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Two new Bayesian approximations of belief

functions based on convex geometry

Fabio Cuzzolin

Abstract

In this paper we analyze from a geometric point of view the meaningful relations which take

place between a belief function and the set of probability functions, in the framework of the geometric

approach to the theory of evidence. Starting from the case ofbinary domains, we identify and study the

three major geometric entities that relate a generic belieffunction to the set of probabilitiesP: the dual

line connecting belief and plausibility functions, the orthogonal complement ofP, and the simplex of

consistent probabilities. These are in turn associated with different probability measures which depend

on the original belief function. We describe in particular geometry and properties of the orthogonal

projection of a belief function ontoP and the intersection probability, provide their interpretations in

terms of degrees of belief, and discuss their behavior with respect to convex closure.

Index Terms

Theory of evidence, geometric approach, Bayesian belief functions, intersection probability, orthog-

onal projection, commutativity.

I. I NTRODUCTION

Uncertainty measures have a major role in fields like artificial intelligence, where problems

requiring formalized reasoning are common. The theory of evidence is one of the most popular

among those formalisms, thanks perhaps to its nature of quite natural extension of the classical

Bayesian methodology. Indeed, the notion ofbelief function(b.f.) [1] generalizes that of finite

probability, with classical probabilities forming a subclassP of b.f. called Bayesian belief

functions.
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The interplay of belief and Bayesian functions is of course ofgreat interest in the theory

of evidence. In particular, many people worked on the problem of finding a probabilistic or

possibilistic [2] approximation of an arbitrary belief function. A number of papers [3], [4],

[5], [6] have been published on this issue (see [7], [8], [9] for a review), mainly in order

to find efficient implementations of the rule of combination aiming to reduce the number of

focal elements. Tessem [10], for instance, incorporated only the highest-valued focal elements

in his mklx approximation; a similar approach inspired thesummarizationtechnique formulated

by Lowranceet al. [11]. The connection between belief functions and probabilities is as well

the basement of a popular approach to the theory of evidence,Smets’ pignistic model [12],

in which beliefs are represented at credal level, while decisions are made by resorting to a

Bayesian belief function calledpignistic transformation[13]. On his side, in his 1989 paper

[14] F. Voorbraak proposed to adopt the so-calledrelative plausibility function p̃lb, the unique

probability that, given a belief functionb with plausibility plb, assigns to each singleton its

normalized plausibility. He proved that̃plb is a perfect representative ofb when combined with

other probabilities,̃plb ⊕ p = b⊕ p ∀p ∈ P. Cobb and Shenoy [15], [16], [17] also analyzed the

properties of the relative plausibility of singletons [18]and discussed its nature of probability

function that is equivalent to the original belief function.

The study of the interplay between belief functions and probabilities has also been posed in

a geometric setup [19], [20], [21]. P. Black, in particular, dedicated his doctoral thesis to the

study of the geometry of belief functions and other monotonecapacities [21]. An abstract of his

results can be found in [20], where he uses shapes of geometric loci to give a direct visualization

of the distinct classes of monotone capacities. In particular a number of results about lengths of

edges of convex sets representing monotone capacities are given, together with theirsizemeant

as the sum of those lengths.

Another close reference is perhaps a work [19] of Ha and Haddawy where they propose an

“affine operator” which can be considered a generalization of both belief functions and interval

probabilities, and can be used as a tool for constructing convex sets of probability distributions.

Uncertainty is modeled as sets of probabilities represented as “affine trees”, while actions

(modifications of the uncertain state) are defined as tree manipulators. A small number of

properties of the affine operator are also presented. In a later work [22] they presented the interval

generalization of the probability cross-product operator, called convex-closure (cc) operator. They
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analyzed the properties of the cc-operator relative to manipulations of sets of probabilities, and

presented interval versions of Bayesian propagation algorithms based on it. Probability intervals

were represented in a computationally efficient fashion, bymeans of a data structure calledpcc-

tree, in which branches are annotated with intervals, and nodes with convex sets of probabilities.

On our side, in a series of recent works [23], [24], [25] we proposed a geometric interpretation

of the theory of evidence in which belief functions are represented as points of a simplex called

belief space[23]. As a matter of fact, as a belief functionb : 2Θ → [0, 1] is completely specified

by its N
.
= 2|Θ| − 1 belief values{b(A), A ⊂ Θ, A 6= ∅}, it can be represented as a point of the

Cartesian spaceRN−1.

In this framework many different uncertainty descriptionslike upper and lower probabilities,

belief functions, possibility measures can be studied in anunified fashion.

In this paper we use tools provided by the geometric approach(Section III) to study the

interplay of belief and Bayesian functions in the framework of the belief space. We introduce

two new probabilities related to a belief function, both of them derived from purely geometric

considerations. We thoroughly discuss their interpretation and properties, and their relations with

the other known Bayesian approximations of belief functions, i.e. pignistic function and relative

plausibility of singletons.

A. Paper outline

More precisely, we first look for an insight by considering the simplest case in which the

frame of discernment has only two elements (Section IV). It turns out that each belief function

b is associated with three different geometric entities, namely the line(b, plb) joining b with the

related plausibility functionplb, the orthogonal complementP⊥ of the probabilistic subspaceP,

and the simplex of consistent probabilitiesP[b] = {p ∈ P : p(A) ≥ b(A) ∀A ⊂ Θ}. These in

turn determine three different probabilities associated with b, i.e. theorthogonal projectionπ[b]

of b ontoP, the barycenter ofP[b] or pignistic functionBetP [b], and theintersection probability

p[b]. In the binary case all those Bayesian functions coincide.

In Section V we prove that, even though the line(b, plb) is always orthogonal toP, it does

not intersect in general the Bayesian region. However, it does intersect the region of Bayesian

normalized sum functions(n.s.f.), i.e. the natural generalizations of belief functions obtained by

relaxing the positivity constraint for b.p.a.s: This intersection yields a Bayesian n.s.f.ς[b].
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In Section VI we will see thatς[b] is in turn naturally associated with a Bayesian belief function

p[b], which we call intersection probability. We will give two different interpretations of the way

in which this probability distributes the masses of the focal elements onb to the elements of

Θ, both depending on the difference between plausibility andbelief of singletons. We will also

compare the combinatorial and geometric behavior ofp[b] with those of pignistic function and

relative plausibility of singletons.

Section VII will instead be devoted to the study of the orthogonal projection ofb onto the

probability simplexP. We will show thatπ[b] always exists and is indeed a probability function.

After precising the condition under which a b.f.b is orthogonal toP we will give two equivalent

expressions of the orthogonal projection. We will see thatπ[b] can be reduced to another

probability signaling the distance ofb from orthogonality, and that this “orthogonality flag” can

be in turn interpreted as the result of a mass redistributionprocess analogous to that associated

with the pignistic transformation. We will prove that, asBetP [b] does,π[b] commutes with the

convex combination operator, and can therefore be expressed as a convex combination of basis

pignistic functions, confirming the strict relation between π[b] andBetP [b].

In Section VIII we will conduct an analytic comparison between the two functions introduced

here by comparing their expressions as convex combinations, and formulate the condition under

which they coincide. For sake of completeness we will discuss the case ofunnormalizedbelief

functions (u.b.f.) and argue that, whilep[b] is not defined for a generic u.b.f.b, π[b] exists and

retain its properties.

To improve the readability of the paper the proofs of all major results have been moved to

an appendix.

II. T HE THEORY OF EVIDENCE

The theory of evidence[1] was introduced in the late Seventies by Glenn Shafer as a way of

representing epistemic knowledge, starting from a sequence of seminal works [26], [27], [28],

of Arthur Dempster. In this formalism the best representation of chance is abelief function(b.f.)

rather than a Bayesian mass distribution, assigning probability values to setsof possibilities

rather than single events.

Definition 1: A basic probability assignment(b.p.a.) over a finite set (frame of discernment
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[1]) Θ is a functionm : 2Θ → [0, 1] on its power set2Θ = {A ⊂ Θ} such that

m(∅) = 0,
∑

A⊂Θ

m(A) = 1, m(A) ≥ 0 ∀A ⊂ Θ.

Subsets ofΘ associated with non-zero values ofm are calledfocal elements.

Definition 2: Thebelief functionb : 2Θ → [0, 1] associated with a basic probability assignment

m on Θ is defined as:

b(A) =
∑

B⊂A

m(B).

Conversely, the unique basic probability assignmentmb associated with a given belief function

b can be recovered by means of theMoebius inversion formula

mb(A) =
∑

B⊂A

(−1)|A−B|b(B) (1)

so that there is a 1-1 correspondence between the two set functions mb ↔ b. In the theory of

evidence a probability function is simply a peculiar belieffunction assigning non-zero masses

to singletons only (Bayesianb.f.): mb(A) = 0, |A| > 1.

A dual mathematical representation of the evidence encodedby a belief functionb is the

plausibility function(pl.f.)

plb : 2Θ → [0, 1]

A 7→ plb(A)

where the plausibilityplb(A) of an eventA is given by

plb(A)
.
= 1 − b(Ac) = 1 −

∑

B⊂Ac

mb(B) (2)

whereAc denotes the complement ofA in Θ.

For each eventA plb(A) expresses the amount of evidencenot againstA. plb conveys as much

information asb, and can be computed from the b.p.a. asplb(A) =
∑

B∩A 6=∅ mb(B) ≥ b(A).

