arise:

• Eigenvectors are only defined up to sign which intro-
duces 2k possible alignments between the two eigen
bases: This will be denoted as the sign-reversal ambi-
guity;

• The ordering of eigenvalues is not reliable. This has
several reasons. First, the shape itself may yield sev-
eral identical elongations and hence several similar
eigenvalues. Second, there may be eigenvalues with
large algebraic multiplicity. Third, there may be nu-
merical instabilities that do not allow proper order-
ing. There are k! such possible “switches” between the
eigenvalues: This will be denoted as the eigenvalue-
ordering ambiguity.

• The two sets of points may never match exactly, ow-
ing to spurious points, missing, bad, and/or noisy data,
etc. As a consequence, the embedded spaces cannot be
perfectly aligned and there is a residual transformation
(rotation and/or translations) between the two bases:
This will be denoted as the rigid-motion ambiguity.

To summarize, there are 2kk! possible alignments be-
tween the two eigenbases, and each one of these alignments
is defined up to a rotation and translation. Table 1 summa-
rizes the number of possible alignments as a function of k.
This is a truly combinatorial problem because the number
of solutions (or configurations) increases dramatically with
the dimension of the embedded space, and there is no way



to guide the search through the space of possible configu-
rations. It is interesting to notice that, although the sign-
reversal and eigenvalue-ordering ambiguities have been re-
ported in [21], none of the methods mentioned above prop-
erly addresses these issues (although some heuristics have
been proposed in [15, 4]).

Table 1. The number of possible shape alignments as a function of
the dimensionality of the eigenspace being considered.

k 2 3 4 5 6
alignments 8 48 384 3840 46080

One may argue that it is sufficient to consider a low-
dimensional embedded space and to perform an exhaustive
search. Indeed, is practical for k ≤ 3 provided that there is a
reliable and efficient way to test each solution. However, in
typical cases the dimension of the embedded space is higher
than that. Although the literature is abundant with experi-
ments aimed towards the guess of the dimensionality of the
embedded space and its exploration for clustering, there is
little information about the choice of k when the task is to
align shapes. In [15] it is claimed that k = 6 yields satis-
factory mesh correspondence and good results are obtained
with a greedy method. As already mentioned, in [14] it
has been observed that two similar shapes will always yield
comparable eigenvalues but the reverse is not always true.
We conclude that for reliable spectral shape matching, the
dimension of the embedded space should not be too small,
most certainly in the range 5 ≤ k ≤ 10, as reported in [15].

This paper has the following contributions. Articulated
shape matching is formulated as the problem of finding a
one-to-one correspondence between two point sets embed-
ded in some spectral domain. We show that this could
and should be done by searching for an optimal orthogo-
nal transformation between their spectral descriptions. This
transformation encodes the three spectral ambiguities men-
tioned above in a unified manner. We introduce a proba-
bilistic formulation allowing to model the point matching
process as an EM algorithm that treats the correspondence
in a non symmetric manner. Since EM is a deterministic
minimizer, it requires proper initialization. We discuss pos-
sible initialization strategies.

2. Problem formulation

We denote by X = {Xi}1≤i≤n and by Y =
{Y j}1≤j≤m the two sets of points. We seek a one-to-one
correspondence between the two point sets. Without loss
of generality we consider 3-D points and let n ≥ m. Let
A and B be the dissimilarity matrices associated with the

point sets X and Y . Taking as example the Laplacian em-
bedding [2], an entry Aij of such a matrix is computed with
Aij = exp(−d2(Xi,Y j)/2σ2). We also define a diagonal
matrix D such that Dii =

∑
j Aij . We seek the eigenvalues

and generalized eigenvectors that satisfy det(A− λD) = 0
and AU = λDU , where the vector columns ui of the n×n
matrix U are solutions of the equation (A − λiD)ui = 0.
There are well known methods to extract the k most sig-
nificant eigenvectors. We retain Un×k whit columns cor-
responding to the most significant eigenvectors u1, . . . ,uk,
and whose rows are the coordinates of the points in the em-
bedded k-dimensional space, x = {xi}1≤i≤n. Similarly
we denote by y = {yj}1≤j≤m the embedded coordinates
of the second set of points obtained from the dissimilarity
matrix B.

Other than the Laplacian embedding, one can ob-
tain similar spectral representations using embedding tech-
niques such as Isomap [23] and local linearly embedding
(LLE) [19]. The method that we describe below can be ap-
plied to anyone of these embedded representations.

