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Two new Bayesian approximations of belief

functions based on convex geometry

Fabio Cuzzolin

Abstract

In this paper we analyze from a geometric point of view the mragful relations which take
place between a belief function and the set of probabilitycfions, in the framework of the geometric
approach to the theory of evidence. Starting from the casénafry domains, we identify and study the
three major geometric entities that relate a generic bélieftion to the set of probabilitie®: the dual
line connecting belief and plausibility functions, thehmgional complement oP, and the simplex of
consistent probabilities. These are in turn associateld #ifferent probability measures which depend
on the original belief function. We describe in particulaogetry and properties of the orthogonal
projection of a belief function ont® and the intersection probability, provide their interptns in

terms of degrees of belief, and discuss their behavior vagipect to convex closure.

Index Terms

Theory of evidence, geometric approach, Bayesian beligftions, intersection probability, orthog-

onal projection, commutativity.

I. INTRODUCTION

Uncertainty measures have a major role in fields like ardifioitelligence, where problems
requiring formalized reasoning are common. The theory alence is one of the most popular
among those formalisms, thanks perhaps to its nature o qaitural extension of the classical
Bayesian methodology. Indeed, the notionbefief function(b.f.) [1] generalizes that of finite
probability, with classical probabilities forming a suast P of b.f. called Bayesian belief

functions
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The interplay of belief and Bayesian functions is of coursegdat interest in the theory
of evidence. In particular, many people worked on the pmobtd finding a probabilistic or
possibilistic [2] approximation of an arbitrary belief fcoon. A number of papers [3], [4],
[5], [6] have been published on this issue (see [7], [8], [O & review), mainly in order
to find efficient implementations of the rule of combinatiomimg to reduce the number of
focal elements. Tessem [10], for instance, incorporatdy the highest-valued focal elements
in his my;, approximation; a similar approach inspired gw@nmarizatiortechnique formulated
by Lowranceet al. [11]. The connection between belief functions and proli#sl is as well
the basement of a popular approach to the theory of evideheets’ pignistic model [12],
in which beliefs are represented at credal level, while glens are made by resorting to a
Bayesian belief function callegignistic transformation[13]. On his side, in his 1989 paper
[14] F. Voorbraak proposed to adopt the so-caltethtive plausibility function 15lb, the unique
probability that, given a belief functioh with plausibility pl,, assigns to each singleton its
normalized plausibility. He proved théﬂb is a perfect representative bfwhen combined with
other probabilitiespl, & p = b& p Vp € P. Cobb and Shenoy [15], [16], [17] also analyzed the
properties of the relative plausibility of singletons [1&)d discussed its nature of probability
function that is equivalent to the original belief function

The study of the interplay between belief functions and philities has also been posed in
a geometric setup [19], [20], [21]. P. Black, in particulagdtcated his doctoral thesis to the
study of the geometry of belief functions and other monotcagacities [21]. An abstract of his
results can be found in [20], where he uses shapes of geon@trito give a direct visualization
of the distinct classes of monotone capacities. In padicalnumber of results about lengths of
edges of convex sets representing monotone capacitiesvarg pgether with theisizemeant
as the sum of those lengths.

Another close reference is perhaps a work [19] of Ha and Hagdahere they propose an
“affine operator” which can be considered a generalizatioboth belief functions and interval
probabilities, and can be used as a tool for constructingecosets of probability distributions.
Uncertainty is modeled as sets of probabilities represemie “affine trees”, while actions
(modifications of the uncertain state) are defined as treeipmktors. A small number of
properties of the affine operator are also presented. lreawairk [22] they presented the interval

generalization of the probability cross-product operatalled convex-closure (cc) operator. They
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analyzed the properties of the cc-operator relative to mdations of sets of probabilities, and
presented interval versions of Bayesian propagation dlgos based on it. Probability intervals
were represented in a computationally efficient fashionmiaans of a data structure callpdc-
tree, in which branches are annotated with intervals, and nodigsconvex sets of probabilities.
On our side, in a series of recent works [23], [24], [25] wepgm®ed a geometric interpretation
of the theory of evidence in which belief functions are reprged as points of a simplex called
belief spacd23]. As a matter of fact, as a belief functién 2° — [0, 1] is completely specified
by its N = 2/°I — 1 belief values{b(A), A C ©, A # 0}, it can be represented as a point of the
Cartesian spacR" 1.
In this framework many different uncertainty descriptidite upper and lower probabilities,
belief functions, possibility measures can be studied iuified fashion.
In this paper we use tools provided by the geometric apprq&dction Ill) to study the
interplay of belief and Bayesian functions in the framewofkie belief space. We introduce
two new probabilities related to a belief function, both bém derived from purely geometric
considerations. We thoroughly discuss their interpretasind properties, and their relations with
the other known Bayesian approximations of belief functiors pignistic function and relative

plausibility of singletons.

A. Paper outline

More precisely, we first look for an insight by considering thimplest case in which the
frame of discernment has only two elements (Section IV)uiih$ out that each belief function
b is associated with three different geometric entities, elgirthe line (b, pl,) joining b with the
related plausibility functioml,, the orthogonal complemef* of the probabilistic subspacde,
and the simplex of consistent probabiliti#3b] = {p € P : p(A) > b(A) VA C O}. These in
turn determine three different probabilities associatétth w i.e. theorthogonal projectionr|b]
of b onto P, the barycenter aP|[b] or pignistic functionBet P[b], and theintersection probability
p[b]. In the binary case all those Bayesian functions coincide.

In Section V we prove that, even though the liftepl,) is always orthogonal t@, it does
not intersect in general the Bayesian region. However, isdotersect the region of Bayesian
normalized sum function®.s.f.), i.e. the natural generalizations of belief fuoics obtained by

relaxing the positivity constraint for b.p.a.s: This irgection yields a Bayesian n.scfb].
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In Section VI we will see that[b] is in turn naturally associated with a Bayesian belief fuorcti
p[b], which we call intersection probability. We will give twoff#irent interpretations of the way
in which this probability distributes the masses of the faglaments orb to the elements of
0, both depending on the difference between plausibility bekkef of singletons. We will also
compare the combinatorial and geometric behaviop|of with those of pignistic function and
relative plausibility of singletons.
Section VII will instead be devoted to the study of the orthiogl projection ofb onto the
probability simplexP. We will show thatr[b] always exists and is indeed a probability function.
After precising the condition under which a hfis orthogonal tgP we will give two equivalent
expressions of the orthogonal projection. We will see th@if can be reduced to another
probability signaling the distance éffrom orthogonality, and that this “orthogonality flag” can
be in turn interpreted as the result of a mass redistribytimtess analogous to that associated
with the pignistic transformation. We will prove that, &zt P[b] does,n[b] commutes with the
convex combination operator, and can therefore be expiess@ convex combination of basis
pignistic functions, confirming the strict relation betweelb] and Bet P[b).
In Section VIII we will conduct an analytic comparison beemethe two functions introduced
here by comparing their expressions as convex combinatésmsformulate the condition under
which they coincide. For sake of completeness we will disdhge case otinnormalizedbelief
functions (u.b.f.) and argue that, whilgb] is not defined for a generic u.b#, 7[b] exists and
retain its properties.

To improve the readability of the paper the proofs of all magsults have been moved to

an appendix.

Il. THE THEORY OF EVIDENCE

The theory of evidencé§l] was introduced in the late Seventies by Glenn Shafer aayaok
representing epistemic knowledge, starting from a sequefceminal works [26], [27], [28],
of Arthur Dempster. In this formalism the best represeatabf chance is #elief function(b.f.)
rather than a Bayesian mass distribution, assigning prbtyabalues to setsof possibilities
rather than single events.

