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Abstract. The recent development of Sequential Monte Carlo methods (also called particle filters) has enabled the
definition of efficient algorithms for tracking applications in image sequences. The efficiency of these approaches
depends on the quality of the state-space exploration, which may be inefficient due to a crude choice of the function
used to sample in the associated probability space. A careful study of this issue led us to consider the modeling of the
tracked dynamic system with partial linear Gaussian models. Such models are characterized by a non linear dynamic
equation, a linear measurement equation and additive Gaussian noises. They allow inferring an analytic expression
of the optimal importance function used in the diffusion process of the particle filter, and enable building a relevant
approximation of a validation gate. Despite of these potential advantages partial linear Gaussian models have not been
investigated. The aim of this paper is therefore to demonstrate that such models can be of real interest facing difficult
usual issues such as occlusions, ambiguities due to cluttered backgrounds and large state space. Three instances of these
models are proposed. After a theoretical analysis, their significance is demonstrated by their performance for tracking
points and planar objects in challenging real-world image sequences.

Keywords: sequential Monte Carlo methods, optimal importance function, Rao-Blackwellization, validation gate,
point tracking, planar structure tracking

1. Introduction

Visual tracking has been extensively studied in computer
vision due to its huge number of applications. Among
them, one can find surveillance, medical imaging, video
compression or augmented reality. Recently, the use of se-
quential Monte Carlo methods (also known as particle fil-
ters) has led to the development of very efficient tracking
techniques (Arnaud et al., 2005; Isard and Blake, 1998;
Pérez et al., 2004). The popularity of these stochastic fil-
tering approaches can be explained by their simplicity,
easiness of implementation, constraint-free model and
robustness to difficult situations. Indeed, several specific
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problems may appear when tracking features of any kind
from image sequences. In particular, one has to face dif-
ficult and ambiguous situations generated by cluttered
backgrounds, occlusions, large geometric deformations,
illumination changes or noisy data.

Resorting to stochastic filters consists in modeling
the dynamic system to be tracked as a discrete hidden
Markov state process. The goal is to estimate the value
of the random Markovian process—also called state pro-
cess and denoted x0:n = {x0, x1, . . . , xn}—from real-
izations of the observation process that are obtained
at each instant. The set of measurements are denoted
z1:n = {z1, z1, . . . , zn}. The system is described by (a)
the distribution of the state process at initial time p(x0),
(b) a probability distribution modeling the evolution
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of the state process p(xk | xk−1)—this distribution repre-
sents a dynamic equation, also called evolution law, and
is usually set a priori—and (c) a likelihood (represent-
ing the measurement equation) p(zk | xk) that links the
observation to the state. In this framework, the posterior
distribution, i.e. the law of the state process knowing the
set of observations, carries the whole information on the
process to be estimated. More precisely, as tracking is a
causal problem, the distribution of interest is the law of
the state given the set of past and present observations
p(xk | z1:k), known as filtering distribution. The problem
of recursively estimating this distribution may be solved
exactly through a Bayesian recursive solution, named the
optimal filter (Gordon et al., 1993). This solution requires
to compute integrals of huge dimension. In the case of
linear Gaussian models, the Kalman filter (Anderson and
Moore, 1979) gives the optimal solution since the distri-
bution of interest p(xk | z1:k) is Gaussian. In the nonlinear
case, an efficient approximation consists in resorting to
sequential Monte Carlo techniques (Arulampalam et al.,
2002; Doucet et al., 2000; Gordon et al., 1993; Liu and
Chen, 1998). These methods consist in approximating
p(xk | z1:k) in terms of a finite weighted sum of Diracs
centered in elements of the state space, named particles.
At each discrete instant, the particles are displaced ac-
cording to a probability density function named impor-
tance function and the corresponding weights are updated
using the system’s equations.

For a given problem, a relevant expression of the im-
portance function is crucial in order to achieve an ef-
ficient and robust particle filter. As a matter of fact,
since this function is used for the diffusion of the par-
ticle swarm, the particle repartition—or the state-space
exploration—strongly depends on it. It can be demon-
strated that the optimal importance function in the sense
of a minimal weight variance criterion is the distribution
p(xk | xk−1, zk) (Doucet et al., 2000). As it will be demon-
strated, the knowledge of this density leads to consider
the optimal particle filter whose implementation is very
simple and that improves significantly the tracking re-
sults. However, because the densities involved are rarely
available in practice, such an efficient sampling is not
used in most vision applications. This is all the more true
as most tracking applications in computer vision rely on
sound models of highly multimodal likelihood associated
with simple dynamic equations (Isard and Blake, 1998;
Pérez et al., 2004; Wu and Huang, 2004). In such a con-
text, the importance function is usually simply fixed to
the evolution law p(xk | xk−1). This constitutes a crude
model which is counterbalanced by a systematic selec-
tion of the particles of large weight.

In this paper, we investigate the opposite choice: we
will deeply study the use of partial linear Gaussian
models (Arnaud et al., 2005; Doucet et al., 2000) for the
formalization of the dynamic system. These models are

characterized by a non linear dynamic equation, a lin-
ear measurement equation and additive Gaussian noises.
Such a choice—which consists in constraining the sys-
tem to rely on a simple and rough linear measurement
model—may appear, at first sight, to be too restrictive.
However, we argue that a partial linear Gaussian model
is an interesting alternative that should be considered for
2D visual tracking. These models allow the use of the
optimal importance function for the diffusion step. The
resulting algorithms are simple and efficient as the par-
ticles explore the state space in an optimal way. When
a pertinent estimation of the measurement noise covari-
ance is possible, this optimal particle’s repartition enables
the trackers to be resistant to occlusions and ambiguities,
without defining specific frameworks for these difficult
situations. In addition, this setup allows expressing in
a simple way a validation gate that defines a bounded
search region where the measurements are looked for at
each new image.

As for the limitations of the use of these partial lin-
ear Gaussian models, they are mainly of two types. First,
the definition of a linear measurement equation is re-
quired. This can be simply done as soon as some feature
candidates may be detected. Secondly it implies to have
an informative dynamic equation to counterbalance the
roughly modeled likelihood. In this paper, we propose a
solution to the problem of building such a dynamic in the
most general case, when there is a lack of a priori infor-
mation on the dynamic of the tracked object. We propose
to tackle this problem by defining the dynamic equation
from instantaneous on-line motion estimation.