III. G EOMETRY OF BELIEF AND PLAUSIBILITY FUNCTIONS

A. Belief space

Motivated by the search for a meaningful probabilistic approximation of belief functions we

introduced the notion ofbelief space([23], [29], [25]), as the space of all the belief functions

we can define on a given domain1. Consider a frame of discernmentΘ and introduce in the

1Several notations in this paper have been changed with respect to other previous works, in order to adopt a more standard

symbology for belief and plausibility functions.
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Cartesian spaceRN−1, N = 2|Θ| an orthonormal reference frame{XA : A ⊂ Θ, A 6= ∅} (note

that∅ is not included). Each vectorv =
∑

A⊂Θ,A 6=∅ vAX(A) in R
N−1 is then potentially a belief

function, in which each componentvA measures the belief value ofA: vA = b(A). Not every

such vectorv ∈ R
N−1, however, represents a valid b.f.

Definition 3: Thebelief spaceassociated withΘ is the set of pointsBΘ of R
N−1 corresponding

to a belief function.

We will assume the domainΘ fixed, and denote the belief space withB. To determine which

points of “are” belief functions we can exploit the Moebius inversion lemma (1), by computing

the corresponding b.p.a. and checking the axiomsmb must obey. It is not difficult to prove (see

[30] for the details) thatB is convex. Let us call

bA
.
= b ∈ B s.t. mb(A) = 1, mb(B) = 0 ∀B 6= A

the unique belief function assigning all the mass to a singlesubsetA of Θ (A-th basis belief

function). It can be proved that [30], denoting withEb the list of focal elements ofb,

Theorem 1:The set of all the belief functions with focal elements in a given collectionL is

closed and convex inB:

{b : Eb ⊂ L} = Cl(bA : A ∈ L)

whereCl denotes the convex closure operator:

Cl(b1, ..., bk) =
{

b ∈ B : b = α1b1 + · · · + αkbk,
∑

i

αi = 1, αi ≥ 0 ∀i
}

. (3)

The following is then just a consequence of Theorem 1.

Corollary 1: The belief spaceB coincides with the convex closure of all the basis belief

functionsbA,

B = Cl(bA, A ⊂ Θ, A 6= ∅). (4)

The convex space delimited by a collection of points is called simplex: Figure 1 illustrates the

simplicial form ofB. Moreover, each belief functionb ∈ B can be written as a convex sum as

b =
∑

A⊂Θ, A 6=∅

mb(A)bA. (5)

Geometrically, the b.p.a.mb is nothing but the set of coordinates ofb in the simplexB.

Clearly, since a probability is a belief function assigning non zero masses to singletons only,

Theorem 1 implies that
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b
Θ

bx

b

P

by

b A

B

Fig. 1. Simplicial structure of the belief spaceB: its vertices are all the basis belief functionsbA represented as vectors of

R
N−1. The probabilistic subspace is just a subsetCl(bx, x ∈ Θ) of its border.

Corollary 2: The setP of all the Bayesian belief functions onΘ is a subset of the border of

B, precisely the simplex determined by all the basis functions associated with singletons2:

P = Cl(bx, x ∈ Θ).

The interpretation of belief functions as convex sets of probabilities also fits in this framework,

as the credal sets [31]{p ∈ P : p(A) ≥ b(A) ∀A ⊂ Θ} are nothing but simplices inP [25].

B. Plausibility space

As plausibility functions are also completely determined by their N − 1 valuesplb(A), A ⊂

Θ, A 6= ∅ on the power set ofΘ, they too can be seen as vectors ofR
N−1. We can then call

plausibility spacethe regionPL of R
N−1 whose points correspond to admissible plausibility

functions

PL = {v ∈ R
N−1 : ∃plb : 2Θ → [0, 1] s.t. vA = plb(A) ∀A ⊂ Θ, A 6= ∅}.

In [24] we proved that

2With a harmless abuse of notation we will denote the basis belief function associated with a singletonx by bx instead of

b{x}. Accordingly we will writemb(x), plb(x) instead ofmb({x}), plb({x}).

January 18, 2007 DRAFT



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS B, VOL. XX, NO. Y, MONTH 2007 8

Proposition 1: PL is a simplexPL = Cl(plA, A ⊂ Θ, A 6= ∅), whose vertices are

plA = −
∑

B⊂A

(−1)|B|bB. (6)

The vertexplA of the plausibility space turns out to be the plausibility vector associated with

the basis belief functionbA, plA = plbA
. Again, every plausibility vectorplb can be uniquely

expressed as a combination of the basis belief functionsbA. We have that3

plb =
∑

B⊂Θ

plb(B)XB =
∑

B⊂Θ

plb(B) ·
∑

A⊃B

bA(−1)|A\B| =
∑

A⊂Θ

bA

(

∑

B⊂A

(−1)|A\B|plb(B)
)

(since by Moebius transformXB =
∑

A⊃B bA · (−1)|A\B|) which yields

plb =
∑

A⊂Θ

µb(A)bA (7)

where (see [24])

µb(A)
.
=

∑

B⊂A

(−1)|A\B|plb(B) = (−1)|A|+1
∑

B⊃A

mb(B), A 6= ∅ (8)

(µb(∅) = 0) is the Moebius inverse of the plausibility function, called basic plausibility assign-

ment(b.pl.a.). The Bayesian regionP = Cl(bx, x ∈ Θ) is part of the border of both belief and

plausibility spaces.

C. Normalized sum functions

It may be confusing to think of belief and plausibility functions as points of the same Cartesian

space. However, this is a simple consequence of the fact thatboth are defined on the same domain,

the power set ofΘ. As Θ is finite they can both be seen as real-valued vectors with thesame

numberN − 1 = 2|Θ| − 1 of components.

Furthermore, as belief and plausibility spaces do not exhaust the wholeR
N−1 it is natural to

wonder whether points “outside” them have any meaningful interpretation in this framework

[30]. In fact, following the same principle, each vectorv = [v1, ..., vA, ..., vΘ]′ ∈ R
N−1 can be

thought of as a functionς : 2Θ \ ∅ → R s.t. ς(A) = vA. As the Moebius transformation is

invertible, for each of these functionsς there always exists another functionmς : 2Θ \ ∅ → R

such that

ς(A) =
∑

B⊂A

mς(B)

3Note thatplb(∅) = 0 so that the expression is well defined even thoughX∅ does not exist.
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i.e. eachvectorς of R
N−1 can be thought of as asum function(see [32] for a brief introduction).

However,mς does not in general meet the positivity constraintmς(A) ≥ 0 ∀ A ⊂ Θ.

The section{v ∈ R
N−1 : vΘ = 1} of R

N−1 corresponds to the constraintς(Θ) = 1, so that all

the points of this section are sum functions meeting the normalization axiom,

∑

A⊂Θ

mς(A) = 1

or normalized sum functions(n.s.f.). n.s.f are the natural extensions of belief functions in

this geometric framework. Analogously to the case of belieffunctions, we can callBayesian

normalized sum functionsthe n.s.f.ς such that

∑

x∈Θ

mς(x) = 1. (9)

IV. B ELIEF AND PROBABILITY IN THE BINARY CASE

It may be helpful to visually render these concepts in a simple example. Figure 2 shows the

geometry of belief and plausibility spaces for a binary frame Θ2 = {x, y}. As |Θ| = 2 b.f. and

pl.f. “are” vectors[vx, vy, vΘ]′ of a space withN − 1 = 22 − 1 = 3 dimensions. However, since

b(Θ) = plb(Θ) = 1 for all b, we can neglect the componentvΘ ≡ 1 and represent belief and

plausibility vectors as points of a plane with coordinates

b = [b(x) = mb(x), b(y) = mb(y)]′

plb = [plb(x) = 1 − mb(y), plb(y) = 1 − mb(x)]′

respectively. In this case the b.pl.a. ofb is µb(x) = (−1)2
∑

B⊃x mb(B) = mb(x) + mb(Θ) =

plb(x), µb(y) = (−1)2
∑

B⊃y mb(B) = mb(y) + mb(Θ) = plb(y) andplb = plb(x)bx + plb(y)by.

We can notice that the two simplices are symmetric with respect to the Bayesian regionP.

Furthermore, each pair of functions(b, plb) determines a line which isorthogonalto P, where

b andplb lie on symmetric positions on the two sides of the Bayesian region.

Let us denote witha(v1, .., vk) the affine subspace of some Cartesian spaceR
m generated by

the pointsv1, ..., vk ∈ R
m, i.e. the set{v ∈ R

m : v = α1v1 + · · · + αkvk,
∑

i αi = 1}.