Definition 1: A basic probability assignmer(b.p.a.) over a finite seframe of discernment
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[1]) © is a functionm : 2° — [0,1] on its power seR® = {A C ©} such that
=0, Z m(A) >0 VA C ©.
Subsets 0B associated with non zero valuesaf are calledfocal elements
Definition 2: Thebelief functionb : 2° — [0, 1] associated with a basic probability assignment
m on © is defined as:
b(A) =) m(B).
Conversely, the unique basic probability agsciénmeptassociated with a given belief function
b can be recovered by means of th®ebius inversion formula

my(A) =Y (1) Plo(B) (1)

BCA
so that there is a 1-1 correspondence between the two sdtdiosier, < b. In the theory of

evidence a probability function is simply a peculiar beliefction assigning non-zero masses
to singletons only Bayesianb.f.): m,(A) =0, |A| > 1.
A dual mathematical representation of the evidence enchged belief functiond is the

plausibility function(pl.f.)
ply: 2° —  [0,1]

A — pl(A)
where the plausibilitypl,(A) of an eventA is given by
Plo(A) =1 =b(A) =1— > my(B) (2)
BcAe

where A¢ denotes the complement df in ©.
For each eventl pl,(A) expresses the amount of evidenta againstA. pl, conveys as much

information ash, and can be computed from the b.p.apdsA) = > 5 1.y mu(B) > b(A).

[I. GEOMETRY OF BELIEF AND PLAUSIBILITY FUNCTIONS
A. Belief space

Motivated by the search for a meaningful probabilistic apgnation of belief functions we
introduced the notion obelief spacg[23], [29], [25]), as the space of all the belief functions

we can define on a given doméirConsider a frame of discernmeét and introduce in the

1Several notations in this paper have been changed with respect to otfreus works, in order to adopt a more standard

symbology for belief and plausibility functions.
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Cartesian spacBV~!, N = 2/° an orthonormal reference fran{eX, : A c ©, A # 0} (note
that() is not included). Each vectar= 3", ¢ 4.4 vaX(A4) in R¥~! is then potentially a belief
function, in which each component,; measures the belief value of. v4 = b(A). Not every
such vector € RV, however, represents a valid b.f.

Definition 3: Thebelief spacassociated witl® is the set of pointg of RY~! corresponding
to a belief function.
We will assume the domai® fixed, and denote the belief space with To determine which
points of “are” belief functions we can exploit the Moebimsearsion lemma (1), by computing
the corresponding b.p.a. and checking the axiemsnust obey. It is not difficult to prove (see

[30] for the details) tha3 is convex. Let us call
by =0b€ B s.t. mb(A) =1, mb(B) =0VB 7§ A

the unique belief function assigning all the mass to a sisglesetA of © (A-th basis belief
function. It can be proved that [30], denoting with the list of focal elements of,
Theorem 1:The set of all the belief functions with focal elements in aegi collectionL is
closed and convex iif:
{b:&CL}=Clby:Ac L)

whereCl denotes the convex closure operator:

Cl(by, ..., by) = {b €B:b=ab + - +age, Y ai=1, a; >0 w}. 3)
The following is then just a consequence of Theorem 1.i
Corollary 1: The belief space3 coincides with the convex closure of all the basis belief
functionsby,
B=Cl(by, ACO, A+0). (4)
The convex space delimited by a collection of points is dafienplex Figure 1 illustrates the
simplicial form of 5. Moreover, each belief functioh € B can be written as a convex sum as
b= Z my(A)ba. (5)
ACO, AZ£D
Geometrically, the b.p.an, is nothing but the set of coordinates ofn the simplexs.
Clearly, since a probability is a belief function assigningnrzero masses to singletons only,

Theorem 1 implies that
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Fig. 1. Simplicial structure of the belief spaé® its vertices are all the basis belief functiohs represented as vectors of

RN~'. The probabilistic subspace is just a subSéfb., = € ©) of its border.

Corollary 2: The setP of all the Bayesian belief functions af is a subset of the border of

B, precisely the simplex determined by all the basis funstiassociated with singletors

P =Cl(b,x € O).
The interpretation of belief functions as convex sets obphilities also fits in this framework,
as the credal sets [3%¥p € P : p(A) > b(A) VA C ©} are nothing but simplices i [25].

B. Plausibility space

As plausibility functions are also completely determingdtheir N — 1 valuespl,(A), A C
©,A # ( on the power set 08, they too can be seen as vectorsRf—!. We can then call
plausibility spacethe regionP£ of R¥~! whose points correspond to admissible plausibility

functions
PL={ve R 3pl,:2° - [0,1] 5.t. vg = ply(A) VA C ©, A # (.

In [24] we proved that

2with a harmless abuse of notation we will denote the basis belief functiomiags® with a singletor: by b, instead of

biey. Accordingly we will write my (), ply(x) instead ofmy ({}), pls({z}).
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Proposition 1: PL is a simplexPL = Cl(pls, A C ©, A # (), whose vertices are

pla=—=> (=1)/Flp. (6)
BCA
The vertexpl, of the plausibility space turr?s out to be the plausibilityctee associated with
the basis belief functioh,, pl4 = pl,,. Again, every plausibility vectopl, can be uniquely

expressed as a combination of the basis belief functiansVe have that

ply =Y plh(B)Xp =Y ph(B)- Y ba(-1)"I=3}" bA< > (- \A\B|plb(B>>

BCO BCO ADB ACO BCA
(since by Moebius transforiXz = - ,_ , ba - (—1)\P) which yields
ply = Z ,Ub(A)bA (7)
ACO

where (see [24])
p(A) = D ()Ml (B) = (-1 Y T (B), A #D (®)

BCA BDA

(up(0) = 0) is the Moebius inverse of the plausibility function, cdlleasic plausibility assign-
ment(b.pl.a.). The Bayesian regioR = Cl(b,,z € ©) is part of the border of both belief and

plausibility spaces.

C. Normalized sum functions

It may be confusing to think of belief and plausibility fuiais as points of the same Cartesian
space. However, this is a simple consequence of the fadbthiatare defined on the same domain,
the power set 0B. As O is finite they can both be seen as real-valued vectors witlsdinee
numberN — 1 = 2/ — 1 of components.

Furthermore, as belief and plausibility spaces do not esththe wholeR~! it is natural to
wonder whether points “outside” them have any meaningftérpretation in this framework
[30]. In fact, following the same principle, each vector= [vy,...,v4, ...,ve]" € RV~ can be
thought of as a functiom : 2° \ ) — R s.t. ¢(A) = v4. As the Moebius transformation is
invertible, for each of these functionsthere always exists another function. : 2°\ ) — R

such that

= Z m¢(B

BCA

3Note thatpl,(#) = 0 so that the expression is well defined even thodghdoes not exist.
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i.e. eachvectors of RV~! can be thought of assum functiorn(see [32] for a brief introduction).
However,m. does not in general meet the positivity constrainf{ A) >0V A C ©.

The section{v € RY¥~! : vg = 1} of R¥~! corresponds to the constraigt®) = 1, so that all
the points of this section are sum functions meeting the abrzation axiom,

D me(4) =1

ACO
or normalized sum functiongn.s.f.). n.s.f are the natural extensions of belief furrtdi in

this geometric framework. Analogously to the case of bdiigfctions, we can calBayesian
normalized sum functionthe n.s.f.c such that

> mg(r) =1. 9)

€O
IV. BELIEF AND PROBABILITY IN THE BINARY CASE

It may be helpful to visually render these concepts in a semgdample. Figure 2 shows the
geometry of belief and plausibility spaces for a binary featy = {z,y}. As |©| =2 b.f. and
pl.f. “are” vectors|v,, v,, ve]’ Of a space withV — 1 = 2 — 1 = 3 dimensions. However, since
b(©) = ply(©) = 1 for all b, we can neglect the componeny = 1 and represent belief and

plausibility vectors as points of a plane with coordinates
b= [b(z) = my(x), b(y) = mu(y))
ply = [plp(z) =1 — mu(y), ply(y) = 1 — my ()]’
respectively. In this case the b.pl.a. lofs j,(z) = (—1)* Y 5o, ms(B) = my(z) + my(0) =

plo(x), po(y) = (=1)? 32 5o, me(B) = mu(y) +my(©) = ply(y) andply = ply(x)bs + ply(y)by-
We can notice that the two simplices are symmetric with respe the Bayesian regiof?.

