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INRIA Rhône-Alpes

655, avenue de l’Europe, Montbonnot Saint-Martin, FRANCE
name.latsname@inrialpes.fr

Abstract

In this paper we propose a method for matching artic-
ulated shapes represented as large sets of 3D points by
aligning the corresponding embedded clouds generated by
locally linear embedding. In particular we show that the
problem is equivalent to aligning two sets of points under
an orthogonal transformation acting onto the d-dimensional
embeddings. The method may well be viewed as belong-
ing to the model-based clustering framework and is imple-
mented as an EM algorithm that alternates between the es-
timation of correspondences between data-points and the
estimation of an optimal alignment transformation. Corre-
spondences are initialized by embedding one set of data-
points onto the other one through out-of-sample extension.
Results for pairs of voxelsets representing moving persons
are presented. Empirical evidence on the influence of the
dimension of the embedding space is provided, suggesting
that working with higher-dimensional spaces helps match-
ing in challenging real-world scenarios, without collateral
effects on the convergence.

1. Introduction

Shape matching is a central problem in computer vi-
sion as it allows to find shape classes for object recogni-
tion, to track objects over time, to build spatio-temporal
representations useful for shape modeling, for action and/or
gesture recognition, etc. Although methods are available
both for rigid objects and deformable surfaces, articulated
shape matching remains a challenging problem. Rigidity
(and hence isometry) is only locally preserved and knowl-
edge about how an articulated shape is split into rigid pieces
is often not available. Whenever an object is represented
by a cloud of 2D or 3D points, matching two different
poses of the same object reduces to establishing assign-
ments between points of the two clouds. Situations in-
volving occlusions, missing data, outliers, and noise have

already been addressed within the framework of matching
rigid objects. A number of methods were suggested includ-
ing hypothesize-and-test implemented as tree search, itera-
tive closest point (ICP), and probabilistic assignment.

In addition to the difficulties associated with rigid align-
ment mentioned above, the problem of articulated align-
ment is more complex for at least two reasons: (i) Shape
isometry is preserved only locally and not globally and
(ii) object sub-parts may coalesce together, as is the case
of a human with an arm lying along the torso. The lack of a
global transformation that, in theory, maps points from one
pose onto points of another pose, leads us to consider the
more general problem of maximum subgraph matching.

As we claim here, those obstacles can be overcome by
aligning the two clouds of points in an embedding space.
The first method known by us to solve the weighted graph
matching problem through an eigen (or spectral) decompo-
sition was proposed by Umeyama [19]. More recently, Sev-
eral spectral methods were proposed [1, 18] which compute
non-linear embeddings of the input dataset by means of the
SVD decomposition of an affinity matrix which depends on
the structure of the data. ISOMAP, for instance, is based
on the matrix of geodesic distances between points which
are substantially preserved under articulated motion (fac-
toring out changes in the topology of the moving body), as
pointed out by other researchers [4]. By intuition, if the
affinity matrix captures only local isometric properties of
the input cloud, the shape of the resulting embedded cloud
is only weakly affected by articulated deformations. In con-
sequence, two clouds associated with different articulated
poses of the same object can be rigidly aligned in the em-
bedding space, such that each point of the first cloud is (in
principle) associated with its nearest neighbor in the second
(aligned) cloud.

In practice, as discussed here as well as in a compan-
ion paper [14], embedded shapes can only be aligned up
to a d × d orthogonal transformation, where d is the di-
mensionality of the embedded space. Unlike its Euclidean
sub-group, the orthogonal group does not have a Lie struc-
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ture. This means that the space of possible alignments under
an orthogonal transformation is much larger than the space
of alignments under rigid transformations, and closed-form
solutions based on aligning the second order moments of
the two sets are not available.

In this paper we propose to match articulated objects
through Locally Linear Embedding (LLE) [16], in which
the affinity matrix M does not possess an immediate in-
terpretation in terms of pairwise distances between data-
points. We show that the local isometry typical of LLE is
enough to guarantee remarkable locally-rigid invariance un-
der articulated motion. The results we obtain seem in fact
to support the fact the LLE combines a good performance
with an acceptable computational cost with respect to meth-
ods like ISOMAP.