In the binary case the planeR2 in which B,PL lie is the affine space of the normalized sum

functions onΘ2. The regionP ′ of all the Bayesian n.s.f. is obviously (recalling Equation (9))

the line

P ′ = {ς ∈ R
2 : mς(x) + mς(y) = 1} = a(P)
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b =[0,0]'Θ

pl =[1,1]'
Θb =[0,1]'=ply

p[b]=π[b]=BetP[b]

y

b =[1,0]'=pl
x x

b

plb

B

PL

P

m (x)

m (y)

1−m (x)

1−m (y)

~

b
~

plb

P[b]
b

b

b b

P'

Fig. 2. In a binary frameΘ2 = {x, y} both beliefB and plausibility spacePL are simplices with vertices{bΘ = [0, 0]′, bx =

[1, 0]′, by = [0, 1]′} and{plΘ = [1, 1]′, plx = bx, ply = by} respectively. A belief functionb and the corresponding plausibility

function plb are always located in symmetric positions with respect to the setP of probabilities onΘ. The associated relative

plausibility p̃lb and beliefb̃ of singletons are shown as the intersections of the probabilistic subspace with the line joiningplb

andbΘ = [0, 0]′ and the line passing throughb andbΘ respectively. The other Bayesian functions related tob all coincide with

the center of the segment of consistent probabilitiesP[b].

and coincides with the affine spacea(P) = a(bx, x ∈ Θ) generated byP.

Consider now the set of probabilitiesP[b] dominating b (consistentprobabilities), i.e. the

Bayesian b.f. such thatp(A) ≥ b(A) ∀A ⊂ Θ. In the simple binary case the probabilities

consistent withb form a segment (1-dimensional simplex) inP (see Figure 2 again), whose

center of mass is well known [33], [34], [24] to be Smets’pignistic function([35], [36], [15])

BetP [b] =
∑

x∈Θ

bx

∑

A⊃x

mb(A)

|A|
= bx ·

(

mb(x) +
mb(Θ)

2

)

+ by ·
(

mb(y) +
mb(Θ)

2

)

. (10)

We can notice however that it also coincides with the orthogonal projectionπ[b] of b onto P,

and the intersectionp[b] of the linea(b, plb) with the Bayesian simplexP:

p[b] = π[b] = BetP [b] = P[b].
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Epistemic concepts like consistency and pignistic transformation seem then to be related to

geometric properties such as orthogonality. It is natural to wonder if this is true in the general

case, or is just an artifact of the binary frame.

It is worth to notice, incidentally, that therelative plausibility of singletons̃plb

p̃lb(x)
.
=

plb(x)
∑

y∈Θ

plb(y)
, (11)

even though it is consistent withb, doesnot follow the same scheme. The same can be said of

the relative belief of singletons, i.e. the Bayesian function

b̃(x)
.
=

mb(x)
∑

y∈Θ

mb(y)

assigning to each singletonx its normalized mass (see Figure 2 again). We will consider their

behavior separately in the near future [37].

In the following we will study each of these geometric entities related tob, in particular the line

a(b, plb), and the orthogonal complement ofP. We will provide a unified picture of the geometric

interplay of belief and probability by studying the properties of two Bayesian functions derived

from geometrical considerations, the orthogonal projection π[b] and the intersection probability

p[b]. We will compare them with both the pignistic function and the relative plausibility of

singletons, and with each other. We will provide interpretations of π[b], p[b] in terms of degrees

of belief, and discuss (in the case of the orthogonal projection) their behavior with respect to

convex combination.

V. GEOMETRY OF THE DUAL LINE

Let us then first study thedual line connecting a pair of belief and plausibility measures

supporting the same evidence. As a matter of fact, orthogonality turns out to be a general

feature ofa(b, plb). As we just saw in the binary caseb(Θ) = plb(Θ) = 1 ∀b, so that we can

considerb, plb as points ofRN−2.

A. Orthogonality

Let us consider the affine subspacea(P) = a(bx, x ∈ Θ) generated by the simplex of Bayesian

belief functions. This can be written as the translated version of a vector space

a(P) = bx + span(by − bx,∀y ∈ Θ, y 6= x),
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wherespan(by − bx) denotes the vector space generated by then− 1 vectorsby − bx (n = |Θ|).

After remembering that, by definition,

bB(A) =







1 A ⊃ B

0 else
(12)

we can see that these vectors show a rather peculiar symmetry

by − bx(A) =



















1 A ⊃ {y}, A 6⊃ {x}

0 A ⊃ {x}, {y} or A 6⊃ {x}, {y}

−1 A 6⊃ {y}, A ⊃ {x}

(13)

that can be usefully exploited.

Lemma 1: [by − bx](A
c) = −[by − bx](A) ∀A ⊂ Θ.

Proof: Following (12) we can appreciate that

[by − bx](A) = 1 ⇒ A ⊃ {y}, A 6⊃ {x} ⇒ Ac ⊃ {x}, Ac 6⊃ {y} ⇒ [by − bx](A
c) = −1

and vice-versa, while[by − bx](A) = 0 ⇒ A ⊃ {y}, A ⊃ {x} or A 6⊃ {y}, A 6⊃ {x}.

In the first caseAc 6⊃ {x}, {y}, in the second oneAc ⊃ {x}, {y}; therefore in both cases

[by − bx](A
c) = 0.

Theorem 2:The line connectingplb andb in R
N−2 is orthogonal to the affine space generated

by the probabilistic simplex, i.e.b − plb⊥a(P).

Proof: 4 Having denoted withXA the A-th axis of the orthonormal reference frame{XA :

A 6= Θ, ∅} in R
N−2 (see Section III), we can write their difference as

plb − b =
∑

A⊂Θ,A 6=Θ,∅

[plb(A) − b(A)]XA

where
[plb − b](Ac) = plb(A

c) − b(Ac) = 1 − b(A) − b(Ac) =

= 1 − b(Ac) − b(A) = plb(A) − b(A) = [plb − b](A).
(14)

The scalar product〈·, ·〉 between the vectorplb − b and the basis vectors ofa(P) is

〈plb − b, by − bx〉 =
∑

A⊂Θ,A 6=Θ,∅

[plb − b](A) · [by − bx](A)

4In fact the proof is valid forA = Θ, ∅ too.
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which by Equation (14) becomes

∑

|A|≤⌊|Θ|/2⌋,A 6=∅

[plb − b](A)
{

[by − bx](A) + [by − bx](A
c)

}

whose addenda are all nil by Lemma 1.

B. Intersection with the region of Bayesian normalized sum functions

One might be tempted to conclude that, sincea(b, plb) and P are always orthogonal, their

intersectionis the orthogonal projection ofb ontoP as in the binary case. Unfortunately, this is

not the case for in general theydo not intersecteach other.

As a matter of factb andplb belong to aN − 2 = (2n − 2)-dimensional Euclidean space, while

the dimension ofP is only n− 1. If n = 2, n− 1 = 1 and2n − 2 = 2 so thata(P) divides the

plane into two half-planes withb on one side andplb on the other side (see Figure 2 again).

Formally, for a point on the linea(b, plb) to be a probability we need to find a value ofα such

that b + α(plb − b) ∈ P. Its components obviously areb(A) + α[plb(A) − b(A)] for any subset

A ⊂ Θ, A 6= Θ, ∅ and in particular, whenA = {x} is a singleton,

b(x) + α[plb(x) − b(x)] = b(x) + α[1 − b(xc) − b(x)]. (15)

A necessary condition for this point to belong toP is the normalization constraint for singletons,

∑

x∈Θ

b(x) + α ·
∑

x∈Θ

(1 − b(xc) − b(x)) = 1 ⇒ α =
1 −

∑

x∈Θ b(x)
∑

x∈Θ(1 − b(xc) − b(x))
.
= β[b] (16)

which yields a single candidate valueβ[b] for the line coordinate of the intersection.

Using the terminology of Section III-C, the candidate projection

ς[b]
.
= b + β[b](plb − b) = a(b, plb) ∩ P ′ (17)

(having calledP ′ the set of all the Bayesian n.s.f. inRN−2) is a Bayesian n.s.f., but is not guaran-

teed to be a Bayesianbelief function. For normalized sum functions, condition
∑

x∈Θ mς(x) = 1

implies
∑

|A|>1 mς(A) = 0, so thatP ′ can be written as

P ′ =
{

ς =
∑

A⊂Θ

mς(A)bA ∈ R
N−2 :

∑

|A|=1

mς(A) = 1,
∑

|A|>1

mς(A) = 0
}

. (18)
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Theorem 3:The coordinates ofς[b] with respect to the basis Bayesian belief functions{bx, x ∈

Θ} can be expressed in terms of the basic probability assignment mb of b as follows:

mς[b](x) = mb(x) + β[b]
∑

A⊃x,A 6=x

mb(A) (19)

where

β[b] =
1 −

∑

x∈Θ mb(x)
∑

x∈Θ

(

plb(x) − mb(x)
) =

∑

|B|>1 mb(B)
∑

|B|>1 mb(B)|B|
. (20)

Proof: The numerator of Equation (16) is trivially
∑

|B|>1 m(B). On the other side

1 − b(xc) − b(x) =
∑

B⊂Θ

mb(B) −
∑

B⊂xc

mb(B) − mb(x) =
∑

B⊃x,B 6=x

mb(B)

so that the denominator ofβ[b] becomes
∑

y∈Θ

[plb(y) − b(y)] =
∑

y∈Θ

(1 − b(yc) − b(y)) =
∑

y∈Θ

[

∑

B⊂Θ

mb(B) −
∑

B⊂yc

mb(B) −
∑

B⊂y

mb(B)
]

=

=
∑

y∈Θ

∑

B⊃y,B 6=y

mb(B) =
∑

|B|>1

mb(B)|B|.