Furthermore, each pair of functiortg, pl,) determines a line which ierthogonalto P, where
b andpl, lie on symmetric positions on the two sides of the Bayesiaioreg

Let us denote withu(vy, .., v) the affine subspace of some Cartesian sfitegenerated by
the pointsuy, ..., v, € R™, i.e. the se{fv € R™ : v = vy + - - + apug, Y, ; = 1},
In the binary case the plarig? in which B, PL lie is the affine space of the normalized sum
functions on©,. The regionP’ of all the Bayesian n.s.f. is obviously (recalling Equati@)) (
the line

P ={s eR*:mz) +my) =1} = a(P)
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" pr
1=[1,17
b=[0,17=pl, Pi{L ]
PL
P
B ol
1-m (x p
o(X) bl
pl,
p[b]=n[b]+BetP[b]
b
m,(y) b
b=[1,0]'=pl,
b®:[0,0]' mb(X) 1_mb(Y) ) N

Fig. 2. In a binary fram@®, = {z,y} both beliefB and plausibility spac® L are simplices with vertice§be = [0,0]’, b, =
[1,0]',b, = [0,1]'} and{ple = [1,1]’, pl. = b, pl, = by} respectively. A belief functio and the corresponding plausibility
function pl;, are always located in symmetric positions with respect to théPset probabilities on®©. The associated relative
plausibility ﬁlb and beliefb of singletons are shown as the intersections of the probabilistic subspiictherline joining pl,
andbe = [0,0]" and the line passing throughandbe respectively. The other Bayesian functions related &l coincide with

the center of the segment of consistent probabilifgs].

and coincides with the affine spaeéP) = a(b,,z € ©) generated byP.

Consider now the set of probabilitieB[b] dominatingb (consistentprobabilities), i.e. the
Bayesian b.f. such that(A) > b(A) YA C ©. In the simple binary case the probabilities
consistent withb form a segment (1-dimensional simplex) m (see Figure 2 again), whose
center of mass is well known [33], [34], [24] to be Smetgjnistic function([35], [36], [15])

Baﬂm=§:@§:maszg.Q%@y+T§2)+%.Qm@y+T%9§. (10)

€O ADx

We can notice however that it also coincides with the ortimadgrojectionz[b] of b onto P,

and the intersectiop[b] of the linea(b, pl,) with the Bayesian simple®:

p[b] = w[b] = BetP[b] = P[b].
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Epistemic concepts like consistency and pignistic tramsé&tion seem then to be related to
geometric properties such as orthogonality. It is natuwalvbnder if this is true in the general
case, or is just an artifact of the binary frame.

It is worth to notice, incidentally, that theelative plausibility of singletonélb

ply(x) = 2el?) (11)

- Zplb(y)’

yeB
even though it is consistent with doesnot follow the same scheme. The same can be said of

the relative belief of singletons, i.e. the Bayesian function

= ()

b)) = ————
) Zmb(EJ)

yeO®
assigning to each singletonits normalized mass (see Figure 2 again). We will consideir th

behavior separately in the near future [37].

In the following we will study each of these geometric eestrelated t@, in particular the line
a(b, pl,), and the orthogonal complement®f We will provide a unified picture of the geometric
interplay of belief and probability by studying the propestof two Bayesian functions derived
from geometrical considerations, the orthogonal projecti[b] and the intersection probability
plb]. We will compare them with both the pignistic function anck trelative plausibility of
singletons, and with each other. We will provide interptietes of 7 [b], p[b] in terms of degrees
of belief, and discuss (in the case of the orthogonal prigegtheir behavior with respect to

convex combination.

V. GEOMETRY OF THE DUAL LINE

Let us then first study théual line connecting a pair of belief and plausibility measures
supporting the same evidence. As a matter of fact, orthddgprarns out to be a general
feature ofa(b, pl,). As we just saw in the binary cag€O) = pl,(©) = 1 Vb, so that we can

considerb, pl, as points ofRV 2,

A. Orthogonality

Let us consider the affine subspad®) = a(b,, z € ©) generated by the simplex of Bayesian

belief functions. This can be written as the translatedivarsf a vector space
a(P) = by + span(b, — b,,Vy € O,y # x),
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wherespan(b, — b,) denotes the vector space generated bynthel vectorsb, — b, (n = |O]).

After remembering that, by definition,

{ | A5B
bB(A) = (12)

0 else

we can see that these vectors show a rather peculiar symmetry

1 A>{y}, AP {z}
by —b.(A) =< 0 AD{z},{y}or AD {z}, {y} (13)
-1 A2 {y},AD> {z}
that can be usefully exploited.
Lemma 1:[b, — b,|(A°) = —[b, — b,](A) VA C O.
Proof: Following (12) we can appreciate that

by = b.](A) = 1= AD {y}, A B {x} = A° D {a}, A° 2 {y} = [b, — b.](A%) = —1

and vice-versa, whiléb, — b,](A) =0= A D {y},AD {z} or A 2 {y},A 2 {=}.
In the first caseA® % {z},{y}, in the second onet® > {z}, {y}; therefore in both cases
b, — b.)(A°) = 0. .
Theorem 2:The line connectingl, andb in RY~2 is orthogonal to the affine space generated

by the probabilistic simplex, i.éx — pl, La(P).

Proof: 4 Having denoted withX , the A-th axis of the orthonormal reference framé 4 :
A#6,0}in RVN-2 (see Section Ill), we can write their difference as

ph—b=>_ [plh(A) = b(A)] X4
ACO,A#£0.D

where
[ply — D](A°) = plp(A°) — b(A°) =1 —b(A) — b(A°) =

(14)
=1 = b(A) = b(A) = pls(A) = b(A) = [ply — b](A).

The scalar product-, -) between the vectopl, — b and the basis vectors a{ P) is

(ply = b,by — by = > [ply = bJ(A) - [by — ba](A)
ACO,A#£0,0

“In fact the proof is valid ford = ©, § too.
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which by Equation (14) becomes
> ol = A by — ba1(A) + by — b (A9 |
|AI<[I©]/2],A#0

whose addenda are all nil by Lemma 1. [ |

B. Intersection with the region of Bayesian normalized sunttions

One might be tempted to conclude that, singé, p/,) and P are always orthogonal, their
intersectionis the orthogonal projection df onto P as in the binary case. Unfortunately, this is
not the case for in general thelp not interseceach other.

As a matter of facb andpl, belong to aV — 2 = (2" — 2)-dimensional Euclidean space, while
the dimension ofP isonlyn — 1. If n =2, n—1 =1 and2" — 2 = 2 so thata(P) divides the
plane into two half-planes with on one side angi, on the other side (see Figure 2 again).
Formally, for a point on the line(b, pl;) to be a probability we need to find a value @fsuch
thatb + «(pl, — b) € P. Its components obviously aigA) + «[pl,(A) — b(A)] for any subset
AC©,A+#0,0 and in particular, whem = {z} is a singleton,

b(x) + alply(x) — b(x)] = b(z) + a1l — b(z€) — b(x)]. (15)
A necessary condition for this point to belongas the normalization constraint for singletons,

. —b(x%) —b(x)) = a = 1_Zx€®b(x)
2 ba) ka3 (1=a) —Ho) =1 = a == g SR

which yields a single candidate valygb] for the line coordinate of the intersection.