Let Q be the k × k matrix that allows, in principle, the
alignment of the two embedded spaces associated with the
two sets of points. This matrix is formed by the following
multiplication:

Q = RPS (1)

where R is a k × k rotation (i.e., an orthogonal matrix with
det(R) = 1), P is a k × k permutation matrix, and S is a
k × k diagonal matrix with entries sii = ±1. These three
matrices encode (from right to left) the sign-reversal, the
eigenvalue-order, and the rigid-motion ambiguities. There
are k! possible permutations P and 2k possible sign flips S.
Notice that P is orthogonal, and therefore Q is an orthog-
onal matrix as well. The latter can be either a rotation or
a reflection. Notice that the translational component of the
rigid-motion ambiguity has been left out, this can be easily
computed by aligning the centers of mass of the two em-
beddings.

Points in the two sets can now be aligned according to
the formula:

xz(j) = Qyj (2)

where the correspondence function z allows to assign a
point from the first set to a point from the second set. Since
we do not have such an assignment, the embedded align-
ment can be cast into the following minimization problem:

min
Q,z

∑
j

‖xz(j) −Qyj‖2 (3)

This formula is similar in spirit with the alignment of two
rigid sets of points [1], [27], [13], and with articulated track-
ing in kinematic space [10]. Therefore, articulated shape



matching has been reformulated as the problem of finding
a one-to-one correspondence between two point sets that
minimizes an orthogonal transformation between their em-
bedded descriptions. In the next two sections we introduce
a probabilistic formulation and its associated algorithm that
minimizes a revised version of eq. (3).

3. Robust spectral alignment

The main difference between our approach and similar
ones [8, 16] is that the two sets of points are not treated sym-
metrically [26], [10]. Indeed, within a probabilistic frame-
work, we define x as a set of observed values of an equal
number of random variables that will be denoted by X . To
each random variable Xi we associate another random vari-
able zi which describes the correspondence. Specifically,
zi = yj means that the observation xi is in correspondence
with the point yj . Hence, we refer to the set y as the set
of model points. Moreover, the notation zi = ∅ means that
observation xi is in correspondence with an outlier. Let
v be the volume within which yj is to be expected. The
prior probability that an observation point xi is assigned to
a model point yj writes P (zi = yj) = v/V where V is the
volume of the whole space. In order to satisfy

∑
j P (zi =

yj) + P (zi = ∅) = 1, we get P (zi = ∅) = (V −mv)/V .

We choose to model with different distributions the in-
liers and the outliers, [26]. The probability of an observa-
tion xi to lie in the proximity of Qyj , given that xi and
yj are in correspondence, will be described by a Gaussian
distribution with covariance matrix σIk (d denotes the Eu-
clidean distance):

PQ(xi|zi = yj) =
1

(2πσ2)3/2
e−

d2(xi,Qyj)

2σ2 (4)

The probability of an observation given that it corresponds
to an outlier will be described by a uniform distribution over
the volume of the working space: P (xi|zi = ∅) = 1/V .
We are interested in the posterior probabilities, namely the
probability that xi corresponds to yj given the observation
xi. We will denote these posteriors by αij :

αij = PQ(zi = yj |xi) (5)

We combine the above expressions for the priors and for
the likelihoods in the Bayes formula. We observe that the
set {zi = y1, . . . , zi = ym, zi = ∅} is a partition of the
event space. Therefore we have:

PQ(xi) =
m∑

j=1

P (xi|zi = yj)P (zi = yj)

+ P (xi|zi = ∅)P (zi = ∅) (6)

Finally we obtain the following expression:

αij =
e−

d2(xi,Qyj)

2σ2∑
j e−

d2(xi,Qyj)

2σ2 + ∅C

(7)

With ∅C representing the outlier constant. In order to esti-
mate the transformation Q we maximize the expectation E
of the logarithm of the joint probability of the observations
and their correspondences:

F (Q,Qc) = EQc [log(PQ(x, z))|x] (8)

where Qc denotes the current estimate of Q. By supposing
that the variables xi and zi are independent for all 1 ≤ i ≤
n, we get:

PQ(x, z) =
n∏

i=1

 m∏
j=1

(P (xi|zi = yj)P (zi = yj))
δyj

(zi)

(P (xi|zi = ∅)P (zi = ∅))δ∅(zi)