Equation (19) ensures thatmς[b](x) is positive for eachx ∈ Θ. Its symmetric version can be

obtained after realizing that
P

|B|=1
mb(B)P

|B|=1
mb(B)|B|

= 1, so that we can write

mς[b](x) = b(x) ·

∑

|B|=1 mb(B)
∑

|B|=1 mB(B)|B|
+ [plb − b](x) ·

∑

|B|>1 mb(B)
∑

|B|>1 mb(B)|B|
. (21)

It is easy to prove that the linea(b, plb) intersects the probabilistic subspaceonly for 2-additive

belief functions(the proof can be found in the Appendix).

Theorem 4:ς[b] ∈ P iff b is 2-additive, i.e.mb(A) = 0 |A| > 2, and in this caseplb is the

reflection ofb throughP.

In other words, for 2-additive belief functionsς[b] is nothing but themean probabilityfunction
b+plb

2
. In the general case, instead, the reflection ofb throughP not only does not coincide with

plb, but it is not even a plausibility function [38].

VI. I NTERSECTION PROBABILITY

We have seen that the linea(b, plb) is always orthogonal toP, even in the general case.

However,(b, plb) does not intersect the probabilistic subspace, in general,but it does intersect the

region of Bayesian normalized sum functions inς[b] (17). But of course (since
∑

x mς[b](x) = 1)
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p[b]

π[b]

b

P' a(P)

P

ς[b]

plb

a(b,pl )
b

Fig. 3. The geometry of the linea(b, plb) and the relative locations ofp[b], ς[b] and π[b]. Each b.f.b and the related pl.f.

plb lie on opposite sides of the hyperplaneP ′ of the Bayesian n.s.f. which dividesRN−2 into two parts. The linea(b, plb)

connecting them always intersectsP ′, but not necessarilya(P) (vertical line). This intersectionς[b] is naturally associated with

a probabilityp[b] (in general distinct from the orthogonal projectionπ[b] of b ontoP), having the same components in the base

{bx, x ∈ Θ} of a(P). P is a simplex (a segment in the figure) ina(P): π[b] andp[b] are both “true” probabilities.

ς[b] is naturally associated with a Bayesianbelief function, assigning an equal amount of mass

to each singleton and 0 to eachA : |A| > 1, namely

p[b]
.
=

∑

x∈Θ

mς[b](x)bx (22)

wheremς[b](x) is given by Equation (19). It is easy to see thatp[b] is a probability, since by

definition mp[b](A) = 0 for |A| > 1, mp[b](x) = mς[b](x) ≥ 0 ∀x ∈ Θ, and
∑

x∈Θ mp[b](x) =
∑

x∈Θ mς[b](x) = 1 by construction. The geometry ofς[b] andp[b] with respect to the regions of

Bayesian b.f and n.s.f. is sketched in Figure 3.

A. Interpretations

1) Non-Bayesianity flag and relative plausibility:A first interpretation of this new probability

is immediate after noticing that

β[b] =
1 −

∑

x∈Θ mb(x)
∑

x∈Θ plb(x) −
∑

x∈Θ mb(x)
=

1 − kb̃

kp̃lb
− kb̃

.

January 18, 2007 DRAFT



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS B, VOL. XX, NO. Y, MONTH 2007 16

where

kb̃ =
∑

x∈Θ

mb(x) kp̃lb
=

∑

x∈Θ

plb(x) =
∑

A⊂Θ

mb(A)|A|

are the normalization factors for̃b, p̃lb respectively, so thatp[b] can be rewritten as

p[b](x) = mb(x) + (1 − kb̃)
plb(x) − mb(x)

kp̃lb
− kb̃

. (23)

When b is Bayesian,plb(x) − mb(x) = 0 ∀x ∈ Θ. If b is not Bayesian, there exists at least a

singletonx such thatplb(x) − mb(x) > 0. The Bayesian belief function

R[b](x)
.
=

∑

A⊃x,A 6=x mb(A)
∑

|A|>1 mb(A)|A|
=

plb(x) − mb(x)
∑

y∈Θ

(

plb(y) − mb(y)
)

measures then the relative contribution of each singletonx to the non-Bayesianity ofb. Equation

(23) shows in fact that the non-Bayesian mass1 − kb̃ is assigned byp[b] to each singleton

according to its relative contributionR[b](x) to the non-Bayesianity ofb.

The flag probabilityR[b] also relates the intersection probabilityp[b] to other two classical

Bayesian approximations, the relative plausibilityp̃lb and belief̃b of singletons, as (23) reads as

p[b] = kb̃b̃ + (1 − kb̃)R[b]. (24)

Geometrically, sincekb̃ =
∑

x∈Θ mb(x) ≤ 1, p[b] belongs to the segment linkingR[b] with the

relative belief of singletons̃b, with convex coordinate the total mass of singletonskb̃. On the

other side, the relative plausibility function can also be written in terms ofb̃ and R[b] as, by

definition,

R[b](x) =
plb(x) − mb(x)

kp̃lb
− kb̃

=
plb(x)

kp̃lb
− kb̃

−
mb(x)

kp̃lb
− kb̃

= p̃lb(x)
kp̃lb

kp̃lb
− kb̃

− b̃(x)
kb̃

kp̃lb
− kb̃

sincep̃lb(x) = plb(x)/kp̃lb
and b̃(x) = mb(x)/kb̃, so that

p̃lb =
( kb̃

kp̃lb

)

b̃ +
(

1 −
kb̃

kp̃lb

)

R[b].

This means that both̃plb also belongsCl(R[b], b̃). However, askp̃lb

.
=

∑

A⊂Θ mb(A)|A| ≥ 1,

kb̃/kp̃lb
≤ kb̃ which in turn implies thatp[b] is closer toR[b] than the relative plausibility function

p̃lb (see Figure 4). The convex coordinate ofp̃lb in Cl(R[b], b̃) measures the ratio between total

mass and plausibility of singletons. Obviously whenkb̃ = 0 (b̃ does not exists)p[b] = p̃lb = R[b]

by Equation (23).

January 18, 2007 DRAFT



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS B, VOL. XX, NO. Y, MONTH 2007 17

b

P

p[b]
R[b]

bpl
~ ~

Fig. 4. Geometric location ofp[b] and relative plausibility of singletons with respect to the non-Bayesianity flag. They both

lie on the segment joiningR[b] with the relative belief of singletons̃b, but p̃lb is closer tob̃ thanp[b].

2) Meaning of the ratioβ[b] and pignistic function:To shed more light onp[b] and get an

alternative interpretation of this probability it may be useful to comparep[b] as expressed in

Equation (23) with another classical Bayesian “relative” ofb, the pignistic function

BetP [b](x) =
∑

A⊃x

mb(A)

|A|
= mb(x) +

∑

A⊃x,A 6=x

mb(A)

|A|
.

We can notice that inBetP [b] the mass of each eventA, |A| > 1 is consideredseparately, and

its massmb(A) is equallyshared among the elements ofA. In p[b], instead, it is thetotal mass
∑

|A|>1 mb(A) = 1− kb̃ of non-singletons which is considered, and this total mass is distributed

proportionally to their non-Bayesian contribution to each element ofΘ.

How shouldβ[b] be interpreted then? If we writep[b](x) as

p[b](x) = mb(x) + β[b](plb(x) − mb(x)) (25)

we can observe that a fraction measured byβ[b] of its non-Bayesian contributionplb(x)−mb(x)

is uniformly assigned to each singleton. This leads to another parallelism betweenp[b] and

BetP [b]. It suffices to note that, if|A| > 1,

β[bA] =

∑

|B|>1 mb(B)
∑

|B|>1 mb(B)|B|
=

1

|A|

so that bothp[b](x) andBetP [b](x) assume the form

mb(x) +
∑

A⊃x,A 6=x

mb(A)βA,

whereβA = const = β[b] for p[b], while βA = β[bA] in case of the pignistic function.

January 18, 2007 DRAFT



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS B, VOL. XX, NO. Y, MONTH 2007 18

Under which conditionp[b] and pignistic function coincide? A necessary and sufficientcon-

dition can be achieved by decomposingβ[b] as

β[b] =

∑

|B|>1 mb(B)
∑

|B|>1 mb(B)|B|
=

∑n
k=2

∑

|B|=k mb(B)
∑n

k=2 k ·
∑

|B|=k mb(B)
=

Σ2 + · · · + Σn

2Σ2 + · · · + nΣn
(26)

after definingΣk
.
=

∑

|B|=k mb(B).

Theorem 5:p[b] and pignistic function coincide iff∃ k ∈ [2, ..., n] such thatΣi = 0 ∀ i 6= k,

i.e. the focal elements ofb have size 1 ork only.

Proof: p[b] = BetP [b] is equivalent to

mb(x) +
∑

A⊃x,A 6=x

mb(A)β[b] = mb(x) +
∑

A⊃x,A 6=x

mb(A)

|A|
≡

∑

A⊃x,A 6=x

mb(A)β[b] =
∑

A⊃x,A 6=x

mb(A)

|A|

but that meansβ[b] = 1/|A| for all A ⊃ x,A 6= x. Sinceβ[b] does not depend on|A|, this can

be true only if∃ k : mb(A) = 0 for |A| 6= k, andβ[b] = 1/k. But this is equivalent toΣi = 0

for i 6= k, in which caseβ[b] = Σk

kΣk
= 1/k.

In particular this is true whenΣi = 0, i > 2, i.e. whenb is 2-additive. The condition of Theorem

5 is in fact a rather straightforward generalization of the concept of 2-additivity.