=gl (16)

Using the terminology of Section 11I-C, the candidate pra@t
s[b] = b+ B[b](ply — b) = a(b, ply) NP’ a7)

(having calledP’ the set of all the Bayesian n.s.f. RV ~2) is a Bayesian n.s,fbut is not guaran-
teed to be a Bayesidrelief function. For normalized sum functions, conditidn, o m(z) = 1

implies 3°, ., mc(A) = 0, so thatP’ can be written as

P ={o= 3 mi(Aha e RY 2 Y m(4) =1, Y mo(4) =0}, (18)

ACO |A|=1 |A]>1

January 18, 2007 DRAFT



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS B, VOL. X, NO. Y, MONTH 2007 14

Theorem 3:The coordinates of[b] with respect to the basis Bayesian belief functidhs = €

©} can be expressed in terms of the basic probability assignmemf b as follows:

ma)(v) = my(z) + B D my(A) (19)
ADx,A#x
where 5
81 = 1= coms(x) g1 (B 20)

> co (Plo(z) —my(z)) %m my(B)|B|’

Proof: The numerator of Equation (16) is trivial B|>1 m(B). On the other side

1—b(z) = b(x) = Y _my(B) = Y _ my(B) —my(z) = Y my(B)

BCO BCzxe BDx,B#x

so that the denominator gf{b] becomes

> ph(y) = b)) =D (1 =by) —b(y) = [ > my(B) =Y my(B) = mb(B)] =

yeO yeO® yeEO® BCO BCy° BCy
-3 Y B = 3 ()5
y€O BDy,B#y |B|>1
|

Equation (19) ensures that.;(z) is positive for eache € ©. Its symmetric version can be
obtained after realizing thaiM =1, so that we can write

\B\zlmb(B)lBl

Z|B|:1 my(B) Z\B\>1 my(B)

+ [ply — b](x)

mqp () = b(x) (22)

. Z\B|:1 mp(B)|B| . Z|B|>1 my(B)|B|’
It is easy to prove that the ling(b, pl;,) intersects the probabilistic subspamdy for 2-additive
belief functiongthe proof can be found in the Appendix).

Theorem 4:¢[b] € P iff b is 2-additive, i.em,(A) = 0 |A| > 2, and in this casel, is the
reflection ofb throughP.
In other words, for 2-additive belief functior$b| is nothing but themean probabilityfunction
%. In the general case, instead, the reflection tirough” not only does not coincide with

ply, but it is not even a plausibility function [38].

VI. INTERSECTION PROBABILITY

We have seen that the ling, pl,) is always orthogonal té&®, even in the general case.
However, (b, pl,) does not intersect the probabilistic subspace, in gerfartilt does intersect the

region of Bayesian normalized sum functions;jb| (17). But of course (sinc®_, m(z) = 1)
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° plb
c[b]
p[b]
a(b,pl,) [b]
P
b /
P a(P)

Fig. 3. The geometry of the line(b, ply) and the relative locations qf{b], <[b] and 7[b]. Each b.f.b and the related pl.f.
ply, lie on opposite sides of the hyperplaf@ of the Bayesian n.s.f. which dividé&™ 2 into two parts. The linex(b, ply)
connecting them always intersed®s, but not necessarily(P) (vertical line). This intersection[b] is naturally associated with

a probabilityp[b] (in general distinct from the orthogonal projectiefb] of b onto ), having the same components in the base

{bs,z € ©} of a(P). P is a simplex (a segment in the figure) @iP): «[b] andp[b] are both “true” probabilities.

s[b] is naturally associated with a Bayesibalief function assigning an equal amount of mass
to each singleton and 0 to each: |A| > 1, namely

plb] = Z mepp) (2)by (22)

€O
wherem () is given by Equation (19). It is easy to see thédi] is a probability, since by

definition mp[b](A) = 0 for |A| > 1, mp[b](x) = mg[b](x) > 0Vzr € 6, and ere mp[b](x) =
> co Mep)(z) = 1 by construction. The geometry ofb] andp[b] with respect to the regions of

Bayesian b.f and n.s.f. is sketched in Figure 3.

A. Interpretations
1) Non-Bayesianity flag and relative plausibility first interpretation of this new probability
is immediate after noticing that

Bl = 1= comp(r) 1K

ere ply(z) — ere my () N k’;?zb - ki;'
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where

k= mp(z) k=) ph(x) =) my(A)A]

z€0 z€© Ace
are the normalization factors fér pl, respectively, so that[b] can be rewritten as
ply(x) — my(x
pIEI(w) = ) + (1 — k) P =), @3)
b

ply

Whenb is Bayesianpl,(z) — my(z) = 0 Yz € ©. If b is not Bayesian, there exists at least a

singletonz such thatpl,(z) — m,(x) > 0. The Bayesian belief function

N ZADx,A;éac my(A) ply(x) — my(z)

a Z\A|>1 my(A)[A] ; Zye@ (plb(y) - mb(?/))
measures then the relative contribution of each singletamthe non-Bayesianity df. Equation

R[b](x)

(23) shows in fact that the non-Bayesian mass k; is assigned byp[b] to each singleton
according to its relative contributioR[b](z) to the non-Bayesianity of.
The flag probabilityR[b] also relates the intersection probabiljifp] to other two classical

Bayesian approximations, the relative plausibiﬁ'ly and beliefb of singletons, as (23) reads as
plb) = kzb+ (1 — kz) R[D]. (24)

Geometrically, since; = > o my(z) < 1, p[b] belongs to the segment linking[b] with the
relative belief of singleton$, with convex coordinate the total mass of singleténsOn the
other side, the relative plausibility function can also betten in terms ofb and R[b] as, by

definition,

ly(x) — myp(z ly(x my(x ~ k; ~ ks
i) = PO < P i) e )
sincepl,(x) = ply(z)/ky, andb(x) = my(z)/k;, SO that

ol = <’f%>b + (1 - %)R[b].
This means that botpl, also belongsC(R[b],b). However, asky, = > 4comu(A)|A] = 1,
ky/ky, < k; which in turn implies thap[b] is closer toR2[b] than the relative plausibility function
pl, (see Figure 4). The convex coordinatepdf in C1(R[b], b) measures the ratio between total
mass and plausibility of singletons. Obviously whgn= 0 (b does not existsy[b] = pl, = R[b]

by Equation (23).
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Fig. 4. Geometric location of[b] and relative plausibility of singletons with respect to the non-Bayesianity Thgy both

lie on the segment joiningz[b] with the relative belief of singletons, but pl, is closer tob thanp|b].

2) Meaning of the ratio3[b] and pignistic function:To shed more light op[b] and get an
alternative interpretation of this probability it may beefid to comparep[b] as expressed in

Equation (23) with another classical Bayesian “relative’bpthe pignistic function

BetPlb)(z) = m|bf(f\4) = my(x) + Y mf‘).

Adz A>z, Atz | |
We can notice that irBet P[b] the mass of each evert, |A| > 1 is consideredseparately and
its massm,(A) is equally shared among the elements 4f In p[b], instead, it is theotal mass
> a1 Ms(A) = 1 —k; of non-singletons which is considered, and this total masfistributed
proportionally to their non-Bayesian contribution to each elemen®of
How shouldj[b] be interpreted then? If we writgld](z) as

plb)(x) = my(x) + B[] (ply(x) — ms(z)) (25)

we can observe that a fraction measured’fy of its non-Bayesian contributiopl,(x) —m;(x)
is uniformly assigned to each singleton. This leads to another pasatieietweenp[b] and
Bet P[b]. It suffices to note that, ifA| > 1,
Blba] = Z|B|>1mb(B> _ 1
2 p=1me(B)[B] A
so that bothp[b](z) and Bet P[b](z) assume the form

my() + Y my(A)Ba,

ADzx,A#x

where 54 = const = g[b] for p[b], while 54 = 3[b4] in case of the pignistic function.
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Under which conditiorp[b] and pignistic function coincide? A necessary and sufficent-
dition can be achieved by decomposifiy] as

B[] = Z|B|>1 my(B) _ > ks Z|B|:k my(B) _ ) INNINURRTD 3
S BB~ Shak Sy (B) et s,

after definingZy, = >_ p,_; ms(B).