 (9)

where δyj (zi) (respectively δ∅(zi)) equals 1 when zi = yj

(respectively zi = ∅), and 0 otherwise. After some straight-
forward algebraic manipulations and by grouping constant
terms, we obtain:

F (Q,Qc) = − 1
2σ2

n∑
i=1

m∑
j=1

αij‖xi −Qyj‖2 + Cst (10)

We can further simplify this expression as follows. Let
wj be the average observation that corresponds to yj , i.e.,
wj =

∑
i αijxi/

∑
i αij . With the notation βj =

∑
i αij

and by substitution in the above formula, we obtain that the
maximization of eq. (8) is equivalent to the minimization of
the following criterion:

min
Q

m∑
j=1

βj‖wj −Qyj‖2 (11)

4. Algorithm

The formula that we just established can be, in principle,
directly used within a non-linear optimization framework.
Indeed, the probabilities αij (and the weights βj) are pa-
rameterized by the orthogonal matrix Q and by the variance
σ, and one may well minimize eq. (11) over these parame-
ters. Unfortunately, the parametrization of orthogonal ma-
trices is difficult and this may not lead to a reliable solution.
Instead, the probabilities αij will be treated as hidden vari-
ables within an EM algorithm. Given the above formula-
tion, EM will estimate both Q and the αij’s, i.e., its output



consists in the alignment of the two embedded spaces as
well as a probabilistic assignment between the two sets of
points. The latter must be further processed to yield a one-
to-one assignment. First we give an outline of algorithm
and then we analyse in detail each one of its steps.

Step 0: Initialization. Set initial values for the matrix Q and
for the variance σ;

Step 1: Expectation. Compute αij and then βj and wj for all
1 ≤ i ≤ n and 1 ≤ j ≤ m;

Step 2: Maximization. Use eq. (11) to find a new estimate for
Q. Allow the variance to decrease geometrically with
σnew = κσ and 0 < κ < 1;

Step 3: Test. If the entries of Q are stabilized or if σnew ≤
σmin then go to step 4, else go to step 1;

Step 4: One-to-one assignment. Extract one-to-one assign-
ments from the probabilities αij and from the weights
βj .

Intialization. This is a crucial step since the problem that
we want to solve has an intrinsic combinatorial nature. The
k × k covariance matrices Σx and Σy associated with the
embedded point sets x,y characterize the modes of the em-
bedded shape and can be used as a hint to find the most
plausible orderings for the eigenvectors. This strategy re-
mains however a heuristic since some shapes have intrinsic
identical elongations along several of its modes. We are still
left with the sign-reversal ambiguity. Currently we hypoth-
esize over all 2k for each plausible swap and we evaluate
each one using a nearest neighbor test that selects xi/yj

pairs. Next we estimate the matrix Q associated with the
best pairing.

Expectation. This is a classical step that consists in eval-
uating the probabilities of each possible point pair. This
can be relatively slow because it is necessary to compute
the Euclidean distance between each xi and each Qyj . We
note that this is a classical problem with which K-means
and EM algorithms are faced. See [3] for a discussion on
efficient implementation of this step.

Maximization. The maximization of the expectation, i.e.,
eq. (8) is replaced in our case by the a minimization, as
already explained above. The matrix Q to be estimated
belongs to the group of orthogonal matrices. Unlike its
subgroup of rotations (which is a Lie group), the orthog-
onal group does not yield a parameterization. Nevertheless,
eq. (11) does have a closed-form solution. Indeed, we fol-
low the closed-form solution for rotation recovery in [1] and

Figure 2. Algorithm initialization. There are 8 possible alignments
but none of them is truly satisfactory: Laplacian embedding (top),
Isomap (middle), and LLE (bottom).

[25] while relaxing the rotation constraint in order to enable
the reflections to be recovered . In brief: First we compute
the matrix Hkxk =

∑
j βjwjy

>
j . Second we compute the

singular value decomposition H = UΛV >. Third we retain
the solution Q = V U>.

Formally, one should include the evaluation of σ in the
optimization process. It was observed by many authors that
when the variance is estimated like this, it decreases too
quickly and the algorithm can be trapped in a local min-
imum. We start with a large variance and we decrease it
geometrically, as explained above. The variance should not
be smaller than the variance of the expected measurement
noise of the observations. This annealing process is crucial



Figure 3. This figure shows the result of matching frames 1/6,21/26,26/31 and 31/36 with Isomap. The first row shows the initial voxel
representation. The second row shows the final result of matching in embedded space (here we chose k = 3 for visualization purposes).
The third row shows the output of the EM algorithm, and the fourth row shows the result of the final one-to-one assignment between the
sets of points. Matching is codified by color. In this case the algorithm successfully matched 90-95% of the points. Note the missing arm
in the first column correctly identified as matching outliers (red disconnected circles) in the EM step.

to both escape from local minima and eliminate outliers.