The remainder of the paper is organized as follow. In
Section 2, we recall the filtering problem formulation
and make an overview of the existing solutions with a
specific attention to sequential Monte Carlo methods.
In Section 3, we will focus on the use of these meth-
ods in the framework of tracking in image sequences. A
brief state of the art of the possible models of the dy-
namic system will be given. Then in the three follow-
ing sections, the partial linear Gaussian models will be
studied through three instances of increasing complex-
ity. These three cases will allow us to show how the use
of such models may be of real interest facing occlusions
(Section 4), ambiguities (Section 5) and large state space
(Section 6) The last section will add some remarks on the
computational complexity.

To illustrate our work, a feature point tracker and a
planar object tracker have been designed. They both
rely on systems that are entirely estimated on the image
sequences. In particular, the model that is considered for
point tracking combines a dynamic equation relying on
an instantaneous motion estimated with the optical flow
constraint and measurements provided by a matching
technique. The defined model for the object tracking is
a direct extension of the latter, including a geometric
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constraint. They both are built on a partial linear
Gaussian formalization leading to consider optimal
particle filters. Some results on real-world sequences
will demonstrate the efficiency of this framework facing
difficult situations. Let us finally remark that this paper
follows a work presented in Arnaud and Mémin (2004)
and Arnaud et al. (2005).

2. Filtering Problem and Sequential Monte Carlo
Methods

In this section, the general principal of filtering problems
is briefly introduced. A quick overview of the different
algorithms is given, stressing the different possible
choices of importance function.

Let us consider a discrete hidden Markov state
process x0:n = {x0, x1, . . . , xn} of transition equation
p(xk | xk−1). The set of observations z1:n = {z1, z1,

. . . , zn}, of marginal distribution p(zk | xk), are supposed
conditionally independent given the state sequence. At
each discrete instant k, the filtering problem consists in
having an accurate approximation of the posterior prob-
ability density of state xk given the whole set of past
and present measurements z1:k . The distribution of in-
terest p(xk | z1:k) is called the filtering distribution. The
Bayesian recursive solution known as optimal filter con-
sists in two steps:

prediction step: p(xk | z1:k−1)

=
∫

p(xk | xk−1) p(xk−1 | z1:k−1) dxk−1 (1)

filtering step: p(xk | z1:k)

= p(zk | xk) p(xk | z1:k−1)∫
p(zk | xk) p(xk | z1:k−1) dxk

. (2)

Once an approximation of the filtering distribution is
known, an estimate of the state can be obtained through
the use of maximum a posteriori or minimum mean square
error estimates.

The tracking recursion yields closed-form expressions
only for specific cases. The most well-known case is
the Kalman filter (Anderson and Moore, 1979) for lin-
ear Gaussian models. Non optimal extensions of the
Kalman filter, based on a Gaussian approximation of the
filtering distribution (Extended Kalman filter, Unscented
Kalman filter (Wan and van der Merwe, 2000)), have
been devised for non linear systems. In the general multi-
modal case, such an approximation is not satisfactory.
For general non-linear and non-Gaussian models, the re-
cent development of sequential Monte Carlo approaches
(Arulampalam et al., 2002; Doucet et al., 2001; Gordon
et al., 1993; Liu and Chen, 1998) has lead to new efficient

algorithms. Sequential Monte Carlo methods have been
widely used for a large variety of applications. Among
them, one can find bearings-only tracking, positioning
and navigation (Gustafsson et al., 2002), speech modeling
and enhancement (Vermaak et al., 2002), surface-based
registration (Ma and Ellis, 2004), mobile robotics (Kwok
et al., 2004) or tracking in image sequences (Arnaud
et al., 2005; Isard and Blake, 1998; Pérez et al., 2004).

The idea behind particle filtering is very simple. These
techniques propose to implement recursively an approx-
imation of the sought density p(xk | z1:k). This approx-
imation consists in a finite weighted sum of N Diracs
centered on hypothesized locations in the state space—
called particles—of the initial system x0. At each particle
x(i)

k (i = 1 : N ) is assigned a weight w
(i)
k describing its

relevance. This approximation can be formulated with
the following expression:

p(xk | z1:k) ≈
∑

i=1:N

w
(i)
k δx(i)

k
(xk).00 (3)

Assuming that the approximation of p(xk−1 | z1:k−1) is
known, the recursive implementation of the filtering dis-
tribution is done by propagating the swarm of weighted
particles {x(i)

k−1, w
(i)
k−1}i=1:N . At each time instant (or itera-

tion), the set of new particles {x(i)
k }i=1:N is drawn from an

approximation of the true distribution p(xk | z1:k), called
the importance function and denoted π (xk | x(i)

0:k−1, z1:k).
The closer the approximation to the true distribution, the
more efficient the filter. The importance weights w

(i)
k ac-

count for the deviation w.r.t. the unknown true distribu-
tion. To maintain a consistent sample, the importance
weights are updated according to a recursive evaluation
as the new measurement zk becomes available:

w
(i)
k ∝ w

(i)
k−1

p
(
zk

∣∣ x(i)
k

)
p
(
x(i)

k

∣∣ x(i)
k−1

)
π

(
x(i)

k

∣∣ x(i)
0:k−1, z1:k

) ,
∑

i=1:N

w
(i)
k = 1.

(4)

Limiting ourself to these two steps for updating the
swarm of particles induces an increase over time of the
weight variance. In practice, this degeneracy problem
makes the number of significant particles decreases dra-
matically over time implying an impoverishment of the
estimate (Kong et al., 1994). From time to time, it is
thus necessary to perform a resampling step. This pro-
cedure aims at removing particles with weak normalized
weights, and multiplying particles associated to strong
weights, as soon as the number of significant particles
is too small. Consequently, resampled particles tend to
be concentrated in areas where important features ex-
ist. Various resampling strategies have been described
in the literature but will not be developed in this paper.
More details can be found in Doucet et al. (2000). These
three main steps (sampling/calculation of the importance
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weights/resampling) constitute the general framework of
particle filtering. Historically, the first proposed particle
filter including a resampling step has been built with the
following rules: (a) to set the importance function to the
evolution law, i.e. π (xk | x(i)

0:k−1, z1:k) = p(xk | x(i)
k−1) and

(b) to proceed the resampling step at each iteration. This
scheme corresponds to the Bootstrap filter (Gordon et al.,
1993) (also called the CONDENSATION algorithm in the
computer vision community (Isard and Blake, 1998)).