(26)

Theorem 5:p[b] and pignistic function coincide iffl k € [2,...,n] such thats; =0 V i # k,
i.e. the focal elements df have size 1 ok only.
Proof: p[b] = BetP[b] is equivalent to

)+ 3 ma=mier $ M= 3 mian= 5O

ADz,A#x ADz,A#x ADz,A#x ADz,A#x
but that meangi[b] = 1/|A| for all A D z, A # z. Since3[b] does not depend o/, this can
be true only if3 & : my(A) = 0 for |A| # k, and3[b] = 1/k. But this is equivalent t&; = 0
for i # k, in which casej[b] = 3= = 1/k. |
In particular this is true whel; = 0, i > 2, i.e. whenb is 2-additive. The condition of Theorem

5 is in fact a rather straightforward generalization of tleacept of 2-additivity.

3) Example: Let us see a simple example to briefly discuss the two intexpoas of p[b]
introduced above. Consider then a ternary frathe= {z,y, 2}, and a belief functiorb with
b.p.a.

mp(x) = 0.1, my(y) =0, my(z) = 0.2,
my({z,y}) = 0.3, mp({z,z}) =0.1, mp({y,2}) =0, my(©) =0.3.
Recalling Equation (23) the total mass of singletons:;is= 0.1 + 0 + 0.2 = 0.3, while the

non-Bayesian contributions aof, y, = are respectively

ply(z) — myp(z) = mp(©) + mp({z,y}) + ms({z, 2}) = 0.7,
ply(y) — mu(y) = mp({z,y}) +mp(©) = 0.6,
plo(2) — mp(2) = mp({x, 2}) + myp(©) = 0.4
so that the non-Bayesian flag #z) = 0.7/1.7, R(y) = 0.6/1.7, R(z) = 0.4/1.7.
For each singleton then the original b.pa,(x) is increased by a share of the mass of non
singletonsl — k; = 0.7 proportional to the value oR(z),
pb](z) = mp(x) + (1 — ki) R(z) = 0.1 + 0.7+ 0.7/1.7 = 0.388,
pb](y) = mp(y) + (1 — kz)R(y) =0+ 0.7%0.6/1.7 = 0.247,
pb](z) = mp(z) + (1 — kj) R(2) = 0.2+ 0.7% 0.4/1.7 = 0.365.
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)
|

Equivalently, the line coordinatg[b] of p[b] is equal to

Sib] = 1—Fk; _ 0.7 _ 07
mey({z,y}){x,y} +me({z, 2})|{x, 2} + mp(©)|O] 03%2+01%x24+03%3 1.

and measures the sharedf(z) — m;(x) assigned to each singleton:

pb](x) = my(x) + Bb](ply(z) — my(z)) = 0.1 +0.7/1.7% 0.7,
plbl(y) = mu(y) + BBl (ple(y) — mu(y)) = 04 0.7/1.7 % 0.6,
plb](2) = my(2) + B[0](ply(2) — mp(2)) = 0.2 +0.7/1.7 % 0.4.

VII. ORTHOGONAL PROJECTION

We have seen that even though the lité, pl,) is always orthogonal to the probabilistic sub-
space, its intersection with the regi@" of the Bayesian n.s.f. is not always ™ Nevertheless,
an orthogonal projectiomr[b] of b onto a(P) is obviously guaranteed to exist no matter the
behavior ofa(b, pl;), asa(P) is nothing but a linear subspace in the space of all the nizethl
sum functions (such &sg. An explicit calculation ofr[b], however, requires a description of the

orthogonal complement af(P) in RV~2. Let us denote witm = |©| the cardinality ofo.

A. Orthogonality condition

We need to find a necessary and sufficient condition for artrarpivectorv = ZAC@ vaXa
of to be orthogondl to the probabilistic subspacgP). If we compute the scalar product
(v,b, — b,) betweenv and the generators, — b, of a(P) we get

< > vaXasb, - bx> =S walb, — b.)(A)

ACO ACO

that remembering Equation (13) becomes

(v,b, — by) = Z v — Z VA-

ADy,Apx ADx, Ay

The orthogonal complemen{P)+ of a(P) will then be expressed as

U(’P)L:{Ut Z vy = Z UAVy%x}.

ADy,ADx ADz,ABy

®In fact the proof is again valid fod = ©, §) too, see Section VIII-B.
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If the vectorwv, in particular, is a belief functionvfy = b(A))
STobn) = Y Y mB)= Y my(B) - 2B
ADy,Apx ADy,Apx BCA Bc{xz}e
since 2"~1~1BYWH js the number of subsetd of {z}° containing bothB andy, and the
orthogonality condition becomes
Z my(B)2n 1 1BU — Z my(B)2" 1 IBUEH gy £ g
Bc{z}c Bc{y}e©
Now, setsB C {z,y}° appear in both summations, with the same coefficient (siBee{z}| =
|BU{y}| =|B| + 1) and the equation reduces to, after erasing the commonr fa¢ts,
>, m(BRT = 3, m(B2T Wy e (27)
BDy,Bpx B>x,Bpy
which expresses the desired orthogonality condition.
Theorem 6:The orthogonal projectiom|b] of b onto a(P) can be expressed in terms of the

b.p.a.m, of b as

_ 1-|A]
o) = 3 my()27 3 () (LAY (29)
ADzx ACO
> 1+ |Ac|2!7 14 1— | A2t 14l
wibl() = 3 my(ct) (LAY Sy (AHETEY g

ADx Apx
From (29) we can see that[b] is indeed a probability since bothl + |A¢[2!~14l > 0 and

1 —|A]2'-M > 0 V|A| = 1,...,n. This is not at all trivial, asr[b] is the projection ofb onto

the affine spacea(P), and could have in principle assigned negative masses tcoomeore

singletonsr[b] is hence another valid candidate to the role of probalilstiproximation of the
b.f. b.

B. Orthogonality flag

Theorem 6 does not apparently provide any intuition aboetrtieaning ofr[b] in terms of
degrees of belief. Nevertheless, if we process EquationW29can reducer to a new Bayesian
function strictly related to the pignistic function.

Theorem 7:7[b] = P(1 — ko[b]) + ko[b]O[b], whereP is the uniform probability and

L OBl(x) . m(A)2A _ mi)
Opbl(z) = kolb] ZACA@ my(A) A1~ ZA; mbz(#

(30)
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is a Bayesian belief function.
As 0 < |A|2' < 1 for all A C O, ko[b] assumes values in the interval 1]. Theorem 7 then
implies that the orthogonal projection is always locatedtmnline segment joining the uniform,
non-informative probability and the Bayesian function).

By Equation (30) it turns out that[b] = P iff O[b] = P (sinceko[b] > 0). The meaning to
attribute toO[b] becomes clear when we notice that the condition (27) undéchn b.f. b is
orthogonal toa(P) can be rewritten as

Z m5(3)21*|3|+ Z mb(B)Qllel _ Z mb(B)QHBl—l— Z mb(B)217|B\ —

BDy,Bpx BDy,x BDx,Bpy BDy,x
Z my(B)21 18l = Z my(B)2' '8 = O[b](z) = const = O[b](x) = const =PV € O.

BDy BDx
Thereforer[b] = P if and only if b.La(P), andO — P measures the non-orthogonality iofvith
respect toP. O[b] deserves then the name afthogonality flag

C. Interpretation in terms of plausibilities, redistribati processes

A compelling link can be drawn between orthogonal projettand pignistic function by
means of the orthogonality flaQ[b]. Let us define the two belief functions

b = k;” Z ] ba, by = o Z@ SIA] ——ba

ACO
wherek andk, are the normalization factors needed to make them two adbiggs.f.

