

1. Problem Statement

Estimation How can the 3-D position of the binocular fixation-point be estimated from local disparity information?

Representation How should the binocular fixationpoint be represented in the visual system?

2. Assumptions

Calibration Angles between visual rays can be computed from retinal separations.

Fixation The optic axes meet at a point in space.

Perspective We use the standard 'pinhole camera' imaging model.

3. Epipolar Geometry

- Consider a pair of matched points q_{ℓ} and q_r .
- The 3-D scene point must lie on a ray starting at the left optical centre c_{ℓ} , and passing through q_{ℓ} .
- If this ray is projected into the right image, then q_r must lie on the resulting line.
- A similar relation holds for projection of the ray through q_r , and over all matched points.

Figure 1: Left: The ray through q_ℓ projects to an epipolar line in I_r . The matching point q_r is on the line. Right: Orientations of the eyes are incorrectly estimated. The point q_r does not lie on the epipolar line; the (minimum) error is shown in red.

• If the orientations of the eyes are not correctly estimated, then in general, the epipolar geometry will be inconsistent with the configuration of matched points.

- Apply derivative-of-Gaussian filters ∇_{σ} .
- Represent local image structure by 2×2 matrix $S(x,y) = \nabla_{\sigma} I \left(\nabla_{\sigma} I \right)^{\top}.$

- S(x,y) is smoothed at scale τ . The response $C(x,y) = \det S_{\tau} / \operatorname{tr} S_{\tau}$ has maxima at distinctive image-points (q_x, q_y) .
- Consider the colour of I_{ℓ} around q_{ℓ}^{i} , vs. the colour of I_r around q_r^j .
- Difference between the two colours is put into a matching-table, f_{ij} .
- Compute the minima m_{ℓ}^{i} in each row *i*, and m_{r}^{j} in each column j.
- Enforce uniqueness and compatibility, hence $oldsymbol{q}_{\ell}^{i}$ matches q_r^j if $i = m_r^j$, $j = m_\ell^i$, and $f_{ij} < f_{max}$.

Figure 4: The same images with an incorrect epipolar geometry. The number of nonzero point-line distances has increased (more red lines).

A Model of Binocular Gaze Estimation

Miles Hansard & Radu Horaud

INRIA Rhône-Alpes, 655 Avenue de l'Europe, Montbonnot 38334, France.

miles.hansard@inrialpes.fr radu.horaud@inrialpes.fr

5. Examples

• We use the freely available 'Tsukuba' stereo pair.

Figure 2: *Stereo image-pair used in the exper*iments. Example matched points are shown in blue. The fixation point (white) is at infinity.

• In principle we need a data set which includes the left & right images obtained by fixating each scene-point that we test.

• In practice we need only one pair of images. The rotated views can be exactly synthesized by warping the source images.

Figure 3: Top: example of a 'fixating' image pair, with true epipolar lines shown in green. Red lines are nonzero point-line distances, caused by false feature matches.

6. Parameterization

- Orientation of the eyes is determined by the 3-D position of the fixation point p.
- clopean spherical coordinates (α, β, ρ) .

azimuth β , and range ρ .

- Cyclopean azimuth β and range ρ .
- ered in this parameterization.

- gaze parameters.

$$u^2 = \min_{\lambda} |\boldsymbol{q} - (\boldsymbol{q'} + \lambda \boldsymbol{d})|$$

- function must be robust.
- k-th point, the penalty is:

$$E^{k} = \frac{\mu^{2}}{1 + \mu^{2}}.$$

matched points, across both images:

$$E = \frac{1}{2n} \sum_{k}^{n} \left(E_{\ell}^{k} + E_{r}^{k} \right)$$

8. Gaze Localization Results

- Here we show examples of the epipolar cost function E, plotted over the horizontal plane
- The plane is measured in human interocularunits; this means that $z_{50} \sim 50 \times 63$ mm = 3.15 m.

- Our results suggest that the error function E is
- The global minimum, over the present parameter

- We estimate the Hessian by fitting a quadratic basin to the minimum of the cost function E(x, z). The trace of the inverse-Hessian was used as a

• Uncertainty increases rapidly with the range of the fixation-point, ρ .

Figure 8: Log-uncertainty of the gazeestimate for 50 fixations. A linear fit is shown in red.

• This means that it becomes unfeasible to estimate the range of distant fixation-points from geometric information.

10. Biological Relevance

Epipolar Transformations Each epipolar geometry defines a 'flow field' of disparity, cf. fig. 3. The analogous motion fields are known to be effective stimuli in area MST. We suggest that widefield binocular extra-striate mechanisms may be tuned to epipolar transformations.

Gaze Representation The binocular gaze-point could be represented in a 2-D topographic map, cf. fig. 7. We have shown that the uncertainty of the gaze estimate increases as a function of fixation-distance. Hence we expect more neural resolution for nearby visual space.

11. Future Work

Theory We intend to analyze the structure of the cost function, and to investigate any geometric ambiguities.

Matching We will replace the matching procedure by a biologically plausible method, using phaseshifted binocular filters.

Control We plan to use a binocular robot-head to test a gaze-control strategy based on these ideas.

12. Acknowledgments

This work is part of the *Perception on Purpose* project, supported by EU grant 027268.