3) Example: Let us see a simple example to briefly discuss the two interpretations ofp[b]

introduced above. Consider then a ternary frameΘ = {x, y, z}, and a belief functionb with

b.p.a.

mb(x) = 0.1, mb(y) = 0, mb(z) = 0.2,

mb({x, y}) = 0.3, mb({x, z}) = 0.1, mb({y, z}) = 0, mb(Θ) = 0.3.

Recalling Equation (23) the total mass of singletons iskb̃ = 0.1 + 0 + 0.2 = 0.3, while the

non-Bayesian contributions ofx, y, z are respectively

plb(x) − mb(x) = mb(Θ) + mb({x, y}) + mb({x, z}) = 0.7,

plb(y) − mb(y) = mb({x, y}) + mb(Θ) = 0.6,

plb(z) − mb(z) = mb({x, z}) + mb(Θ) = 0.4

so that the non-Bayesian flag isR(x) = 0.7/1.7, R(y) = 0.6/1.7, R(z) = 0.4/1.7.

For each singleton then the original b.p.a.mb(x) is increased by a share of the mass of non

singletons1 − kb̃ = 0.7 proportional to the value ofR(x),

p[b](x) = mb(x) + (1 − kb̃)R(x) = 0.1 + 0.7 ∗ 0.7/1.7 = 0.388,

p[b](y) = mb(y) + (1 − kb̃)R(y) = 0 + 0.7 ∗ 0.6/1.7 = 0.247,

p[b](z) = mb(z) + (1 − kb̃)R(z) = 0.2 + 0.7 ∗ 0.4/1.7 = 0.365.
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Equivalently, the line coordinateβ[b] of p[b] is equal to

β[b] =
1 − kb̃

mb({x, y})|{x, y}| + mb({x, z})|{x, z}| + mb(Θ)|Θ|
=

0.7

0.3 ∗ 2 + 0.1 ∗ 2 + 0.3 ∗ 3
=

0.7

1.7

and measures the share ofplb(x) − mb(x) assigned to each singleton:

p[b](x) = mb(x) + β[b](plb(x) − mb(x)) = 0.1 + 0.7/1.7 ∗ 0.7,

p[b](y) = mb(y) + β[b](plb(y) − mb(y)) = 0 + 0.7/1.7 ∗ 0.6,

p[b](z) = mb(z) + β[b](plb(z) − mb(z)) = 0.2 + 0.7/1.7 ∗ 0.4.

VII. O RTHOGONAL PROJECTION

We have seen that even though the linea(b, plb) is always orthogonal to the probabilistic sub-

space, its intersection with the regionP ′ of the Bayesian n.s.f. is not always inP. Nevertheless,

an orthogonal projectionπ[b] of b onto a(P) is obviously guaranteed to exist no matter the

behavior ofa(b, plb), asa(P) is nothing but a linear subspace in the space of all the normalized

sum functions (such asb). An explicit calculation ofπ[b], however, requires a description of the

orthogonal complement ofa(P) in R
N−2. Let us denote withn = |Θ| the cardinality ofΘ.

A. Orthogonality condition

We need to find a necessary and sufficient condition for an arbitrary vectorv =
∑

A⊂Θ vAXA

of to be orthogonal5 to the probabilistic subspacea(P). If we compute the scalar product

〈v, by − bx〉 betweenv and the generatorsby − bx of a(P ) we get
〈

∑

A⊂Θ

vAXA, by − bx

〉

=
∑

A⊂Θ

vA[by − bx](A)

that remembering Equation (13) becomes

〈v, by − bx〉 =
∑

A⊃y,A 6⊃x

vA −
∑

A⊃x,A 6⊃y

vA.

The orthogonal complementa(P)⊥ of a(P) will then be expressed as

v(P)⊥ =
{

v :
∑

A⊃y,A 6⊃x

vA =
∑

A⊃x,A 6⊃y

vA ∀y 6= x
}

.

5In fact the proof is again valid forA = Θ, ∅ too, see Section VIII-B.
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If the vectorv, in particular, is a belief function (vA = b(A))

∑

A⊃y,A 6⊃x

b(A) =
∑

A⊃y,A 6⊃x

∑

B⊂A

mb(B) =
∑

B⊂{x}c

mb(B) · 2n−1−|B∪{y}|

since 2n−1−|B∪{y}| is the number of subsetsA of {x}c containing bothB and y, and the

orthogonality condition becomes
∑

B⊂{x}c

mb(B)2n−1−|B∪{y}| =
∑

B⊂{y}c

mb(B)2n−1−|B∪{x}| ∀y 6= x.

Now, setsB ⊂ {x, y}c appear in both summations, with the same coefficient (since|B∪{x}| =

|B ∪ {y}| = |B| + 1) and the equation reduces to, after erasing the common factor 2n−2,
∑

B⊃y,B 6⊃x

mb(B)21−|B| =
∑

B⊃x,B 6⊃y

mb(B)21−|B| ∀y 6= x (27)

which expresses the desired orthogonality condition.

Theorem 6:The orthogonal projectionπ[b] of b onto a(P) can be expressed in terms of the

b.p.a.mb of b as

π[b](x) =
∑

A⊃x

mb(A)21−|A| +
∑

A⊂Θ

mb(A)
(1 − |A|21−|A|

n

)

(28)

or

π[b](x) =
∑

A⊃x

mb(A)
(1 + |Ac|21−|A|

n

)

+
∑

A 6⊃x

mb(A)
(1 − |A|21−|A|

n

)

. (29)

From (29) we can see thatπ[b] is indeed a probability, since both1 + |Ac|21−|A| ≥ 0 and

1 − |A|21−|A| ≥ 0 ∀|A| = 1, ..., n. This is not at all trivial, asπ[b] is the projection ofb onto

the affine spacea(P), and could have in principle assigned negative masses to oneor more

singletons.π[b] is hence another valid candidate to the role of probabilistic approximation of the

b.f. b.

B. Orthogonality flag

Theorem 6 does not apparently provide any intuition about the meaning ofπ[b] in terms of

degrees of belief. Nevertheless, if we process Equation (29) we can reduceπ to a new Bayesian

function strictly related to the pignistic function.

Theorem 7:π[b] = P̄(1 − kO[b]) + kO[b]O[b], whereP̄ is the uniform probability and

O[b](x) =
Ō[b](x)

kO[b]
=

∑

A⊃x mb(A)21−|A|

∑

A⊂Θ mb(A)|A|21−|A|
=

∑

A⊃x
mb(A)

2|A|

∑

A⊂Θ
mb(A)|A|

2|A|

(30)
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is a Bayesian belief function.

As 0 ≤ |A|21−|A| ≤ 1 for all A ⊂ Θ, kO[b] assumes values in the interval[0, 1]. Theorem 7 then

implies that the orthogonal projection is always located onthe line segment joining the uniform,

non-informative probability and the Bayesian functionO[b].

By Equation (30) it turns out thatπ[b] = P̄ iff O[b] = P̄ (sincekO[b] > 0). The meaning to

attribute toO[b] becomes clear when we notice that the condition (27) under which a b.f. b is

orthogonal toa(P) can be rewritten as
∑

B⊃y,B 6⊃x

mb(B)21−|B| +
∑

B⊃y,x

mb(B)21−|B| =
∑

B⊃x,B 6⊃y

mb(B)21−|B| +
∑

B⊃y,x

mb(B)21−|B| ≡

∑

B⊃y

mb(B)21−|B| =
∑

B⊃x

mb(B)21−|B| ≡ Ō[b](x) = const ≡ O[b](x) = const = P̄ ∀x ∈ Θ.

Thereforeπ[b] = P̄ if and only if b⊥a(P), andO−P̄ measures the non-orthogonality ofb with

respect toP. O[b] deserves then the name oforthogonality flag.

C. Interpretation in terms of plausibilities, redistribution processes

A compelling link can be drawn between orthogonal projection and pignistic function by

means of the orthogonality flagO[b]. Let us define the two belief functions

b||
.
=

1

k||

∑

A⊂Θ

mb(A)

|A|
bA, b2||

.
=

1

k2||

∑

A⊂Θ

mb(A)

2|A|
bA

wherek|| andk2|| are the normalization factors needed to make them two admissible b.f.

Theorem 8:O[b] is the relative plausibility of singletons ofb2|| ; BetP [b] is the relative

plausibility of singletons ofb||.

Proof: By definition of plausibility function

plb
2||

(x) =
∑

A⊃x

mb
2||

(A) =
1

k2||

∑

A⊃x

mb(A)

2|A|
=

Ō[b]

2k2||
,

∑

x∈Θ

plb
2||

(x) =
1

k2||

∑

x∈Θ

∑

A⊃x

mb(A)

2|A|
=

kO[b]

2k2||

by Equation (38). Hencẽplb
2||

(x) = Ō[b]/kO[b] = O[b]. Equivalently,

plb||(x) =
∑

A⊃x

mb||(A) =
1

k||

∑

A⊃x

mb(A)

|A|
=

1

k||
BetP [b](x)

and since
∑

x BetP [b](x) = 1, p̃lb||(x) = BetP [b](x).