We develop an EM method that alternates between
point-to-point (or node-to-node) assignment and orthogo-
nal alignment in the d-dimensional embedded space. Un-
like other point-matching methods, we address the problem
within the framework of model-based clustering [10]. In
fact, each node of the smaller graph is viewed as a potential
cluster with normal distribution, and there is an additional
outlier cluster with uniform distribution [11]. The problem
of matching then becomes the problem of assigning each
node of the larger graph to one of these clusters. We also
focus on the critical issue of how to initialize the alignment
procedure. We exploit the mechanism of out-of-sample ex-
tensions [2] to determine an initial (probabilistic) guess of
the correspondence function, by embedding points of one
shape in the embedding space of the other one. Finally,
we consider the crucial point of assessing the influence of
the dimension of the embedding space d (the number of
eigenvectors of M we select to compute the embedding).
Even though some theoretical arguments suggest to choose
d smaller than the number of zero eigenvalues of the matrix,
we provide empirical evidence on the fact that in absence
of noise higher dimension ensures better matching scores,
while when dealing with real data there typically exists a
threshold over which the performance of the algorithm de-
grades.

The remainder of the paper articulates as follows. In Sec-
tion 2 we argue that local spectral embeddings (and LLE in
particular) of articulated shapes are (reasonably) invariant
under articulated motion. Associations between data-points
can then be found by looking for nearest neighbors after
alignment. This invariance is tempered by inherent ambi-
guities which are solved by means of an alternating EM
estimation of matching and optimal alignment (Section 3).
We show how to initialize the procedure by means of out-of-
sample extension, and discuss the influence of the parameter
d. Finally (Section 4) we present results for both simplified
tests in which ground truth is available and real-world data.

2. Matching in the embedding space
Pose-invariance of embedded clouds under articu-

lated motion. LLE [16] is an unsupervised learning al-
gorithm which computes embeddings {xi} of a set of in-
put points {Xi}, i = 1, ..., n, while preserving the local
structure of the data, i.e., the distances between each point
and its k neighbors, k being a parameter of the algorithm.
These optimal embeddings (up to a global rotation of the
whole space) are found by selecting the eigenvectors as-
sociated with the bottom d + 1 eigenvalues of the affinity
matrix Mij

.= δij − Wij − Wji +
∑

k WkiWkj (δij = 1
iff i = j, 0 otherwise), where Wij , j = 1, ..., k are the
weights that best linearly reconstruct Xi from its neigh-
bors: arg minW ‖Xi−

∑
j WijXj‖2. The embedded cloud

is constrained to be centered at the origin
∑

i xi = 0, and
have unit covariance.

As it has been noticed before, some embedding schemes
(like ISOMAP) are inherently pose-invariant under artic-
ulated motion (since geodesic distances between pairs of
points do not change as the kinematic motion of the articu-
lated object proceeds). This is not true, in a strict sense, for
LLE. However, as its embedding depends only on the local
structure of the input dataset, under articulated motion the
shape of the LLE embedded cloud exhibits indeed remark-
able stability. All local neighborhoods incident on a rigid
part of an articulated body are preserved along the motion,
while only the few neighborhoods interested by evolving
joint(s) are affected (Figure 1-left). The affinity matrix M
undergoes only little changes, depending of course on the
values of n and k (as smaller ks reduce the number of neigh-
borhoods with non-empty intersection with moving joints)
and the number of evolving joints. Figure 1 shows some
anecdotal evidence supporting this claim. Similar consider-
ations hold for Laplacian Eigenmaps [1].

Intrinsic ambiguities in eigenspace alignment. Match-
ing shapes in the embedding space is, in principle, only
weakly affected by articulated deformations. It is therefore
tempting to conjecture that shape matching is now reduced
to eigenspace alignment [19], [9], [12].

Nevertheless, several issues emerge:
- eigenvectors are only defined up to sign, which introduces
2d possible alignments between the two eigenbases (sign-
reversal ambiguity);
- the ordering of eigenvalues is not reliable due to eigen-
values with large algebraic multiplicity and/or numerical
instabilities in their calculation. In the work of Umeyama
[19] this was not an issue since the author considered
very small graphs. In recent work, the problem of eigen-
value ordering has been overlooked. We have then to
consider d! possible permutations between the eigenvalues
(eigenvalue-ordering ambiguity).
- LLE embedding is defined up to a residual transformation
(d × d rotation) between the two eigenbases (rigid-motion



Figure 1. Left: The number of neighborhoods affected by articulated motion is relatively small. Right: Some anecdotal evidence on
the stability of locally linear embedding under articulated motion. Different poses of the same articulated body are mapped to the same
embedded cloud, for a large interval of parameter values (here d = 3, k = 10).

ambiguity). - perfect match between two embedded clouds
is unlikely, due to spurious points, missing, bad, and/or
noisy data, etc.