One-to-one assignment. This is the final step of the algo-
rithm. The many-to-many probabilistic registration found
so far must be interpreted in terms of a one-to-one deter-
ministic association between two largest subsets of the two
sets of points. First, for each point xi we select its best as-
signment, i.e., zi = yj is found with arg maxj αij . Second,
we select inliers. The expression of αij given by eq. (7) is
crucial. Notice that the probability of xi to be an inlier is in
the interval [0, 1

1+∅C
]. Remember that the outlier constant

∅C stems from the choice of a uniform probability distri-
bution to describe outliers. In all our experiments we set
∅C = 1. This prevents our algorithm both from rejecting
too many assignments and from running into numerical in-
stabilities when

∑
j exp(−d2(xi, Qyj)/2σ2) in eq. (7) is

close to zero. We adopt the following outlier rejection deci-

sion (0 < ν < 1): If αij > ν
1+∅C

then xi is an inlier, else it
is an outlier.

So far we selected a unique assignment for each inlier
xin

i , but there may be several inliers associated with the
same point yj . In order to obtain a one-to-one correspon-
dence, we take the expectation over all inliers associated
with yj : wj =

∑
i αijx

in
i /

∑
i αij .

5. Experiments

We applied the algorithm to a human-motion sequence.
The dancer performs relatively fast motions. We used six
cameras and a standard space-carving algorithm in order to
acquire a voxel representation at 30 frames per second. The
matching results shown below were obtained by applying
the algorithm to frames 1-to-6, 21-to-26, 26-to-31, and 31-
to-36. Initially there are approximately 5000 voxels at each



Iteration 1

Iteration 9

Iteration 18

Figure 4. Three steps of the evolution of the EM algorithm in the
case of Laplacian embedding and for k = 6. Matching and align-
ment of the black and the green embedded shapes. The alignment
is projected onto four subspaces of dimension 3 and matchings are
indicated by dotted lines.

time step. We reduced these data to obtain 2000-3000 3-D
points at each time step.

Figure 5. Interpolation. Pointsets of the dancer at different frames
are matched and then interpolated creating 4 new intermediate
frames. The leftmost and rightmost gray pointsets correspond to
the original poses. Colored poses are the result of the interpola-
tion. Dotted lines display some of the associations

We used our method in conjunction with three embed-
ding techniques: Laplacian embedding, Isomap, and LLE.
Figure 2 shows the result of the initialization step described
above for the three methods and for k = 3. In this case
there are 8 possible alignments.

Figure 3 shows the result of matching using Isomap. No-
tice the large arm motions of the dancer. The algorithm suc-
cessfully matched 90-95% of the points.

Figure 4 shows the evolution of the EM algorithm when
matching two sets of points from the same sequence using
Laplacian embedding and with k = 6. The figure shows
alignment obtained iteratively and projected on four sub-
spaces of dimension 3. In this case the algorithm checked
64 sign ambiguities at initialization and then converged in
18 EM iterations (there are 46080 possible solutions).

Finally Figure 5 illustrates one of the applications of our
method: the interpolation of two frames. Here two different
poses are matched, and the result is used to interpolated 4
intermediate frames.

6. Conclusion

We addressed the problem of matching two articulated
shapes. Since we adopted a probabilistic framework, each
shape is described by a set of points. Although linear,
locally linear, and non-linear methods to build embedded
descriptions of such point sets are well developped, the
problem of aligning embedded representations has not been
properly addressed. We analysed the ambiguities associated
with embedded alignment, we revealed and analysed the
combinatorial nature of the task. We showed that the prob-
lem can be cast into finding a set of point correspondences



that minimize an orthogonal transformation. We described
in detail an EM algorithm that starts with many-to-many
assignments, converges to many-to-one assignments, and
eventually leads to one-to-one assignments. The method
was successfully applied to large sets of points correspond-
ing to a human-motion sequence. In the future we plan to
analyse more thoroughly the initialization step of our algo-
rithm and to apply it to more general graph-isomorphism
problems.
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