It is clear that adding a resampling procedure improves
the quality of the estimates by reducing the degeneracy
problem. However, unnecessary resampling may intro-
duce its own challenge as samples with higher probabil-
ity may be oversampled, and regions corresponding to
secondary modes of the filtering distribution may be not
well explored. Another strategy whose aim is to reduce
the degeneracy problem consists in using an optimal im-
portance function which minimizes the variance of the
weights conditioned upon x0:k−1 and z1:k . It is then pos-
sible to prove that choosing:

π
(
xk

∣∣ x(i)
0:k−1, z1:k

) = p
(
xk

∣∣ x(i)
k−1, zk

)
(5)

corresponds to this optimal choice (Doucet et al., 2000).
With this distribution, the recursive formulation of wk

becomes:

w
(i)
k ∝ w

(i)
k−1 p

(
zk

∣∣ x(i)
k−1

)
,

∑
i=1:N

w
(i)
k = 1. (6)

The resulting particle filter is called the Optimal parti-
cle filter. This algorithm requires to be able to sample
from p(xk | x(i)

k−1, zk) and to evaluate p(zk | x(i)
k−1) up to

a proportionality constant, which is rarely possible in
practice. However, analytic expressions of these two re-
quired densities can be written for particular models, in-
cluding partial linear Gaussian models (Doucet et al.,
2000). These systems are characterized by a linear mea-
surement equation and additive Gaussian noises. To the
best of our knowledge, such systems have not been used
for vision applications apart from a point tracking ap-
plication in one of our previous work (Arnaud et al.,
2005). This kind of models will be deeply studied in this
paper.

The choice of the importance function is of crucial im-
portance for the quality of the particle filter estimates.
As a consequence, the goal of more recent approaches
is to design efficient importance functions approximat-
ing as closely as possible the optimal one, and to guide
the particles in high likelihood areas. These approaches
aim also at introducing the measurements into the sam-
pling step. Let us cite for example the Auxiliary particle
filter (Pitt and Shephard, 2001), Extended particle filter
(Doucet et al., 2000), Unscented particle filter (van der
Merwe et al., 2000), and the hybrid filters combining a

particle filter and Monte Carlo Markov Chain methods
(Godsill and Clapp, 2001; Musso et al., 2001).

3. Tracking in Image Sequences Using Sequential
Monte Carlo methods

In this section, we focus on the use of sequential
Monte Carlo methods for tracking in image sequences.
Different possible approaches to model the evolution
law and the likelihood are given. In particular, we point
at the fact that the usual model is based on a highly
nonlinear likelihood, and a simple linear evolution law.
We introduce the partial non linear Gaussian models,
that rely on the opposite choice, and can be solved with
the Optimal particle filter. To the best of our knowledge,
these models have not been applied for tracking in image
sequences, apart in one of our previous work (Arnaud
and Mémin, 2004; Arnaud et al., 2005).

As said before, visual tracking with sequential Monte
Carlo methods requires to model the problem by a sys-
tem composed of an evolution law p(xk | xk−1) and a like-
lihood p(zk | xk). Facing a given application, the choice
of the algorithm depends on the system’s characteristics
(linear or not, Gaussian or not, etc.).

The dynamic model accounts for the prior on the state
evolution. A precise knowledge of the tracked feature’s
nature allows defining an accurate evolution law. When a
physical law of the feature motion is known, this model
can be directly inferred. A typical example is the use of
the Navier-Stokes equation as the evolution law for the
tracking of fluid structures (Cuzol and Mémin, 2005).
When this is not the case, an a priori evolution model
can be obtained by learning. A large number of contribu-
tions on this subject have been given by the Visual Dy-
namics Research Group (University of Oxford) (Blake
et al., 1999; North and Blake, 1998). In particular, such
dynamics have been widely used in the CONDENSATION

algorithm framework. This type of evolution laws can be
of great interest for tracking features whose motion may
be described by a limited number of classes (e.g. track-
ing of a bouncing ball, of a drawing hand, etc.) (Isard
and Blake, 1998; Rittscher and Blake, 1999). When the
number of classes characterizing the feature’s evolution
is too high, an alternative consists in using a database of
examples describing the steps of the different possible
evolutions of the state (Sidenbladh et al., 2002). A se-
vere limitation of these models arises facing the tracking
of features whose trajectories exhibit abrupt changes and
occlusions or simply obey too complex dynamic laws,
which can hardly be learned or predicted. Indeed, it is
clear that a known state model is not always available.
This is particularly the case when tracking very general
entities in images of any kind. The most used strategy
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consists then in adopting a very weak model for the state
evolution, typically auto-regressive models (Black and
Fleet, 1999; Pérez et al., 2002, 2004).

Such crude dynamic laws are usually counterbalanced
by sound models of likelihood, evaluating the relevance
of an observation given the feature state. The nature of
the observation is directly linked to a representation of
the tracked feature. This representation corresponds to a
set of cues that are obtained from the image sequence and
that enables detecting or identifying the object of interest.
The choice of a good representation is of crucial impor-
tance. Indeed, it has to be persistent along the sequence
not to loose the object, and at the same time discrim-
inant to avoid ambiguity situations. The involved cues
are usually edge information (Isard and Blake, 1998; Wu
and Huang, 2004), color distributions (Comaniciu et al.,
2003; Pérez et al., 2002, 2004; Wu and Huang, 2004),
motion (Vermaak et al., 2002; Pérez et al., 2004), and
appearance-based model (Jepson et al., 2001; Nguyen
et al., 2001; Sullivan and Rittscher, 2001). Recent works
have widely studied the interest of fusing different cues
to enhance the representation quality (Pérez et al., 2004;
Wu and Huang, 2004). Schematically, a reference repre-
sentation is associated to the feature of interest. This ref-
erence model is then compared to similar models from
candidate image regions. The likelihood accounts then
for a distance measurement between the representations.
Such likelihood are usually highly multimodal and non-
linear.

A direct consequence of using these sound measure-
ment models is that the implemented filter can not be the
optimal particle filter. Indeed, let us remind that using the
optimal importance function requires to be able to sam-
ple from p(xk | x(i)

k−1, zk) and to evaluate p(zk | x(i)
k−1) =∫

p(zk | xk) p(xk | x(i)
k−1) dxk up to a proportionality con-

stant. An analytic form if this integral will not be available
in the general case. Using the dynamic model as the im-
portance function is then a common assumption, leading
to implement the Bootstrap filter. This algorithm has the
advantage of being very simple but it may be inefficient
because the last available measurement is not taken into
account in the particle diffusion. The state space may be
badly explored as the particles do not optimally cover the
areas of high likelihood.