As we argue in the following, these issues can be over-
come by searching for an optimal orthogonal transforma-
tion Q that allows the alignment of the largest number of
point-to-point (or node-to-node) assignments.

3. Methodology
Let us denote by X = {Xi}1≤i≤n and by Y =

{Yj}1≤j≤m the two sets of points, and with {xi}1≤i≤n and
{yi}1≤i≤m the corresponding sets of d-dimensional em-
bedded points generated through LLE (Section 2). Accord-
ing to what has been discussed above, the d×d matrix Q that
allows, in principle, to align the two embedded clouds has
the form Q = RPS, where R is a d×d rotation, P is a d×d
permutation matrix, and S is a d × d diagonal matrix with
entries sii = ±1 encoding rotational, eigenvalue-ordering,
and sign-reversal ambiguities respectively. As R, P , and S
are orthogonal, Q is an orthogonal matrix as well. Points in
the two sets can now be aligned according to xz(j) = Qyj ,
with z : x → y the correspondence function. Notice that
the mapping x → y directly implies the mapping X → Y.
As both z and Q are unknown, the embedded alignment can
be cast into the following minimization problem:

min
Q,z

∑
j

‖xz(j) −Qyj‖2 (1)

This formulation is analoguous with rigid alignment [22]
where the d×d orthogonal matrix is reduced to a 4×4 rigid
transformation. A similar approach was proposed in [8] for
articulated tracking in kinematic space.

An EM framework for aligning embedded spaces.
We can pose the problem in a probabilistic framework by
defining x = {xi}1≤i≤n as a set of observed values of
an equal number of random variables that will be denoted
by X = {Xi}. To each random variable Xi we associate
another random variable zi which describes the correspon-

dence. Specifically, zi = yj will mean that the observa-
tion xi is in correspondence with the predicted model point
Qyj , while zi = ∅ means that observation xi belongs to an
outlier cluster. Let v be the volume within which yj is to be
expected. Without loss of generality, this volume is a sphere
with radious σ0, v = 3πσ3

0/4. The prior probability that an
observation point xi is assigned to a model point yj writes
P (zi = yj) = v/V , where V is the volume of the whole
space. In order to satisfy

∑
j P (zi = yj)+P (zi = ∅) = 1,

we set P (zi = ∅) = (V −mv)/V . The main difference be-
tween our approach and similar ones [5, 13] is that the two
sets of points are not treated symmetrically [21], [8]. We
choose to model with different distributions the inliers and
the outliers, [21], [11]. The probability of an observation
xi to lie in the proximity of Qyj , given that xi and yj are
in correspondence, will be described by a Gaussian distri-
bution with covariance matrix σId (f denotes the Euclidean
distance):

PQ(xi|zi = yj) =
1

(2πσ2)3/2
e
−

f2(xi,Qyj)

2σ2 . (2)

The probability of an observation given that it corresponds
to an outlier will be described by a uniform distribution over
the volume of the working space: P (xi|zi = ∅) = 1/V . We
look for the posterior probability that xi corresponds to yj

given the observation xi:

αij
.= PQ(zi = yj |xi).

The above expressions for priors and likelihoods can be
combined in the Bayesian framework (after observing that
the set {zi = y1, . . . , zi = ym, zi = ∅} is a partition of
the event space) as PQ(xi) =

∑m
j=1 P (xi|zi = yj)P (zi =

yj) + P (xi|zi = ∅)P (zi = ∅) so that (with a proper choice
for σ0):

αij =
(
e−

f2(xi,Qyj)

2σ2

)/( ∑
j

e−
f2(xi,Qyj)

2σ2 + σ3
)
. (3)

In order to estimate the transformation Q we maximize the
expectation E of the logarithm of the joint probability of
the observations and their correspondences F (Q,Qc) =



EQc [log(PQ(x, z))|x] where Qc denotes the current esti-
mate of Q. Assuming xi and zi independent ∀ 1 ≤ i ≤ n
we get