Theorem 8:01b] is the relative plausibility of singletons df,; BetP[b] is the relative
plausibility of singletons ob.
Proof: By definition of plausibility function

Pl () = Zmbzu(A) - E; 2I(A) - 2k[2|]’ Z by ( " kg ZZ 2IA\ 2k£|]

ADx €O €O ADx

by Equation (38). Hencel, o (z) = O[b]/ko[b] = O[b]. Equivalently,

my A 1
ply, (z Az:mbl kll AX: |f(1| ) = k—HBetP[b](x)

and since}_, Bet P[b](x) = 1, ply, () = BetP[b](x). m
The two functionsh; and b, represent two different processes actingbofsee Figure 5). The

first one redistributes the mass of each focal element amsrgingletons(yielding directly a
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Bayesian b.f.Bet P[b]). The second one distributes the b.p.a. of each edemtong itssubsets

B C A (0, A included). In this second case we get an unnormalized [3@fldenction bV

my(A) = 3 1AD)

olB|
BDA

whose relative belief of singletortéf is in fact the orthogonality flag)[b].

A
— (o m'(x) = m'(y) = m'(z) = 1/3 m(A)
() m'() = m'(x) = m'(y) = m'(z) =
- @ P ' = m'({x,y}) = m'({x,z}) =
\\cP) m'({y.z}) = m'(A) = 1/8 m(A)
A
Fig. 5. Redistribution processes associated with pignistic transformatidn oahogonal projection. In the pignistic

transformation (top) the mass of each focal element is distributed am®m@iements. In the orthogonal projection (bottom),
instead (through the orthogonality flag), the mass of each f.e. is diadezhg its subsets. In both cases, the related relative

belief of singletons yields a Bayesian belief function.

1) Example:Let us consider again as an example the belief fundiion the ternary frame
mb<x) = 017 mb(y) = 07 mb(z) = 027
my({z,y}) = 0.3, mp({z,z}) =0.1, mp({y,2z}) =0, my(©) =0.3

seen in Section VI-A.3. To get the orthogonality fleégb] we need to apply the redistribution
process of Figure 5 to each focal elemenb.oln this case their masses are divided among their
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subsets as follows:

m(z) =0.1 — m/(z) =m/(0) =0.1/2 =0.05

m(z) =0.2 — m/(z) =m/(0) =0.2/2 =0.1

m({z,y}) =03 — m'({z,y}) =m'(x) =m'(y) = m'(0) = 0.3/4 = 0.075
m({z,2}) =01 — m'({z,2})=m/(x) =m/(2) =m'(0) =0.1/4 = 0.025
m(©) = 0.3 — m/'(0) =m'({x,y}) = m'({z,2}) = m'({y, 2}) =

=m/(z) =m/(y) =m/(z) = m/(0) = 0.3/8 = 0.0375.
By summing the contributions related to singletons on thbtrigand side we get
myu () = 0.05 4+ 0.075 + 0.025 + 0.0375 = 0.1875,
myv (y) = 0.075 + 0.0375 = 0.1125,
myu(z) = 0.1+ 0.025 + 0.0375 = 0.1625

whose sum is the normalization factor
kolb] = myv (x) + myu (y) + myv (2) = 0.4625

and by normalizingO[b] = [0.405 0.243 0.351)". The orthogonal projectiom[b] is finally the
convex combination 0©[b] andP = [1/3 1/3 1/3]’ with coordinatek, [b):

7b] = P(1 — kolb)) + ko[b]O[B] = [1/3 1/3 1/3]' - (1 — 0.4625) + 0.4625 - [0.405 0.243 0.351]’
= [0.366 0.291 0.342]".

D. Orthogonal projection and convex combination

As a confirmation of this relationship, orthogonal projentiand pignistic function both
commute with convex combination.

Theorem 9:0rthogonal projection and convex combination commute, i.e

7T[Oélb1 + agbg] = Ojlﬂ[bl] + Ozgﬂ'[bg].
Proof: By Theorem 7x[b] = (1 — ko[b])P + O[b] Whereko[b] = > , o mu(A)| A2
andO[b)(z) = Y- 4=, ms(A)2' . Hence

ko[Oélbl + Oéng] = Z (almbl (A) + Q2My,, (A))‘A|21_|A| = alko[bl] + agko[bg],
ACo

Olanby + agby](x) = Z (armp, (A) + agmp, (A)) 2 = 0, 0[] + a2 0[bs]

ADx
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which in turn implies (sincey; + as = 1)
mlanby + aoby] = (1 — ayko[bi] — azko[ba])P + a1 O[b1] + aaOl[bs] =
= a1 [(1 = ko[b1])P + O[b1]] + a2 [(1 — ko [ba])P + O[ o] = arm[bi] + aom(bo).
|
This property can be used to find an alternative expressidmeodrthogonal projection aonvex
combination of the pignistic functions associated with b# basis belief functions
Lemma 2: The orthogonal projection of a basis belief functionis given byz[b4] = (1 —
|[A[2 AP 4 [A]2 AP, wherePy = 5, 3, 1 b, is the center of mass of all the probabilities
with support inA.
Proof: By Equation (30)ko[b4] = |A[2!'714, so that
Olbal(x) = { 2 e d = Olbal(z) = { A Zb
0 ré A 0 z2¢A |A|xeA
u
Theorem 10:The orthogonal projection can be expressed as a convex natiun of all the

non-informative probabilities with support on a single mvd as

— 75(1 -y aA) + 3 aaPa, aa=my(A)AAL (31)

A#O© A#©

] = w[ S mb(A)bA} =5 mp(A)alba)

ACO ACO
by Theorem 9, which by Lemma 2 becomes

> ma(A)[(1 = [ARANP 4 AR AP = (1= 3T my(4)| ARt ) P+

Proof:

Ace =
+ Z mb |A|21 IA\PA (1 — Z mb |A[21 |A|>7p + Z mb |A|21 |A\P n
Ace 4o =
+my(©)0[2! 719
i.e. Equation (31). .

As Py = BetP[bA] we recognize that

BetP[b Z my(A)BetPlba], w[b] = Z aaBetPlba] + (1 — Z ozA> BetP[be)| (32)
ACO A#6 A#0

with 4 = my,(A)kolba]. Both orthogonal projection and pignistic function are e@necombi-
nations of all the basis pignistic functions. However,kagh,] = |A]2!-141 < 1 for |A| > 2,
the orthogonal projection turns out to be closer to the gestiassociated with events of lower

cardinality (see Figure 6).
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Fig. 6. Orthogonal projectiom[b] and pignistic functionBetP[b] are both located on the simplex whose vertices are all the

basis pignistic functions, i.e. the uniform probabilities associated with daglesventA. However, the convex coordinates of

n[b] are weighted by a factako[ba] = |A|2'~4!, yielding a point which is closer to vertices related to lower size events.

1) Example: ternary caselLet us consider as an example a ternary frathe= {x,y,x},
and a belief function or; with b.p.a.

mp(z) =1/3, mp({z,2}) =1/3, mp(O3) =1/3, mp(A) =0 A # {z},{x, 2}, Os.
According to Equation (31)
m[b] = 1/3Pgy + 1/3Pppy + (1 —1/3 - 1/3)P =1

1 1bg+b; 1batby+bz
- 361‘ + 3 2 + 3 3

=ba(3+5+35) +0:(5+5) +bys = 15be + 50y + 302

and the orthogonal projection is the barycenter of the smpll(Py,,, Pi...1, P) (see Figure
7). On the other side,

BetPlb)(z) = @) 4 me2) 4 me(Os)

= %, BetP[b)(y) =

5, BetP[b)(z) =3+
i.e. BetP[b] = w[b]. This is true for each belief functioh € Bs, since for Equation (32) when
O] =3 ax=my(A) for [A| <2,andl — 3" aa=1—=3", o m(A) = my(O).

2) Distance betweeset P and 7 in the quaternary caseTo get a hint of the relationship

between orthogonal projection and pignistic function ie theneral case let us compare their

expressions in the simplest case in which they are distmftame® = {z,y, z, w} of size 4.
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I
<

Fig. 7. Orthogonal projection and pignistic function in the ternary dase= {z,y, z}.