The two functionsb|| and b2|| represent two different processes acting onb (see Figure 5). The

first one redistributes the mass of each focal element among its singletons(yielding directly a
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Bayesian b.f.BetP [b]). The second one distributes the b.p.a. of each eventA among itssubsets

B ⊂ A (∅, A included). In this second case we get an unnormalized [39] belief function bU

mbU (A) =
∑

B⊃A

mb(B)

2|B|

whose relative belief of singletons̃bU is in fact the orthogonality flagO[b].

x

x

y

y

z

z

A

A    

m'(x) = m'(y) = m'(z) = 1/3 m(A)

m'(  ) = m'(x) = m'(y) = m'(z) = 

= m'({x,y}) = m'({x,z}) = 

m'({y,z}) = m'(A) = 1/8 m(A)

Fig. 5. Redistribution processes associated with pignistic transformation and orthogonal projection. In the pignistic

transformation (top) the mass of each focal element is distributed amongits elements. In the orthogonal projection (bottom),

instead (through the orthogonality flag), the mass of each f.e. is dividedamong its subsets. In both cases, the related relative

belief of singletons yields a Bayesian belief function.

1) Example:Let us consider again as an example the belief functionb on the ternary frame

mb(x) = 0.1, mb(y) = 0, mb(z) = 0.2,

mb({x, y}) = 0.3, mb({x, z}) = 0.1, mb({y, z}) = 0, mb(Θ) = 0.3

seen in Section VI-A.3. To get the orthogonality flagO[b] we need to apply the redistribution

process of Figure 5 to each focal element ofb. In this case their masses are divided among their
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subsets as follows:

m(x) = 0.1 7→ m′(x) = m′(∅) = 0.1/2 = 0.05

m(z) = 0.2 7→ m′(z) = m′(∅) = 0.2/2 = 0.1

m({x, y}) = 0.3 7→ m′({x, y}) = m′(x) = m′(y) = m′(∅) = 0.3/4 = 0.075

m({x, z}) = 0.1 7→ m′({x, z}) = m′(x) = m′(z) = m′(∅) = 0.1/4 = 0.025

m(Θ) = 0.3 7→ m′(Θ) = m′({x, y}) = m′({x, z}) = m′({y, z}) =

= m′(x) = m′(y) = m′(z) = m′(∅) = 0.3/8 = 0.0375.

By summing the contributions related to singletons on the right hand side we get

mbU (x) = 0.05 + 0.075 + 0.025 + 0.0375 = 0.1875,

mbU (y) = 0.075 + 0.0375 = 0.1125,

mbU (z) = 0.1 + 0.025 + 0.0375 = 0.1625

whose sum is the normalization factor

kO[b] = mbU (x) + mbU (y) + mbU (z) = 0.4625

and by normalizingO[b] = [0.405 0.243 0.351]′. The orthogonal projectionπ[b] is finally the

convex combination ofO[b] and P̄ = [1/3 1/3 1/3]′ with coordinatekO[b]:

π[b] = P̄(1 − kO[b]) + kO[b]O[b] = [1/3 1/3 1/3]′ · (1 − 0.4625) + 0.4625 · [0.405 0.243 0.351]′

= [0.366 0.291 0.342]′.

D. Orthogonal projection and convex combination

As a confirmation of this relationship, orthogonal projection and pignistic function both

commute with convex combination.

Theorem 9:Orthogonal projection and convex combination commute, i.e.

π[α1b1 + α2b2] = α1π[b1] + α2π[b2].

Proof: By Theorem 7π[b] = (1 − kO[b])P̄ + Ō[b] wherekO[b] =
∑

A⊂Θ mb(A)|A|21−|A|

and Ō[b](x) =
∑

A⊃x mb(A)21−|A|. Hence

kO[α1b1 + α2b2] =
∑

A⊂Θ

(

α1mb1(A) + α2mb2(A)
)

|A|21−|A| = α1kO[b1] + α2kO[b2],

Ō[α1b1 + α2b2](x) =
∑

A⊃x

(

α1mb1(A) + α2mb2(A)
)

21−|A| = α1Ō[b1] + α2Ō[b2]
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which in turn implies (sinceα1 + α2 = 1)

π[α1b1 + α2b2] = (1 − α1kO[b1] − α2kO[b2])P̄ + α1Ō[b1] + α2Ō[b2] =

= α1

[

(1 − kO[b1])P̄ + Ō[b1]
]

+ α2

[

(1 − kO[b2])P̄ + Ō[b2]
]

= α1π[b1] + α2π[b2].

This property can be used to find an alternative expression ofthe orthogonal projection asconvex

combination of the pignistic functions associated with all the basis belief functions.

Lemma 2:The orthogonal projection of a basis belief functionbA is given byπ[bA] = (1 −

|A|21−|A|)P̄+ |A|21−|A|P̄A, whereP̄A = 1
|A|

∑

x∈A bx is the center of mass of all the probabilities

with support inA.

Proof: By Equation (30)kO[bA] = |A|21−|A|, so that

Ō[bA](x) =







21−|A| x ∈ A

0 x 6∈ A
⇒ O[bA](x) =







1
|A|

x ∈ A

0 x 6∈ A
=

1

|A|

∑

x∈A

bx = P̄A.

Theorem 10:The orthogonal projection can be expressed as a convex combination of all the

non-informative probabilities with support on a single event A as

π[b] = P̄
(

1 −
∑

A 6=Θ

αA

)

+
∑

A 6=Θ

αAP̄A, αA
.
= mb(A)|A|21−|A|. (31)

Proof:

π[b] = π
[

∑

A⊂Θ

mb(A)bA

]

=
∑

A⊂Θ

mb(A)π[bA]

by Theorem 9, which by Lemma 2 becomes
∑

A⊂Θ

mb(A)
[

(1 − |A|21−|A|)P̄ + |A|21−|A|P̄A

]

=
(

1 −
∑

A⊂Θ

mb(A)|A|21−|A|
)

P̄+

+
∑

A⊂Θ

mb(A)|A|21−|A|P̄A =
(

1 −
∑

A⊂Θ

mb(A)|A|21−|A|
)

P̄ +
∑

A 6=Θ

mb(A)|A|21−|A|P̄A+

+mb(Θ)|Θ|21−|Θ|P̄

i.e. Equation (31).

As P̄A = BetP [bA], we recognize that

BetP [b] =
∑

A⊂Θ

mb(A)BetP [bA], π[b] =
∑

A 6=Θ

αABetP [bA] +
(

1 −
∑

A 6=Θ

αA

)

BetP [bΘ] (32)

with αA = mb(A)kO[bA]. Both orthogonal projection and pignistic function are convex combi-

nations of all the basis pignistic functions. However, askO[bA] = |A|21−|A| < 1 for |A| > 2,

the orthogonal projection turns out to be closer to the vertices associated with events of lower

cardinality (see Figure 6).
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_

BetP[b]
π[b]

P

|A|<3

x

_

AP

Θ

P[b ] = Cl(b ,x  A)  
A

|A|>2

P[b ] = P 
Θ

∋

Fig. 6. Orthogonal projectionπ[b] and pignistic functionBetP [b] are both located on the simplex whose vertices are all the

basis pignistic functions, i.e. the uniform probabilities associated with each single eventA. However, the convex coordinates of

π[b] are weighted by a factorkO[bA] = |A|21−|A|, yielding a point which is closer to vertices related to lower size events.

1) Example: ternary case:Let us consider as an example a ternary frameΘ3 = {x, y, x},

and a belief function onΘ3 with b.p.a.

mb(x) = 1/3, mb({x, z}) = 1/3, mb(Θ3) = 1/3, mb(A) = 0 A 6= {x}, {x, z}, Θ3.

According to Equation (31)

π[b] = 1/3P̄{x} + 1/3P̄{x,z} + (1 − 1/3 − 1/3)P̄ = 1
3
bx + 1

3
bx+bz

2
+ 1

3

bx+by+bz

3
=

= bx(
1
3

+ 1
6

+ 1
9
) + bz(

1
6

+ 1
9
) + by

1
9

= 11
18

bx + 1
9
by + 5

18
bz

and the orthogonal projection is the barycenter of the simplex Cl(P̄{x}, P̄{x,z}, P̄) (see Figure

7). On the other side,

BetP [b](x) = mb(x)
1

+ mb(x,z)
2

+ mb(Θ3)
3

= 11
18

, BetP [b](y) = 1
9
, BetP [b](z) = 1

6
+ 1

9
= 5

18

i.e. BetP [b] = π[b]. This is true for each belief functionb ∈ B3, since for Equation (32) when

|Θ| = 3 αA = mb(A) for |A| ≤ 2, and1 −
∑

A αA = 1 −
∑

A 6=Θ mb(A) = mb(Θ).

2) Distance betweenBetP and π in the quaternary case:To get a hint of the relationship

between orthogonal projection and pignistic function in the general case let us compare their

expressions in the simplest case in which they are distinct:a frameΘ = {x, y, z, w} of size 4.
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_

P
Θ

_

P
{x,y}

_

P
{y,z}

_

P
{x,z}

_

P
{x}b = x

_

P
{z}b = z

_

P
{y}b = y

BetP[b] = π[b]

Fig. 7. Orthogonal projection and pignistic function in the ternary caseΘ3 = {x, y, z}.