PQ(x, z) =
n∏

i=1

( m∏
j=1

(P (xi|zi = yj)P (zi = yj))
δyj

(zi)

(P (xi|zi = ∅)P (zi = ∅))δ∅(zi)
)

where δyj (zi) (respectively δ∅(zi)) equals 1 when zi = yj

(respectively zi = ∅), and 0 otherwise. After some straight-
forward algebraic manipulations and by grouping constant
terms, we obtain:

F (Q,Qc) = −1
2

n∑
i=1

m∑
j=1

αij(‖xi−Qyj‖2+a log σ). (4)

We can further simplify this expression by replacing wj =∑
i αijxi/

∑
i αij and βj =

∑
i αij in (4). Maximizing

F (Q,Qc) is then equivalent to:

min
Q

m∑
j=1

βj(‖wj −Qyj‖2 + a log σ). (5)

Now, the probabilities αij can be treated as hidden vari-
ables within the Expectation-Maximization framework [7],
in which Q and σ on one side, and the αij’s on the ather
side, are estimated. The assignment probabilities are com-
puted in the E step, while in the M step Q and σ are es-
timated by solving (5). Notice that the estimation of Q
amounts to find the mean Qyj of each Gaussian cluster
j. Q can be computed in closed-form by relaxing the ro-
tation constraint in [20]. Namely, we compute the sin-
gular value decomposition H = UΛV > of the matrix
H =

∑
j βjwjy>j and retain the solution Q = V U>.

Matching initialization through out-of-sample exten-
sions. The above EM estimation can be initialized either
in the M-step (by finding an initial value for the orthogo-
nal matrix Q) or in the E-step, by choosing an initial as-
signment matrix ᾱ = [αij ]. Here we propose a natural
way to initialize ᾱ by means of out-of-sample extensions
of spectral embeddings to points not in the training set. In
[2], the extension to new points modifies the embedding for
all original training points, fact which violates our principle
of aligning embedded shapes independently generated. In
[17], instead, the addition of a point outside the training set
does not affect the affinity matrix M on which the embed-
ding is based, as the new point is not considered part of the
neighborhood of any training point. In opposition, its own
neighborhood is detected in the usual manner as a set of k
training points. The corresponding weights are computed
and then used to reconstruct the location of the point in the
existing embedded space.

Assume now that the two shapes correspond to two
poses of an articulated shape which differ only in the po-
sition/configuration of a few limbs. In that case, most of
the shape remains stable. Under these assumptions, out-
of-sample embeddings y′i of points Yi of the second shape
(Figure 2) which belong to the region shared with the first
shape will be located close to their counterparts in the first
embedded cloud. We can then assign to each point xj of the
first embedded cloud a matching likelihood proportional to
its distance from y′: αij ∝ f(y′i,xj). The initialization

Figure 2. Out-of-sample embeddings (right) of points of the sec-
ond shape (left) with respect to the first shape (middle).

algorithm reads then as follows: Given the embedded cloud
{xi, i = 1, ..., n} for the first shape:
1. for each point Yi of the (original) second shape, detect
its k neighbors in the first shape, and compute the related
weights: Yi =

∑k
j=1 WijXj ;

2. as LLE preserves local neighborhoods, those same
weights can be used to find the out-of-sample embedding
y′i of Yi in the embedding space of the first shape: y′i =∑k

j=1 Wijxj ;
3. an initial estimate for the correspondences αij can then
be computed by assessing the likelihood of those points
with respect to a Gaussian distribution centered in the out-
of-sample embedding y′i of Yi: αij = N (f(y′i,xj)),
where f(y′i,xj) is the distance between y′i and xj , the stan-
dard deviation σ being a parameter of the EM algorithm
(Equation 3).
It is worth to stress that out-of-sample embeddings are only
used to compute an initial guess of the association matrix,
which is later used to align the two independently computed
embedded clouds in the M-step.