Different approaches have been proposed to address
these issues, including the use of previously cited algo-
rithms. For example, the unscented particle filter has been
applied to face tracking (Rui and Chen, 2001), and a hy-
brid filter has been adapted for human tracking (Smin-
chisescu and Triggs, 2002). Other methods, specific to
the computer vision community, have been developed to
enhance the quality of the state space exploration. They
all aim at introducing some image based data to guide
the particles. For instance, one approach is to build the
importance function as a mixture law of the dynamic

model and Gaussian laws centered in some positions of
the state space that have been selected by a detection
module (Okuma et al., 2004; Pérez et al., 2004; Vermaak
et al., 2002). Other possible strategies aim at fusing a de-
terministic evolution of the particles with a probabilistic
sampling (Sullivan and Rittscher, 2001), or fusing obser-
vations of several image cues during the sampling step
(Pérez et al., 2004; Wu and Huang, 2004).

However, as pointed out in Doucet et al. (2000), an-
alytic evaluation of the densities p(xk | xk−1, zk) and
p(zk | xk−1) (required for the use of the optimal parti-
cle filter) is possible considering partial linear Gaussian
models. As said before, these models are characterized
by a linear measurement equation. A linear measurement
model can be defined if candidate features may be de-
tected and if these observations constitute components of
the state vector. The likelihood does not account any more
for a distance between the reference representation and
the candidate representations, but for a distance between
the measurement and the candidates. As a consequence,
the relevance of this measurement model strongly de-
pends on the candidate detection module. In that case, it
may be interesting to define a region of interest where
to run the candidate detection module. Such a region is
called a validation gate, and is defined as an area of the
measurement space where the next observation has a high
probability to appear. Moreover, to counterbalance a pos-
sible deficiency of the candidate detection, an informative
evolution law has to be considered. But, as said before,
defining such a dynamic equation is difficult when fac-
ing the tracking of general entities whose evolution is
not known in advance. To avoid this problem, an original
construction of the dynamic has been proposed in Arnaud
et al. (2005). In such a context, one possibility consists
in relying on a dynamic model extracted from the image
sequence. Such a data-driven dynamic—which may be
related to a spatial representation of the motion (affine,
quadratic and so on)—has the advantage of introducing
a contextual prior on the state evolution in a simple way.
Let us remark that this solution is valid facing a 2D track-
ing problem. For example, the developed strategy, that
consists in relying on an instantaneous estimated motion
can not be directly extended to a 3D tracking problem, as
a 3D velocity estimation would be required.

4. Dealing with Occlusions with a Simple Model

In this section, we study the simplest instance of partial
linear Gaussian models. This analysis is done in a
methodological point a view: the associated optimal
particle filter and validation gate are detailed. To
validate the fact that such a model handles nicely the
occlusion problem, a point tracker is designed. This
study has already been described in Arnaud and Mémin
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(2004), but is recalled here to facilitate the reading of
the following.

Let us consider the simplest version of partial linear Gaus-
sian models composed of a non linear dynamic equation
with an additive Gaussian noise, and a linear Gaussian
measurement equation:

xk = fk | I (xk−1) + wk, wk ∼ N (wk ; 0, Qk | I) (7)

zk = Hk | I xk + vk, vk ∼ N (vk ; 0, Rk | I). (8)

The state noise wk and the measurement noise vk are
supposed to be independent. The subscript |I on the state
function fk | I, the measurement matrix Hk | I, and the noise
covariances Qk | I and Rk | I indicates that these matrices
and the function may be estimated from the image se-
quence.1 This system can be written as:

{
p(xk | xk−1) = N (xk ; fk | I (xk−1), Qk | I)

p(zk | xk) = N (zk ; Hk | I xk, Rk | I).
(9)

As introduced in Section 2, this system enables the use
of the optimal particle filter. As a matter of fact, noticing
that:

p(zk | xk−1) =
∫

p(zk | xk) p(xk | xk−1) dxk (10)

and

p(xk | xk−1, zk) = p(zk | xk) p(xk | xk−1)

p(zk | xk−1)
, (11)

we obtain the exact expression for the distributions re-
quired in the optimal particle filter (Doucet et al., 2000):

p
(
zk | x(i)

k−1

) = N
(
zk ; Hk | I fk | I

(
x(i)

k−1

)
,

Rk | I + Hk | I Q(i)
k | I H t

k | I

)
(12)

p
(
xk | x(i)

k−1, zk
) = N (xk ; mk | I, �k | I) (13)

where �k | I = (
Q(i) −1

k | I + H t
k | I R−1

k | I Hk | I
)−1

(14)

mk | I = �k | I
(
Q(i) −1

k | I fk | I
(
x(i)

k−1

)
+ H t

k | I R−1
k | I zk

)
. (15)

Therefore, the densities involved in the diffusion process
and in the update step are Gaussian. These two stages are
therefore particularly simple to implement. Let us note
that the index (i) on matrix Qk | I is referred to the case
where the dynamic equation is estimated on line for each
particle.

4.1. Validation Gate

This simple model is valid when only one measurement
is observed at each iteration. In practice, several mea-
surements may be available. Each of these observations
may have been generated by the hidden state or may be
false alarms. Taking into account a false alarm in the up-
date of the filtering density may dramatically decrease
the quality of the estimate, and may cause the loss of
the tracked entity. To solve the problem of distinguish-
ing the state-originated measurement from false alarms,
a validation gate need to be introduced. Such a region
is defined as an area of the measurement space where
the future observation will be found with some high
probability. At each iteration, it is thus defined through
the probability distribution p(zk | z1:k−1). Gates are gen-
erally used in radar tracking problems, for clutter re-
duction (Bar-Shalom and Li, 1995). In image sequence
based filtering, this measurement prediction region usu-
ally defines a part of the image where the future obser-
vation has to be looked for. Selecting a too small gate
size may lead to miss the state-originated measurement,
whereas selecting a too large size is computationally ex-
pensive and increases the probability of selecting a false
observation.

For linear Gaussian systems, an analytic expression of
the Gaussian distribution p(zk | z1:k−1) may be obtained.
This enables considering an exact ellipsoidal probability
concentration region. For nonlinear models, the valida-
tion gate can be approximated by a rectangular or an
ellipsoidal region, whose parameters are usually com-
plex to define. Breidt and Carriquiry (2000) proposes to
use Monte Carlo simulations in order to approximate the
density p(zk | z1:k−1), but this solution appears to be time
consuming.