Their analytic expressions for the elementx ∈ Θ are

BetP [b](x) = mb(x) + 1
2
(mb({x, y}) + mb({x, z}) + mb({x,w}))+

+1
3
(mb({x, y, z}) + mb({x, y, w}) + mb({x, z, w})) + 1

4
mb(Θ);

π[b](x) = mb(x) + 1
2
(mb({x, y}) + mb({x, z}) + mb({x,w}))+

+ 5
16

(mb({x, y, z}) + mb({x, y, w}) + mb({x, z, w})) + 1
16

mb({y, z, w}) + 1
4
mb(Θ).

(33)

They are very similar to each other: basically the difference is thatπ[b] counts also the masses

of focal elements in{x}c (with a small contribution), whileBetP [b] by definition does not.

If we compute their difference

BetP [b](x) − π[b](x) =
1

48

[

mb({x, y, z}) + mb({x, y, w}) + mb({x, z, w}) − 3 · mb({y, z, w})
]

we can analyze the behavior of theirL2 distance asb varies. After introducing the simpler

notation

y1 = mb({x, y, z}), y2 = mb({x, y, w}), y3 = mb({x, z, w}), y4 = mb({y, z, w}),

we can maximize (minimize) the norm

‖BetP [b]−π[b]‖2 = (y1+y2+y3−3y4)
2+(y1+y2+y4−3y3)

2+(y1+y3+y4−3y2)
2+(y2+y3+y4−3y1)

2
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by imposing ∂
∂yi

‖BetP [b](y) − π[b](y)‖2 = 0 subject toy1 + y2 + y3 + y4 = 1. The unique

solution turns out to be

y = [1/4 1/4 1/4 1/4]′

which corresponds to (after replacing this solution into (33)) BetP [b] = π[b] = P̄ whereP̄ =

[1/4 1/4 1/4 1/4]′ is the uniform probability onΘ. In other words, the distance between pignistic

function and orthogonal projection is minimal (zero) when all size 3 subsets have the same mass.

It is then natural to suppose that their difference must be maximal when all the mass is

concentrated on a single size-3 event. This is in fact correct: ‖BetP [b]− π[b]‖2 is maximal and

equal to12 + 12 + 12 + (−3)2 = 12 when yi = 1, yj = 0 ∀j 6= i, i.e. the mass of one among

{x, y, z}, {x, y, w}, {x, z, w}, {y, z, w} is one.

VIII. A BRIEF DISCUSSION

In this paper we introduced two novel probabilistic approximations of a belief functionb, the

intuition for both of them provided by the geometric analysis of the interplay between belief

and probability spaces in the context of the geometric approach to the theory of evidence. Both

intersection probability and orthogonal projection are related to the notion of orthogonality: the

orthogonality of the dual line and that ofπ[b] − b with respect toP. Nevertheless they possess

different interpretations in terms of mass assignment, andrelate in significant but distinct ways

with the pignistic transformation.

An interesting parallel betweenp[b] andπ[b] comes from their geometric description as points

of a segment. Recalling Theorem 7 and Equation (24)

π[b] = kO[b]O[b] + P̄(1 − kO[b]) p[b] = kb̃b̃ + (1 − kb̃)R[b]

we can appreciate that they can both be written as convex combinations, which depend on

the flag probabilities associated with them, namely the orthogonality and non-Bayesianity flag

respectively:

π[b] ↔ p[b]

O[b] ↔ R[b].

It is then worth to study the condition under whichp[b] and orthogonal projectionπ[b] are the

same probability.
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A. Analytic comparison

A trivial consequence of Theorem 4 is that whenb is 2-additive,π[b] = p[b] = ς[b]. The

inverse implication is also true.

Theorem 11:The orthogonal projectionπ[b] andp[b] coincide iff b is 2-additive, i.e.

mb(A) = 0 ∀A : |A| > 2.

Proof: We just need to compare expressions (19) and (28) to see that the two quantities

are the same iff 





1+|Ac|21−|A|

n
= β[b] A ⊃ x,A 6= x

mb(A) = 0 A 6⊃ x, |A| > 2.

The second condition is true as1−|A|21−|A|

n
6= 0 ∀A : |A| 6= 1, 2. But now, asβ[b] does not depend

on the size|A| of A, the first condition requiresmb(A) = 0 for |A| 6= k for somek ∈ [2, ..., n],

with
1 + |Ac|21−|A|

n
=

1 + (n − k)21−k

n
= β[b] =

1

k

(using the form (26) ofβ[b]). As the resulting equationn = k(1+ (n− k)21−k) is met byk = 2

only we have as desired.

Theorem 11 gives just “pointwise” information on the relationship between intersection proba-

bility and orthogonal projection. It would definitively be worth conducting a study of the distance

between all the Bayesian functions we now know,BetP, π, p, p̃lb, b̃ asb varies inB, in order to

understand how they are influenced by the basic probability assignment. We started to do this for

the pairBetP [b], π[b] in the case of binary frames (Section VII-D.2), getting someinteresting

results. We reserve to explore this direction thoroughly inthe near future.

B. Unnormalized belief functions

We may also want to add a remark on the validity of the results presented in this paper.

They have been in fact obtained for “classical” belief functions, for which the mass assigned

to the empty set is 0:b(∅) = mb(∅) = 0. However, it makes sense in certain situations to work

with unnormalizedbelief functions (u.b.f.) [39], i.e. belief functions admitting non-zero support

mb(∅) 6= 0 for the empty set [40].mb(∅) is an indicator of the amount of conflict in the evidence

carried by a belief functionb, but can also be interpreted as the possibility that the existing frame

of discernment does not exhaust all the possible outcomes ofthe problem. Unnormalized b.f.
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are naturally associated with vectors withN = 2|Θ| coordinates.

A new set of basis u.b.f. can then be defined

{bA ∈ R
N , ∅ ⊆ A ⊆ Θ}

this time including a vectorb∅
.
= [1 0 · · · 0]′. Note also that in this casebΘ = [0 · · · 0 1]′.

It is natural to wonder whether the above discussion, and in particular definition and properties

of p[b] and π[b], retains their validity. Let us consider again the binary case. We now have to

use four coordinates, associated with all the events inΘ: ∅, {x}, {y}, andΘ. Remember that

in the case of u.b.f.
b(A) =

∑

∅(B⊆A

mb(B) A 6= ∅

i.e. the contribution of the empty set is not considered whencomputing the belief value of an

eventA 6= ∅ 6. The corresponding basis belief and plausibility functions are then

b∅ = [1, 0, 0, 0]′ pl∅ = [0, 0, 0, 0]′

bx = [0, 1, 0, 1]′ plx = [0, 1, 0, 1]′ = bx

by = [0, 0, 1, 1]′ ply = [0, 0, 1, 1]′ = by

bΘ = [0, 0, 0, 1]′ plΘ = [0, 1, 1, 1]′.

A striking difference with the “classical” case is thatb(Θ) = 1−mb(∅) = plb(Θ) which implies

that both belief and plausibility spaces arenot in general subsets of the sectionvΘ = 1 of R
N .

In other words, u.b.f. and u.pl.f. are not normalized sum functions (Section III-C).

More precisely,b, plb are n.s.f. iff b(∅) 6= 0. As a consequence,the line a(b, plb) is not

guaranteed to intersect the affine spaceP ′ of the Bayesian n.s.f..

Consider for instance the line connectingb∅ andpl∅ in the binary case:

αb∅ + (1 − α)pl∅ = α[1, 0, 0, 0]′, α ∈ R.

As P ′ = {[a, b, (1 − b),−a]′, a, b ∈ R} there clearly is no valueα ∈ R s.t. α · [1, 0, 0, 0]′ ∈ P ′.

Simple calculations show that in facta(b, plb) ∩ P ′ 6= ∅ iff b(∅) = 0 (i.e. b is “classical”) or

(trivially) b ∈ P. This is true in the general case.

Proposition 2: p[b], β[b] are well defined for classical belief functions only.

6Notice that in the unnormalized case the notationb is usually used forimplicability functions, while belief functions are

denoted byBel [13].
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It is interesting to note that, however, the orthogonality results of Section V-Aare still valid

since Lemma 1 does not involve the empty set, while the proof of Theorem 2 is valid for the

componentA = ∅, Θ too (asby − bx(A) = 0 for A = ∅, Θ).

Proposition 3: a(b, plb) is orthogonal toP for each u.b.f.b, even thoughς[b] = a(b, plb)∩P
′ 6=

∅ iff b is a b.f.

Analogously, the orthogonality condition (27) does not concern the mass of the empty set. The

orthogonal projectionπ[b] of a u.b.f.b is well defined (check Theorem 6’s proof), and it is still

given by Equations (28),(29) where this time the summationson the right hand side include the

empty set too:

π[b](x) =
∑

A⊃x

mb(A)21−|A| +
∑

∅⊆A⊂Θ

mb(A)
(1 − |A|21−|A|

n

)

π[b](x) =
∑

A⊃x

mb(A)
(1 + |Ac|21−|A|

n

)

+
∑

∅⊆A 6⊃x

mb(A)
(1 − |A|21−|A|

n

)

.

IX. CONCLUSIONS

In this paper we used the geometric approach to the theory of evidence to introduce two

new probabilities related to a belief function, both of themderived from purely geometric

considerations. They are indeed associated with two different geometric loci: the dual line passing

throughb andplb in the belief space, and the orthogonal complement of the probability subspace.