Dimension of the embedding space. A crucial issue
with LLE (and spectral methods in general) is the choice
of the dimensionality d of the embedding space, i.e. the
number of eigenvectors of the affinity matrix M . This is-
sue has been in fact addressed, for instance by Polito and
Perona [15]. They argue that the covariance constraint
1
N

∑N
i=1 xi⊗xi = I causes an overfitting in the embedding

when choosing the “wrong” dimension, and prove that any
full-rank embedding associated with a zero-error approxi-
mation xi =

∑
j WijXi has to be associated with d < a

where a is the number of zero eigenvalues of the affinity



matrix M .
In practice, though, we do not observe this effect. The rea-
son is due in part to the inclusion of the unit-covariance
constraint in the optimization problem which forces the nu-
merically obtained solution not to meet the locally linear
reconstruction constraint exactly. The other factor is the in-
clusion of a regularization term [17] in the computation of
the covariance matrix which is often necessary when deal-
ing with d greater than the original dimensionality of the
point cloud: Again, this keeps the final solution (embed-
ding) away from the ideal zero-error approximation.

Figure 3. Typical behavior of the eigenvalues of the affinity matrix
of a cloud of points.

Figure 3 shows a typical spectrum of M for a dataset X
formed by 1,300 3D points representing a moving person.
It can be noticed that there is neither clear evidence of what
is the cardinality of the set of “zero” eigenvalues, nor a re-
liable way to order these eigenvalues, and as a consequence
which value of d we should use.
In the context of clustering [6], on the other side, it has been
pointed out that the number of dimensions to select has to
match the desired number of clusters. We will show some
empirical evidence on the influence of d in the data associ-
ation problem in the last part of the paper.

Number of neighbors k. A parameter which influences
the stability of embedded cloud (and hence the hypothesis
of pose invariance on which the entire alignment scheme is
based) is the number of neighbors k of the LLE algorithm.
In [6] a method to tune the value of k has been proposed
which relies on the detection of “anomalous” neighbor-
hoods, i.e. neighborhoods which span separate body-parts
(Figure 4-b-middle). These are characterized by the fact
that their farthest elements (as they belong to another, dis-
tinct body-part) are relatively distant from all others (which
instead lie all on the same rigid part). If we then plot the
distance between the farthest point of the neighborhood and
all its fellows we can notice a significant jump (Figure 4-b-
bottom:right). This is not the case for neighborhoods which
span a single rigid part (Figure 4-b-top:right). It is rather

a) b)

Figure 4. How to estimate the correct number of neighbors k in
the LLE algorithm. Non admissible values of k are characterized
by “pathological” neighborhoods (in green) which span distinct
body-parts (middle), in opposition to admissible values (left). The
corresponding distance plots are visible to the right.

natural to choose as correct k any of those values which
yield only “regular” neighborhoods.

Summary of the proposed matching algorithm.
1. (Initialization) Initial values for the assignment matrix ᾱ
are set through out-of-sample extension; then alternate be-
tween:
2. (Maximization) Use Eq. (5) to find an estimate for Q.
Allow the variance to decrease geometrically with σnew =
κσ, 0 < κ < 1;
3. (Expectation) The probabilities αij of each possible as-
sociation (and consequently βj and wj) are evaluated by
computing (3) the Euclidean distance between each xi and
each Qyj [3];
4. (Test) If the entries of Q are stabilized or if σnew ≤ σmin

then terminate, else go to step 2;
5. (MAP) zi = arg maxj,∅{αij , αi∅}.

4. Results
We tested our approach to data association in the context

of articulated object motion. We acquired several image se-
quences using an acquisition system formed by 8 synchro-
nized cameras, e.g., Figure 5. Silhouettes from all view-
points were processed to compute their visual hull. The
moving 3D articulated body (a person) was finally rendered
as a uniformly sampled voxelset.

Tests on point permutations in rigid shapes. In a first
series of experiments, though, we tested the coherence of
the presented EM scheme by measuring its performance
when matching rigid shapes formed by a large number of
points. We applied random permutations to the ordering
of the points of a given voxelset, and ran the algorithm of
Section 3 to estimate the associations. We can compare
them with the enforced ground truth and measure perfor-
mances in terms of percentage of points for which the cor-
rect matching is associated with an αij among the largest
c. We first applied 100 random permutations to a cloud of
1300 data-points to get a second cloud in absence of noise.



Figure 5. From top to bottom: Images associated with cameras #1,
#6, #7, and #8 and the corresponding voxel set. From left to right:
three different poses of a dancer.