Their analytic expressions for the elemaent © are

BetP[b)(x) = my(x) + 3(m({x, y}) + mp({z, 2}) + my({z, w}))+
+3(mo({z,y,2}) + m({z, y, w}) + mp({z, 2, w})) + G (0);
m[b)(x) = mo(@) + 5(mo({z, y}) + mo({z, 23) + mu({w, w}))+
+15(m({,y,23) +me({w, g, wh) + m({z, 2, w}) + gme({y, 2, w}) + Fme(O).

They are very similar to each other: basically the diffeeeigcthatr[b] counts also the masses

(33)

of focal elements inf{z}¢ (with a small contribution), whileBet P[b] by definition does not.
If we compute their difference

1

BetPlb](z) — wlb](2) = 1= |mo({z,y, 2}) + ms({z, y, w}) + mp({z, 2, w}) = 3-me({y, 2, w})]

we can analyze the behavior of thdip distance as varies. After introducing the simpler

notation

Y1 = mb({x,y,z}), Y2 = mb({xvva}>a Ys = mb({xv'Z?w})? Y4 = mb({yv Z,U)})7

we can maximize (minimize) the norm

HBetP[b]—W[b]HQ = (y1+y2+y3—3y4)2+(y1+y2+y4—3y3)2+(y1+y3+y4—3y2)2+(yz+y3+y4—3y1)2
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by imposingaiy|]BetP[b](y) — w[b](y)|> = 0 subject toy; + y» + y3 + y4 = 1. The unique
solution turns out to be

y=[1/41/41/41/4)

which corresponds to (after replacing this solution int8)§3Bet P[b] = 7[b] = P whereP =
[1/4 1/4 1/4 1/4]" is the uniform probability oi®. In other words, the distance between pignistic
function and orthogonal projection is minimal (zero) whdélrseze 3 subsets have the same mass.

It is then natural to suppose that their difference must beimma when all the mass is
concentrated on a single size-3 event. This is in fact cortigget P[b] — 7[b]||* is maximal and
equal to1? 4+ 1% + 12 + (=3)* = 12 wheny; = 1, y; = 0 Vj # i, i.e. the mass of one among
{z,y,z},{z,y,w}, {x, z,w}, {y, z,w} is one.

VIIl. A BRIEF DISCUSSION

In this paper we introduced two novel probabilistic appneaiions of a belief function, the
intuition for both of them provided by the geometric anadysi the interplay between belief
and probability spaces in the context of the geometric aggrdo the theory of evidence. Both
intersection probability and orthogonal projection aratex] to the notion of orthogonality: the
orthogonality of the dual line and that afb] — b with respect toP. Nevertheless they possess
different interpretations in terms of mass assignment, ratate in significant but distinct ways
with the pignistic transformation.

An interesting parallel betweerjb] and~[b] comes from their geometric description as points

of a segment. Recalling Theorem 7 and Equation (24)

mb] = ko[bJOB] + P(1 — ko[b])  plb] = kzb + (1 — ky) R[D]

we can appreciate that they can both be written as convex icatidns, which depend on
the flag probabilities associated with them, namely theagitimality and non-Bayesianity flag

respectively:

—
O[] < R[b).
It is then worth to study the condition under whipfb] and orthogonal projection|b] are the

same probability.
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A. Analytic comparison

A trivial consequence of Theorem 4 is that whens 2-additive, x[b] = p[b] = <[b]. The
inverse implication is also true.

Theorem 11:The orthogonal projection|[b] and p[b] coincide iff b is 2-additive, i.e.

mb(A) =0 VA: |A| > 2.
Proof: We just need to compare expressions (19) and (28) to seehhdivb quantities

are the same iff )
LA g Az, A#w

n

my(A) =0 A B, |A > 2.

The second condition is true éé"“'jlj #0VA:|A| #1,2. But now, asg[b| does not depend
on the sizelA| of A, the first condition requiresy,(A) = 0 for |A| # k for somek € [2,...,n],

with "
L+ A2 14 (n— k)217* 1

n n k

(using the form (26) of3[b]). As the resulting equation = k(1 + (n — k)2'*) is met byk = 2
only we have as desired. [ ]
Theorem 11 gives just “pointwise” information on the redathip between intersection proba-
bility and orthogonal projection. It would definitively beorth conducting a study of the distance
between all the Bayesian functions we now kndset P, r, p, ﬁlb,é asb varies in3, in order to
understand how they are influenced by the basic probabggigament. We started to do this for
the pair Bet P[b], 7[b] in the case of binary frames (Section VII-D.2), getting saimeresting

results. We reserve to explore this direction thoroughlyhie near future.

B. Unnormalized belief functions

We may also want to add a remark on the validity of the resulesented in this paper.
They have been in fact obtained for “classical” belief fumas, for which the mass assigned
to the empty set is 0h(()) = m, (@) = 0. However, it makes sense in certain situations to work
with unnormalizedbelief functions (u.b.f.) [39], i.e. belief functions aditmg non-zero support
my(0) # 0 for the empty set [40}m,(() is an indicator of the amount of conflict in the evidence
carried by a belief function, but can also be interpreted as the possibility that theiagisrame

of discernment does not exhaust all the possible outcoméieoproblem. Unnormalized b.f.

January 18, 2007 DRAFT



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS B, VOL. X, NO. Y, MONTH 2007 29

are naturally associated with vectors with= 2/®l coordinates.

A new set of basis u.b.f. can then be defined
{bA E]RN,Q) QAQ @}

this time including a vectoby = [1 0 ---0]’. Note also that in this cadey = [0---0 1]'.

It is natural to wonder whether the above discussion, anaitiqular definition and properties
of p[b] and 7[b], retains their validity. Let us consider again the binargecaWe now have to
use four coordinates, associated with all the event®:if), {z}, {y}, and©. Remember that

in the case of u.b.f.

b(A) = > my(B) A#0

PCBCA
i.e. the contribution of the empty set is not considered wbemputing the belief value of an

eventA # () 8. The corresponding basis belief and plausibility funcsi@me then

by = [1,0,0,0) ply = [0,0,0,0]

b, = [0,1,0, 1]’ pl, =1[0,1,0,1) = b,
b, =[0,0,1,1] pl, = [0,0,1,1)' = b,
bo =[0,0,0,1]  ple =1[0,1,1,1]'.

A striking difference with the “classical” case is thdt)) = 1 — m;(0) = pl,(©) which implies
that both belief and plausibility spaces avet in general subsets of the sectiog = 1 of RY.
In other words, u.b.f. and u.pl.f. are not normalized suncfiams (Section IlI-C).

More precisely,b, pl, are n.s.f. iff b(()) # 0. As a consequencehe line a(b,pl,) is not
guaranteed to intersect the affine spaéeof the Bayesian n.s.f.

Consider for instance the line connectilygand pl; in the binary case:
aby + (1 — a)ply = «[1,0,0,0], «a€eR.

As P ={la,b, (1 —b),—al',a,b € R} there clearly is no value. € R s.t.a- [1,0,0,0]" € P'.
Simple calculations show that in faatb, pl,) NP’ £ () iff b(0) = 0 (i.e. b is “classical”) or
(trivially) b € P. This is true in the general case.

Proposition 2: p[b], 3[b] are well defined for classical belief functions only.

®Notice that in the unnormalized case the notatiois usually used foimplicability functions, while belief functions are
denoted byBel [13].
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It is interesting to note that, however, the orthogonalgguits of Section V-Aare still valid
since Lemma 1 does not involve the empty set, while the prédfiheorem 2 is valid for the
componentd = ), © too (asb, — b,(A) =0 for A = (), ©).