In case of partial linear Gaussian models, it is possible
to infer an ellipsoidal validation gate in a simple way.
As a matter of fact, from an approximation of the fil-
tering density p(xk−1 | z1:k−1) with a swarm of particles
{x(i)

k−1, w
(i)
k−1}i=1...N , we can write:

p(zk | z1:k−1) =
∫

p(zk | xk−1) p(xk−1 | z1:k−1) dxk−1

�
N∑

i=1

w
(i)
k−1 p

(
zk | x(i)

k−1

)
(16)

This equation may be exploited as soon as an analyti-
cal expression of p(zk | x(i)

k−1) is known. Considering the
simplest version of partial linear Gaussian models (9),
we have:

p
(
zk | x(i)

k−1

) = N
(
zk ; Hk | I fk | I

(
x(i)

k−1

)
,

Rk | I + Hk | I Q(i)
k | I H t

k | I

)
. (17)



Partial Linear Gaussian Models for Tracking in Image Sequences 81

Observing Eqs. (16) and (17), it appears that the exact
validation gate is composed of the union of N ellipses,
where each ellipse is associated to a particle. Obtaining
such a validation gate is computationally too expensive
for a large amount of particles. We propose here to ap-
proximate this region by a unique ellipse as illustrated by
Fig. 1.

To this end, we have to compute the two first moments
of p(zk | z1:k−1) denoted mvg

k and �
vg
k . Empirical approx-

imations of these quantities can be easily derived using
(16–17). The expression of the first moment can be writ-
ten as (the notation E denotes the expectation):

mvg
k = E[zk | z1:k−1] �

N∑
i=1

w
(i)
k−1

∫
zk p

(
zk

∣∣ x(i)
k−1

)
=

N∑
i=1

w
(i)
k−1 Hk | I fk | I

(
x(i)

k−1

)
, (18)

Using the relation between the expectation and the vari-
ance var [a] = E[‖a‖2] − ‖E[a]‖2 as for the second mo-
ment, we obtain:

�
vg
k = var [zk | z1:k−1] (19)

�
N∑

i=1

w
(i)
k−1

[
Rk | I + Hk | I Q(i)

k | I H t
k | I

+ ∥∥Hk | I fk | I (x(i)
k−1)

∥∥2]
−

∥∥∥∥∥ N∑
i=1

w
(i)
k−1 Hk | I fk | I

(
x(i)

k−1

)∥∥∥∥∥
2

, (20)

and we have the following approximation:

p(zk | z1:k−1) � N
(
zk ; mvg

k , �
vg
k

)
. (21)

This gives us an expression of the ellipsoidal region cor-
responding to the validation gate Vk :

Vk = {
zk :

(
zk − mvg

k

)t
�

vg
k

−1 (
zk − mvg

k

) ≤ γ
}
. (22)

The parameter γ is chosen in practice such as the proba-
bility of finding the state-originated observation is equal
to 0.99. It is important to outline that the expression of the
validation gate depends on the error covariance matrices
Rk | I and Q(i)

k | I.

4.2. How Does the Model React to an Occlusion of the
Tracked Feature ?

Even if the model studied is very simple, its good prop-
erties enable us to deal with occlusions in a simple and
elegant manner. This is all the more true if an accurate
estimation of the measurement noise covariance matrix

Rk | I is possible. In that case, if the feature of interest is
occluded, the observed measurement is detected as a false
alarm and the values of Rk | I are significantly increased.
The particle propagation depends thus mainly on the dy-
namic model. But as soon as a pertinent observation is
detected, the small values of the matrix Rk | I attract the
particles in the neighborhood of the measurement, i.e. in
the area of highest likelihood. This automatic scheme for
recovering the location of the feature after an occlusion
is due to the particle sampling with the optimal impor-
tance function p(xk | x(i)

k−1, zk), as well as to the automatic
increasing of the validation gate when false alarms are
detected.

In order to demonstrate experimentally the signifi-
cance of partial linear Gaussian model, we have formal-
ized a point tracking application with such a setting. We
present in the next section the basic model we considered.
Although remaining in a partial linear Gaussian setting,
this model will be enriched further to deal with clutter
noise and ambiguities or to handle the tracking of point
clouds.

4.3. Application to Point Tracking

As many others (Aschwanden and Guggenbül, 1992; Shi
and Tomasi, 1994), our point tracker is designed on the
basis of luminance pattern consistency. Here each state
xk represents the location of the point projection at time
k, in image Ik . The basic partial linear Gaussian model
we propose combines a dynamic relying on a differential
optical-flow method and measurements obtained using a
correlation criterion. The system we focus on is there-
fore composed of measurements and dynamic equations
which both depend on I0:k .

4.3.1. Dynamic Model and State Noise Covariance
Matrix Estimation. The motion of a point xk−1 be-
tween the frame instants k−1 and k is defined through the
probability distribution p(xk | xk−1). To be reactive to any
change of speed and direction of the point, we propose
to define the state equation as:

xk = xk−1 + uk(xk−1) + wk, (23)

where wk is assumed to be a the zero-mean Gaussian
white noise of covariance Qk | I. This noise covariance
matrix describes the relevance of the defined model and
uk(s) denotes the motion vector associated to a given
pixel s = (x, y)t . This motion vector is estimated from
a robust parametric technique (Odobez and Bouthemy,
1995). Such a technique enables us to reliably compute
a 2D parametric model representing the dominant image
motion within the considered fixed support R. More pre-
cisely, the motion vector of a point s ∈ R between the
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Figure 1. Validation gate for model (9) ; example with three particles. To each particle x(i)
k−1 is associated a blue ellipse that corresponds to p(zk | x(i)

k−1).

The exact validation gate is the union of these ellipses. It is approximated by one unique ellipse, represented in red.

images Ik−1 and Ik is modeled as a polynomial function
of the point coordinates:

uk(s) = P(s) θk | I(s), (24)

where θk | I(s) denotes the parameter vector composed of
the unknown polynomial’s coefficients. P(s) is a known
matrix related to the chosen parametric model and whose
entries depend on the spatial coordinates x and y. For
example, a 6-parameter affine motion model is associated
to the following matrix:

P(s) =
[

1 x y 0 0 0

0 0 0 1 x y

]
. (25)

The parameter vector θk | I(s) is estimated through the
minimization of a function defined using the brightness
consistency assumption:

θk | I(s) = arg min
θ

∫
R

ρ

(
∇It

k(s)P(s)θ + ∂Ik

∂t
(s)

)
ds,

(26)

where R is the estimation support and ρ is a robust
cost function allowing to cope with outliers (occlu-
sion area, secondary motions, etc.) (Black and Anan-
dan, 1996; Odobez and Bouthemy, 1995). The minimiza-
tion is achieved through a Gauss-Newton-type multi-
resolution procedure that allows handling large mag-
nitude motions. Choosing an affine motion model and
defining the support R as a small neighborhood around
xk−1 provides a robust way to compute an instanta-
neous motion vector uk(xk−1) of the tracked feature xk−1.
Our non linear dynamic model is thus specified on-line
thanks to this instantaneous motion vector and reads
finally:

xk = xk−1 + P(xk−1) θk | I(xk−1) + wk . (27)

Let us note that the non linearity of such a dynamic is
due to the dependence of θk | I to xk−1 through the choice
of the estimation support R as a region centered in xk−1.