Figure 6-top plots the percentage of correct associations
(c = 1) for increasing values of d. We computed the score
for 20 repeated trials, so that the diagram plots the average
score together with the associated standard deviation. Our
EM estimation correctly recovers the imposed permutations
and matches the two datasets. We can also observe that the
higher the value of d the better the matching rate, for differ-
ent values of the LLE regularization term.
We later applied additive Gaussian noise (with variance
comparable to the voxelgrid size) to each data-point after
permuting as before a random subset of points to generate
the second embedded cloud. Figure 6-middle plots the re-
lated matching score for c = k = 13. The method exhibits
remarkable performances even in the presence of noise. It
is quite interesting to notice that in this case the score has a
maximum for 40 ≤ d ≤ 50 and degrades for higher dimen-
sional embeddings.
We also worked out a score which measures the local
isometry of the two shapes after matching. If pose-
invariance holds (ideal case) local neighborhoods of all
points are preserved under optimal matching. If the es-
timated correspondence z is good the neighborhood of
each point Xi of the first shape is mapped to the “same”

Figure 6. Matching score of the EM algorithm as a function of the
dimension d of the embedding space. Lower and higher values of
the regularization factor are compared. Top: In absence of noise
(only permutations of the input data-points). Middle: When apply-
ing additive Gaussian noise to generate the second cloud. Average
and standard deviation over 20 repeated trials are shown. Bot-
tom: Corresponding iso(z): an clear inverse correlation with the
matching score can be noticed.

(preserved) neighborhood in the second shape. Analyt-
ically, iso(z) = maxi=1,...,n maxj∈N(i) |f(Xi,Xj) −
f(Yz(i),Yz(j))|measures over all the neighborhoods of the
first shape, the maximum change of distance between the
central point and its k-neighbors, when the mapping z is
applied. Figure 6-bottom plots iso(z) for the same experi-
ment.



Figure 7. Matching results for pairs of poses coming from a real sequence of voxelsets (a person kicking the air). Top: Four pairs of poses
extracted from the sequence. Middle: Optimal alignments of the corresponding embedded shapes (d = 15 but only the first three dimensions
are shown). All pairs of embedded clouds (in black and color) are perfectly superimposed. Bottom: The related optimal correspondences
are rendered as similar colors for corresponding parts of the body (a number of straight lines representing correspondences between a
random selection of points are also plot).

Tests with real sequences under constrained motion.
In a second series of tests we used sequences of voxelsets
generated by the multi-camera system. Figure 7 pictori-
ally shows typical matching results obtained for a number
of sample poses coming from a sequence of a person kick-
ing the air. For all pairs of clouds most of the points re-
main in roughly the same location, allowing the initializa-
tion through out-of-sample extension to work pretty well.
The results in terms of matching (remember we deal with
1000-2000 points here) are quite impressive.

Dimension of the embedding space. Finally, we an-
alyzed the influence of the embedding dimension parame-
ter on matching performances in the case of real data. We
plotted iso(z) for pairs of poses coming from a sequence
of voxelsets in which a person marches in a rather smooth
way (allowing initialization based on out-of-sample exten-
sion to work). Figure 8 shows that, unlike the simplest case
of pure permutation between data-points, there exist an op-
timal value of d (the number of selected eigenvectors) which
correspond to the inflection point in the plots and varies
according to different relative configurations of the pair of
poses shown on Figure 7. Notice that no such thing is visi-
ble in the typical diagram of the eigenvalues of M reported
in Figure 4.

Figure 8. Matching EM-LLE performances (measured by the
isometry score) plotted versus d for several different pairs of
shapes extracted from a real sequence of voxelsets (Figure 7).

5. Perspectives

In conclusion, we presented an an alternating EM
method, within the framework of model-based clustering,
which matches articulated shapes composed by a large
number of points through alignment in an embedding space.



We focused in particular on LLE which seems to com-
bine good performance with an acceptable computational
cost. Potential applications of such a method are enormous,
and range from graph matching to shape recognition (as a
matching score can be used as a measurement of the simi-
larity of two shapes), to unsupervised (i.e. without knowl-
edge of an underlying dynamical model) articulated track-
ing, to clustering of point trajectories (generated by associ-
ating points along time) for segmentation of body-parts or
actions to be later classified. Concerning the dimension of
the embedding, empirical evidence suggests that working
with real data is qualitatively different from proving state-
ments on the ideal case, and that the higher d the better (at
least for matching). Increasing the dimension, in any case,
does not affect the number of EM iterations. Last but not
least, even though the method has been tested for articu-
lated motion only it is reasonable to conjecture that it could
be extended (under precise assumptions) to some classes of
deformable bodies.
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