Proposition 3: a(b, pl,) is orthogonal tdP for each u.b.fb, even though[b] = a(b, pl,) NP’ #
() iff bis a b.f.
Analogously, the orthogonality condition (27) does notanm the mass of the empty set. The
orthogonal projectiorr([b] of a u.b.f.b is well defined (check Theorem 6’s proof), and it is still
given by Equations (28),(29) where this time the summatmmshe right hand side include the

empty set too:

_ 1—|A|
i) = Dom2 e 3w (SAE
AdDz . 1—|AQFAC@ L ’A|21_|A‘
61 = i () 5 (L2
ADx 0CA Dz

IX. CONCLUSIONS

In this paper we used the geometric approach to the theoryidemce to introduce two
new probabilities related to a belief function, both of thelarived from purely geometric
considerations. They are indeed associated with two difteyeometric loci: the dual line passing
throughb andpl, in the belief space, and the orthogonal complement of thieglnitity subspace.
After proving that the linea(b, pl;) is always orthogonal td® and intersects the region of
the Bayesian n.s.fP’, we introduced the probability[b] associated with this intersection and
discussed two interpretations pfb] in terms of non-Bayesian contributions of singletons.

On the other side, after precising the condition under wiaidnf. b is orthogonal toP we
gave two equivalent expressions of the orthogonal praectf b onto P. We saw thatr|[b]
can be reduced to another probability signaling the distasfd from orthogonality, and that
this “orthogonality flag” can be in turn interpreted as thsule of a mass redistribution process
analogous to that associated with the pignistic transftomaWe proved thatr[b] commutes
with the convex combination operator, and can thereforexipeessed as a convex combination
of basis pignistic functions, confirming the strict relatibetweenr[b] and Bet P[b].

We finally studied the difference betwegfb] and«[b], and discussed which results retain their

validity for unnormalized belief functions.
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We have seen when discussing the binary case that, \Bail& [b], p[b] and7[b] belong to the
same “family” of Bayesian relatives éf(as they coincide under 2-additivity), relative plaustiil
plb] and beliefb of singletons [14] do not fit in the same scheme. In the neardéuive will show
that p[b] turns out to be the best Bayesian approximation of a belieftfon in the framework
of Dempster’s combination rule, and investigate the duangsry of relative plausibility and
belief of singletons [37]. Naturally enough the geometppm@ach can be adopted to study the
problem of approximating a belief function with a posstlyilmeasure (consonant b.f.).

To complete the study we started in this paper we would needepict a complete picture
of the conditions under which all the different Bayesian tieés of b coincide. Furthermore, a
contribution to understanding their semantics could comm fthe study of the convex geometric
loci {b € B : Bayes[b] = const} of all the belief functions for which a certain Bayesian

approximation (sayBet P[b], p[b] or 7[b]) is constant.

APPENDIX: PROOFS
Proof of Theorem 4

By definition (17)<[b] can be written in terms of the reference frafita, A C O} as

> ma(A)ba+ Bl (D m(A)ba— 3 my(A)ba) = 3 balma(A) + BB () — my(A))]

ACO ACO ACO ACO

sincey,(.) is the Moebius inverse ofl,(.). For¢[b] to be a Bayesiabelief function, accordingly,

all the components related to non-singleton subsets nebd #@ro,

mp(A) + B[] (up(A) —myp(A)) =0 VA : |A| > 1.
This condition in turn reduces to (recalling expression) (@053[b])

m(A) Y my(B) +mb(A)[ S my(B)BI - Y mb(B)] —0 VA A >1 =

|B|>1 |B\>1 |B|>1 (34)

Mb(A> Z mb —i—mb Z mb |B‘ — 1) 0.

|B|>1 |B|>1
But now > o mu(B)(|B] = 1) = 3_ gjo m(B) + 32 pjs0 mu(B)(| B| — 2) so that expression
(34) becomes

[(A) + my(A)] Y my(B) +my(A) S my(B)(|B] —2) =0 VA: |A] > 1 = o5
|B|>1 |B|>2 35

[ms(A) + pe(A)] - My[b] + mi(A) - My[b] = 0
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after definingM;[b] = > 5., my(B) and Ma[b] = >, 5, my(B)(| B| — 2) respectively.
Now, it is easy to note that

Mb] =0 my(B)=0 VB:|B|>1<bcP

Mybl =0< my(B) =0 VB:|B|>2
as all the terms inside the summations are non-negative byitdn of basic probability
assignment. We can distinguish three casgs:= 0 = M, (b € P), M; # 0 but M, = 0, and
finally My # 0 # M,. If My = M, = 0 thenb is a probability (trivially), while if My # 0 # M,
then Equation (35) impliesy,(A) = uy(A) =0, |A| > 1 i.e. b € P, which is a contradiction.

The only non-trivial case is thefn/; = 0, in which condition (35) becomes
M;[b] - [mp(A) + p(A)] =0, VA:|A| > 1.
But in this case iflA| > 2 thenm;(A) = u,(A) = 0 (since M, = 0) and the constraint is met.
If |[A| =2, instead,

pe(A) = (=1 my(B) = (=1)* 'y (A) = —my(4)

(sincemy(B) = 0 VB D A, |B| > 2) so thatu,(A) +my(A) = 0 and the constraint is again
met. Finally, as the coordinaté{b] of ¢[b] on the linea(b, pl,) can then be rewritten as

MY
S VATEEYATA

if M, =0 then3[b] = 1/2 and¢[p] = “2.

(36)

Proof of Theorem 6
Finding the orthogonal projection[b] of b onto a(P) is equivalent to imposing the condition
(m[b] — b, b, — by) =0 Vy # x. Replacing the masses of— b
m(x) —my(z), T€O
_mb(A)> |A| >1

into Equation (27) yields, after extracting the singletonBom the summation, the system

=@ Ym0 M pm) —m@) - Y m(A2 A vy
ADy,Apx,|A|>1 ADx,Apy,|A|>1
Y wly) =1

(37)
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After replacing the first: — 1 equations into the normalization constraint we get

+Z[ D Amyy) —mp(@)+ Y mp(At - Y m,,(A)zl—lA\]:1

y#T ADy,Apz,|A|>1 ADz,Apy,|A|>1

which is equivalent to

nm(x) =14 (n — )my(x Zmb

y#x
DS SI D SR SRR
y#x ADxz,Apy,|A|>1 y#x ADy,Apx,|A|>1
But now
Yooood L m(A = Y my(A)2 M4
y#r ADy,Apz,|A|>1 Apz,|A|>1

as all theA’s not containingz do contain some # z, and they are countedi| times (i.e. one
time for each element they contain). Instead

Yoo mA2t M= Y w42 M= [A]) = Y mp(A)2' M (n—]A))
y#r ADz,Apy,|A|>1 ADz,1<|A|<n ADz,|A|>1

for n — |A| = 0 when A = ©. Hence,r(z) is equal to

1[1+(n—1mb =S m) = S m (A2 A ST my(4)21 M — |A))

n
y#£z Apz,|Al>1 ADuz,|A|>1

= %[n -mp(z) + 1 — Zmb(y) +n Z mp(A)21 A4

y€o ADuz,|A|>1
= 3 mp2 A - Y mb(A)21’|A|\A]].
ADz,|A|>1 Apz,|A|>1

We then just need to note thaty .o ms(y) = — >4, ms(A)|A[2' 714, so that the orthogonal

projection can be finally expressed as

W(JJ)Z%[n-mb(:L’)—i—n- Z my(A)2'~ \A\+1_Zmb )| A2t \Aq

Aoz, |A[>1 AcoO
=)+ Y my(A)2 e Y mz)(@(ﬂ)
n
ADuz,|A|>1 ACO
i.e. Equation (28), and sincg 1l 1 — [Alg1-lal — 1+217\/:(n_\14|) _ 1+21’7‘1A'\Ac| we get the

second form (29).
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Proof of Theorem 7

By Equation (29) we can write

(@) = OBl(e) +— (30 mul(A) = 3 () AR) = OBa) + (1~ holt]).

ACO ACO n
But since
D OBl) = my(A)2 =N "y (A)| A = ko), (38)
€O €O ADx ACO

i.e. ko[b] is the normalization factor foO[b], the function (30) is a Bayesian belief function,
and we can write (a®(z) = 1) 7[b] = (1 — ko[b])P + ko[b]Ob].
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