This model may be written as:

p(xk | xk−1) = N (xk ; xk−1 + P(xk−1)θk | I(xk−1), Qk | I).

(28)

On top on providing the parameters describing the mo-
tion on the fixed support R, the use of a robust estimation
procedure provides the number of outliers and inliers in-
volved in the estimation of θk | I within R (Black and
Anandan, 1996; Odobez and Bouthemy, 1995). This in-
formation can be used to evaluate the parameters esti-
mation quality and to infer the noise covariance matrix
Qk | I. Indeed, as said before, this matrix carries infor-
mation on the relevance of the defined state model, and
indirectly describes the estimation accuracy of the motion
uk(xk−1). Let us denote σk the ratio between the number
of outliers and the number of inliers involved in the es-
timation of θk | I. The analysis of σk along the tracking
process (in time) can be exploited as a motion estimation
quality indicator. This gives us a criterion to fix the dy-
namic noise covariance Qk | I = α × Id (Id is the identity
matrix): a small value is assigned to the variable α if σk

is close to 1. At the opposite a very large one is set if this
ratio decreases. The switch decisions are done automati-
cally, studying the evolution of σk in time. More precisely,
the switch decisions depend on the increasing/decreasing
jumps of σk and are supplied by a statistical test (Page-
Hinkley test (1971)).

4.3.2. Measurement Model and Measurement Noise Co-
variance Matrix Estimation. Whereas the evolution
law defines the model of the instantaneous feature mo-
tion, the measurement equation p(zk | xk) will allow us to
fix a goodness of fit criterion between a reference point
and possible candidates in the current image. Such an in-
formation is required to overcome feature drift over time.

At time k, we assume that xk is observable through
a matching process whose goal is to provide, in the im-
age Ik , the most similar point to the initial one x0 in a
reference template Ĩ0. The result of this process corre-
sponds to a correlation peak and defines the measure-
ment zk of our system. The reference template is defined
as the initial image of the point’s neighborhood. In case of
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large geometric and/or photometric deformations around
the tracked feature this reference image is eventually up-
dated by registration (see Arnaud et al. (2005) for more
details). Several matching criteria can be used to quantify
the similarity between the target point and the candidate
point. The conservation of the intensity pattern assump-
tion has simply led us to consider the sum-of-squared-
differences (SSD) on a window W(x0) (of fixed size) cen-
tered in x0. At first sight, the use of the SSD can seem not
relevant, compared to other correlation criterion (ZSSD,
ZNSSD, CC, ZNCC (Aschwanden and Guggenbül, 1992))
that take into account the usual difficulties occurring in
natural video like changing of viewpoints, lighting condi-
tion, etc. However, this choice is justified by the possibil-
ity of estimating a measure of quality of the SSD result.
This procedure, further explained below, takes into ac-
count the image noise through a statistical test that could
not be proceed for other criterion (Arnaud et al., 2005).
The measurement zk is achieved such as:

zk = arg min
z∈Vk

∑
m∈W(x0)

[̃I0(m) − Ik(z + m)]2

︸ ︷︷ ︸
rk (z)

, (29)

where Vk is the validation gate (see Section 4.1 p. 10)
and rk(z) is the SSD residual. It is assumed that this mea-
surement carries enough pieces of information about the
state of the tracked point to be able to write that xk = zk

up to an additional white Gaussian noise vk . This noise
variable models a local estimation error and accounts for
a confidence information on this matching. The observa-
tion equation reads then:

p(zk | xk) = N (zk ; xk, Rk | I). (30)

A good estimation of the matrix Rk | I is essential to make
the tracker robust to corrupted observations due for in-
stance to large geometric or photometric deformations,
occlusions, etc. To that end, an SSD surface is defined
around the correlation peak. This surface corresponds to
an error distribution. Two treatments are applied to this
surface in order to (a) suppress the SSD values due to
the image noise using a statistical test and (b) enforce
the shape of the surface using an exponential function. A
statistical Chi-square “goodness of fit” test is then per-
formed on the modified surface in order to check whether
such a surface is better approximated by a Gaussian or
an uniform law. In this latter case, the associated covari-
ance is fixed to ∞ × Id. In the Gaussian case, it is set to
the empirical covariance calculated on the modified sur-
face. For an interested reader, more details are available
in Arnaud et al. (2005). A description of the final tracker
is given by Algorithm 1.

Algorithm 1 feature point tracker based on the simplest
version of partial linear Gaussian models

• initialization: for i = 1 : N , generate x(i)
0 ∼ p(x0),

and fix w
(i)
0 = 1/N for k = 1, 2, . . .

• estimations on the image sequence:
1. detection of zk in the validation gate Vk with the

SSD using Ĩ0 and estimation of Rk | I

2. for i = 1 : N , estimation of θk | I(x
(i)
k−1) and Q(i)

k | I
using a robust parametric estimation technique on
a small neighborhood around x(i)

k−1

• sequential importance sampling:
1. sampling: for i = 1 : N , generate x(i)

k ∼ p(xk | x(i)
k−1,

zk) with

p
(
xk | x(i)

k−1, zk
) = N (xk ; mk | I, �k | I)

�k | I = (
Q(i) −1

k | I + R−1
k | I

)−1

mk | I = �k | I
(
Q(i)−1

k | I

[
x(i)

k−1 + P
(
x(i)

k−1

)
θk | I

(
x(i)

k−1

)] + R−1
k | I zk

)
.

2. calculation of importance weights: for i = 1 : N ,
calculate w

(i)
k = p(zk | x(i)

k ), with

p
(
zk | x(i)

k

) = N
(
zk ; x(i)

k−1 + P
(
x(i)

k−1

)
θk | I

(
x(i)

k−1

)
,

Rk | I + Q(i)
k | I

) ∑
i=1:N

w
(i)
k = 1.