After proving that the linea(b, plb) is always orthogonal toP and intersects the region of

the Bayesian n.s.f.P ′, we introduced the probabilityp[b] associated with this intersection and

discussed two interpretations ofp[b] in terms of non-Bayesian contributions of singletons.

On the other side, after precising the condition under whicha b.f. b is orthogonal toP we

gave two equivalent expressions of the orthogonal projection of b onto P. We saw thatπ[b]

can be reduced to another probability signaling the distance of b from orthogonality, and that

this “orthogonality flag” can be in turn interpreted as the result of a mass redistribution process

analogous to that associated with the pignistic transformation. We proved thatπ[b] commutes

with the convex combination operator, and can therefore be expressed as a convex combination

of basis pignistic functions, confirming the strict relation betweenπ[b] andBetP [b].

We finally studied the difference betweenp[b] andπ[b], and discussed which results retain their

validity for unnormalized belief functions.

January 18, 2007 DRAFT



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS B, VOL. XX, NO. Y, MONTH 2007 31

We have seen when discussing the binary case that, whileBetP [b], p[b] andπ[b] belong to the

same “family” of Bayesian relatives ofb (as they coincide under 2-additivity), relative plausibility

p̃[b] and belief̃b of singletons [14] do not fit in the same scheme. In the near future we will show

that p̃[b] turns out to be the best Bayesian approximation of a belief function in the framework

of Dempster’s combination rule, and investigate the dual geometry of relative plausibility and

belief of singletons [37]. Naturally enough the geometric approach can be adopted to study the

problem of approximating a belief function with a possibility measure (consonant b.f.).

To complete the study we started in this paper we would need todepict a complete picture

of the conditions under which all the different Bayesian relatives of b coincide. Furthermore, a

contribution to understanding their semantics could come from the study of the convex geometric

loci {b ∈ B : Bayes[b] = const} of all the belief functions for which a certain Bayesian

approximation (sayBetP [b], p[b] or π[b]) is constant.

APPENDIX: PROOFS

Proof of Theorem 4

By definition (17)ς[b] can be written in terms of the reference frame{bA, A ⊂ Θ} as

∑

A⊂Θ

mb(A)bA +β[b] ·
(

∑

A⊂Θ

µb(A)bA −
∑

A⊂Θ

mb(A)bA

)

=
∑

A⊂Θ

bA

[

mb(A)+β[b](µb(A)−mb(A))
]

sinceµb(.) is the Moebius inverse ofplb(.). For ς[b] to be a Bayesianbelief function, accordingly,

all the components related to non-singleton subsets need tobe zero,

mb(A) + β[b](µb(A) − mb(A)) = 0 ∀A : |A| > 1.

This condition in turn reduces to (recalling expression (20) of β[b])

µb(A)
∑

|B|>1

mb(B) + mb(A)
[

∑

|B|>1

mb(B)|B| −
∑

|B|>1

mb(B)
]

= 0 ∀A : |A| > 1 ≡

µb(A)
∑

|B|>1

mb(B) + mb(A)
∑

|B|>1

mb(B)(|B| − 1) = 0.
(34)

But now
∑

|B|>1 mb(B)(|B| − 1) =
∑

|B|>1 mb(B) +
∑

|B|>2 mb(B)(|B| − 2) so that expression

(34) becomes

[µb(A) + mb(A)]
∑

|B|>1

mb(B) + mb(A)
∑

|B|>2

mb(B)(|B| − 2) = 0 ∀A : |A| > 1 ≡

[mb(A) + µb(A)] · M1[b] + mb(A) · M2[b] = 0

(35)
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after definingM1[b]
.
=

∑

|B|>1 mb(B) andM2[b]
.
=

∑

|B|>2 mb(B)(|B| − 2) respectively.

Now, it is easy to note that

M1[b] = 0 ⇔ mb(B) = 0 ∀B : |B| > 1 ⇔ b ∈ P

M2[b] = 0 ⇔ mb(B) = 0 ∀B : |B| > 2

as all the terms inside the summations are non-negative by definition of basic probability

assignment. We can distinguish three cases:M1 = 0 = M2 (b ∈ P), M1 6= 0 but M2 = 0, and

finally M1 6= 0 6= M2. If M1 = M2 = 0 thenb is a probability (trivially), while ifM1 6= 0 6= M2

then Equation (35) impliesmb(A) = µb(A) = 0, |A| > 1 i.e. b ∈ P, which is a contradiction.

The only non-trivial case is thenM2 = 0, in which condition (35) becomes

M1[b] · [mb(A) + µb(A)] = 0, ∀A : |A| > 1.

But in this case if|A| > 2 thenmb(A) = µb(A) = 0 (sinceM2 = 0) and the constraint is met.

If |A| = 2, instead,

µb(A) = (−1)|A|+1
∑

B⊃A

mb(B) = (−1)2+1mb(A) = −mb(A)

(sincemb(B) = 0 ∀B ⊃ A, |B| > 2) so thatµb(A) + mb(A) = 0 and the constraint is again

met. Finally, as the coordinateβ[b] of ς[b] on the linea(b, plb) can then be rewritten as

β[b] =
M1[b]

M2[b] + 2M1[b]
, (36)

if M2 = 0 thenβ[b] = 1/2 and ς[b] = b+plb
2

.

Proof of Theorem 6

Finding the orthogonal projectionπ[b] of b onto a(P) is equivalent to imposing the condition

〈π[b] − b, by − bx〉 = 0 ∀y 6= x. Replacing the masses ofπ − b






π(x) − mb(x), x ∈ Θ

−mb(A), |A| > 1

into Equation (27) yields, after extracting the singletonsx from the summation, the system


















π(y) = π(x) +
∑

A⊃y,A 6⊃x,|A|>1

mb(A)21−|A| + mb(y) − mb(x) −
∑

A⊃x,A 6⊃y,|A|>1

mb(A)21−|A| ∀y 6= x

∑

y∈Θ

π(y) = 1.

(37)
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After replacing the firstn − 1 equations into the normalization constraint we get

π(x)+
∑

y 6=x

[

π(x)+mb(y)−mb(x)+
∑

A⊃y,A 6⊃x,|A|>1

mb(A)21−|A|−
∑

A⊃x,A 6⊃y,|A|>1

mb(A)21−|A|
]

= 1

which is equivalent to

nπ(x) = 1 + (n − 1)mb(x) −
∑

y 6=x

mb(y)+

+
∑

y 6=x

∑

A⊃x,A 6⊃y,|A|>1

mb(A)21−|A| −
∑

y 6=x

∑

A⊃y,A 6⊃x,|A|>1

mb(A)21−|A|.

But now
∑

y 6=x

∑

A⊃y,A 6⊃x,|A|>1

mb(A)21−|A| =
∑

A 6⊃x,|A|>1

mb(A)21−|A||A|

as all theA’s not containingx do contain somey 6= x, and they are counted|A| times (i.e. one

time for each element they contain). Instead

∑

y 6=x

∑

A⊃x,A 6⊃y,|A|>1

mb(A)21−|A| =
∑

A⊃x,1<|A|<n

mb(A)21−|A|(n−|A|) =
∑

A⊃x,|A|>1

mb(A)21−|A|(n−|A|)

for n − |A| = 0 whenA = Θ. Hence,π(x) is equal to

1

n

[

1 + (n − 1)mb(x) −
∑

y 6=x

mb(y) −
∑

A 6⊃x,|A|>1

mb(A)21−|A||A| +
∑

A⊃x,|A|>1

mb(A)21−|A|(n − |A|)
]

=
1

n

[

n · mb(x) + 1 −
∑

y∈Θ

mb(y) + n
∑

A⊃x,|A|>1

mb(A)21−|A|+

−
∑

A⊃x,|A|>1

mb(A)21−|A||A| −
∑

A 6⊃x,|A|>1

mb(A)21−|A||A|
]

.

We then just need to note that−
∑

y∈Θ mb(y) = −
∑

|A|=1 mb(A)|A|21−|A|, so that the orthogonal

projection can be finally expressed as

π(x) =
1

n

[

n · mb(x) + n ·
∑

A⊃x,|A|>1

mb(A)21−|A| + 1 −
∑

A⊂Θ

mb(A)|A|21−|A|
]

= mb(x) +
∑

A⊃x,|A|>1

mb(A)21−|A| +
∑

A⊂Θ

mb(A)
(1 − |A|21−|A|

n

)

i.e. Equation (28), and since21−|A| + 1
n
− |A|

n
21−|A| = 1+21−|A|(n−|A|)

n
= 1+21−|A||Ac|

n
we get the

second form (29).
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Proof of Theorem 7

By Equation (29) we can write

π[b](x) = Ō[b](x) +
1

n

(

∑

A⊂Θ

mb(A) −
∑

A⊂Θ

mb(A)|A|21−|A|
)

= Ō[b](x) +
1

n

(

1 − kO[b]
)

.

But since
∑

x∈Θ

Ō[b](x) =
∑

x∈Θ

∑

A⊃x

mb(A)21−|A| =
∑

A⊂Θ

mb(A)|A|21−|A| = kO[b], (38)

i.e. kO[b] is the normalization factor for̄O[b], the function (30) is a Bayesian belief function,

and we can write (as̄P(x) = 1
n
) π[b] = (1 − kO[b])P̄ + kO[b]O[b].
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