• estimation of the feature position
• eventual update of the reference image Ĩ0

• resampling if necessary

4.4. Experimental Results

In this section, we present some experimental results
demonstrating the efficiency of the proposed point tracker
that rely on the simplest instance of partial linear Gaus-
sian models.

Comparison with the CONDENSATION Algorithm. The
goal of the first result presented is to enhance the inter-
est of diffusing the particles with the optimal importance
function. To that purpose, we have chosen to study an
occlusion case on the Garden sequence. This sequence
shows a garden and a house occluded by a tree. Let us
focus on a specific feature point located on the top of a
house roof. This point is visible in the first two images
and is hidden by the tree from frame 3 to frame 15. Two
algorithms have been tested for the tracking of this point.
Both of them rely on the same filtering system (the one
described in Section 4.3), but have different particle dif-
fusion processes. The first one is the method we propose,
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Figure 2. Garden sequence—Interest of the optimal importance function and of the validation gate—the green cross indicates the state estimate,

the blue cross corresponds to the observation and the ellipse to the validation gate.

Figure 3. Caltra sequence—obtained result on a real-world sequence (frames 8,21,31,40 and obtained trajectories)—average trajectories over the

successful trajectories on 100 realizations.

based on a partial linear Gaussian model. It allows the ex-
ploration of the state space with the optimal importance
sampling by taking into account the new measurement in
an optimal way. The second one is the CONDENSATION

algorithm, for which the considered importance function
is identified to the evolution law. Figure 2 presents the
obtained results. The use of the optimal importance func-
tion allows us to recover the actual point location after
a long occlusion. On the contrary, the CONDENSATION

algorithm is not efficient for such situations, when the
evolution density and the likelihood do not overlap. This
figure illustrates also the importance of our validation
gate: the research region of the next observation is con-
siderably reduced as soon as the the confidence on the
state estimation is high.

Validation on a Real-World Sequence. A result of the
proposed tracker is presented on Caltra, a 40-frame se-
quence of images (190 × 180), showing the motion of
two balls fixed on a rotating rigid circle, in front of a
cluttered background. As it can be noticed on Fig. 3 the

tracker succeeds in discriminating the balls from the wall-
paper, and provides the exact trajectories. Such a result
shows the ability of this tracker to deal with complex
trajectories in a cluttered environment. The trajectories
account for the average realization over the successful tra-
jectories on 100 realizations (Only 2 failures have been
observed).

In order to validate our algorithm, a comparative study
has been done. In particular, the proposed point tracker
has been compared with the KLT tracker (Shi and Tomasi,
1994) and with ground truth trajectories extracted man-
ually. The results are displayed for the black and white
balls of the caltra sequence (Fig. 4(a–b)), and for the point
on the roof for the garden sequence (Fig. 4(c)). On these
figures, the trajectories can be observed and compared.
Other comparative results are available in Arnaud et al.
(2005) showing that our algorithm is robust and avoids
any target’s drift along the image sequence.

In Case of Strong Similarities Between Several Image
Patches. The last result illustrates the limitation of the
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Figure 4. Comparison of estimated trajectories and ground truth trajectories. The results obtained with our tracker account for the mean realizations

over the successful trajectories on 100 Monte Carlo runs.

simplest version of partial linear Gaussian models. This
result has been obtained on the 31-frames sequence Con-
corde and corresponds to the average trajectories over
100 realizations. This sequence presents the road traffic
on a roundabout located in Paris. This sequence exhibits a
lot of ambiguities due to photometric similarities of sev-
eral cars. It presents also illumination changes when the
cars go by the shadow area in the right part of the images.
The tracking results are presented in Fig. 5. From this
figure, it can be observed that the tracker fails in re-
covering the complete trajectory of the upper truck and
of several cars (see for instance the merging of the two
car trajectories located in the bottom part of the images
or the mis-estimation of the car trajectories located in
the shadow area after image #22). These failures can be
explained by the fact that measurements corresponding
to the highest correlation peaks are in some cases false
alarms. They do not correspond to the right observation.

As it will be explained in the next section, this situa-
tion can be solved by considering a more elaborated par-
tial linear Gaussian model that consider several measure-
ments per state.

5. Dealing with Ambiguities (Multi-Hypothesis
Tracking)

In this section, we study the instance of partial linear
Gaussian models that we designed for the case of
multi-hypothesis tracking. As before, a methodological
analysis is presented (algorithm, validation gate).
One of the main contribution of this section is the
multi-hypothesis model of the likelihood, which has the
particularity of being a simple mixture of Gaussian
laws. The original corresponding filter is applied and
validated for point tracking in case of ambiguities.
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Figure 5. Concorde sequence (frames 1,10,17,22,27,30)—average trajectories over 100 realizations.

As shown in the latter result (Fig. 5), considering only
one single observation may induce a mis-estimation of
the state. In particular, in case of noisy images with po-
tential cluttered background, the measurement detection
module may be disturbed by the generated ambiguities
and may produce false alarms. In addition to the use
of a validation gate, a way to overcome this problem is
to consider several measurements (hypothesis) simulta-
neously per state—Let us note that all the considered
observations have to belong to the validation gate in
order to be the possible state-originated measurement.
The resulting problem of data association (i.e. deter-
mining the state-originated measurement from the false
alarms) has to be solved jointly with the tracking prob-
lem. 2 A probabilistic formulation of the possible associ-
ations can be expressed through the following association
hypotheses:

H1: A measurement can be generated by the feature of
interest or be a false alarm,

H2: At a given instant, the feature can generate zero or
only one measurement.

At time k, Let us note zk the vector gathering the Mk

measurements-hypothesis {zk,m}m=1:Mk . Let also 
k ∈
{0 : Mk} denote the random variable describing the as-
sociation events:


k =

⎧⎪⎪⎨⎪⎪⎩
j if the hypothesis zk, j corresponds to the

state-originated measurement,

0 if the Mk measurements-hypothesis
are false alarms.

(31)

The combination of the assumptions H1 and H2 ex-
presses the fact that the possible associations described

by the variable 
k are exhaustive and mutually exclusive.
Using the total probability theorem, the likelihood of the
model can be written as a mixture law:

p(zk | xk) =
Mk∑
j=0

p(
k = j | xk) p(zk | 
k = j, xk)

=
Mk∑
j=0

βk, j p(zk | 
k = j, xk) (32)

with βk, j � p(
k = j | xk) j = 0 : Mk . (33)

In order to derive analytical expressions of these two
terms several assumptions have to be done.

First of all, we assume that (a) the measurements-
hypothesis are conditionally independent:

p(zk | 
k = j, xk) =
Mk∏

m=1

p(zk,m | 
k = j, xk). (34)

We also assume that, (b) considering the measurement-
hypothesis zk,m as being the state-originated observa-
tion, its conditional likelihood is a Gaussian law of mean
hk | I,m(xk) and covariance Rk | I,m , and (c) false alarms
are uniformly distributed over the validation gate at time
k. Consequently, we have:

p(zk,m | 
k = j, xk)

=
{
N (zk,m ; hk | I,m(xk), Rk | I,m) j = m

V −1
k j = 0 : Mk ; j 
= m,

(35)

where Vk is the total area of the validation gate. From
(32), (34) and (35), the likelihood reads as a mixture of
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uniform and Gaussian laws:

p(zk | xk) =
Mk∑
j=0

[
βk, j

Mk∏
m=1

p(zk,m | 
k = j, xk)

]

= βk,0V
−Mk

k +
Mk∑
j=1

[
βk, j V

1−Mk
k N (zk, j ;

hk|I, j (xk), Rk | I, j )
]
. (36)

This model to deal with clutter has been introduced in
Gordon (1997) and presented for several problems like
bearings only tracking (Marrs et al., 2002), or track-
ing in image sequences (Isard and Blake, 1998). Since
in our case the measurements provided by a detection
module are linearly linked to the state this expression
becomes:

p(zk | xk) = βk,0V −Mk
k +

Mk∑
j=1

[
βk, j V 1−Mk

k

N (zk, j ; Hk | I, j xk, Rk | I, j )
]
. (37)

As the process xk is unknown, a direct estimation of
βk, j � p(
k = j | xk) is obviously impossible. A first
solution (Isard and Blake, 1998) consists in approximat-
ing p(
k = j | xk) by the a priori law p(
k = j) and
to assume the equi-probability of the associations. This
leads to the following estimation:

β̂k, j = 1 − βk,0

Mk
∀ j = 1 : Mk, (38)

where βk,0 is a parameter to be fixed. Recalling that βk,0

represents the probability of having no target-originated
measurements, we can interpret βk,0 as being the prob-
ability of having the target occluded. Such a proba-
bility is indeed very difficult to predict. A second so-
lution (Marrs et al., 2002) is to approximate βk, j by
p(
k = j | z1:k) and to consider the common model
of false alarms proposed by Bar-Shalom and Li (1995)
that supposes the number of false alarms distributed ac-
cording to a Poisson law. The resulting expressions of
βk, j are complex and still involve a parameter similar to
βk,0.

In addition to the difficulty of choosing a relevant value
for this parameter βk,0, these solutions do not allow the
use of the importance optimal function. As a matter of
fact, the uniform term of the likelihood prevents to get
the analytical expressions of the distributions p(zk | xk−1)
and p(xk | xk−1, zk). We propose thus to set to zero the
probability of having no state-originated measurement
(i.e. βk,0 = 0). Such a choice differs from the classical
tracking assumptions. It may sound strange and poten-
tially problematic in case of occlusions. Nevertheless,
we believe that such a deficiency can in practice be well

compensated by an efficient estimation of the measure-
ment noise covariances Rk | I, j . As a matter of fact, fac-
ing an occlusion, if these covariance matrices are set to
∞ × Id, none of the observations will be taken into ac-
count. This is equivalent to set the probability of having
no state-originated measurement to a positive value. As
for the set of mode occurrence probabilities βk, j , j 
= 0,
we propose to estimate them at each instant from the im-
ages. This will be further described in Section 5.2. The
final likelihood that we consider consists thus in a mixture
of Gaussian laws:

p(zk | xk) = V 1−Mk
k

Mk∑
j=1

βk, j N (zk, j ; Hk | I, j xk, Rk | I, j ).

(39)

We can remark that this model, associated to the same
evolution model considered before (Eq. (7)) is a direct
multimodal extension of the model proposed in case of a
unique observation (9). It is also a partial linear Gaussian
model which can be handled efficiently with the opti-
mal particle filter. Let us remind that the diffusion pro-
cess considered requires to evaluate p(zk | xk−1) and to
sample from p(xk | xk−1, zk). Applying the identity (10),
the density used for the weight recursion is a mixture of
Gaussians and reads:

p
(
zk

∣∣ x(i)
k−1

)= V 1−Mk
k

Mk∑
j=1

βk, jN
(
zk, j ; Hk | I, j fk | I

(
x(i)

k−1

)
,

Rk | I, j + Hk | I, j Q(i)
k | I H t

k | I, j

)
. (40)

The optimal importance function is deduced using equal-
ity (11) (proof available in annexe (Section 9)):

p
(
xk

∣∣ x(i)
k−1, zk

) =
Mk∑
j=1

βk, j
αk, j

Sk
N (xk ; mk | I, j , �k | I, j ),

(41)

with

Sk =
Mk∑
j=1

βk, j N
(
zk, j ; Hk | I, j fk | I

(
x(i)

k−1

)
,

Rk | I, j + Hk | I, j Q(i)
k | I H t

k | I, j

)
, (42)

�k | I, j =
(

Q(i) −1
k | I + H t

k | I, j R−1
k | I, j Hk | I, j

)−1

, (43)

mk | I, j = �k | I, j
(
Q(i)−1

k | I fk | I
(
x(i)

k−1

) + H t
k | I, j R−1

k | I, j zk, j
)
,

(44)

αk, j = C exp

(
− 1

2

[∥∥ fk | I
(
x(i)

k−1

)∥∥2

Q(i) −1
k | I

+ ‖zk, j‖2
R−1

k | I, j

− ‖mk | I, j‖2
�−1

k | I, j

])
, (45)
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Figure 6. Validation gate for the model dedicated to the ambiguities; example with three particles and two measurements. To each particle x(i)
k−1

is associated a blue ellipse that corresponds to p(zk,1 | x(i)
k−1) (linked to the first observation) and a yellow ellipse that corresponds to p(zk,2 | x(i)

k−1)

(linked to the second observation). The exact validation gate is the union of these 3 × 2 ellipses. It is approximated by two ellipses, represented in red.

These two red ellipses correspond to an approximation of the union of the ellipses respectively blue and yellow, and are associated to the observations

respectively 1 and 2.

and where C = (2π )−
nz
2 | �k | I, j | 1

2

∣∣ Q(i)
k | I

∣∣ − 1
2

| Rk | I, j | − 1
2 . (46)

In the last expression nz denotes the dimension of the
measurement vector zk . It can be easily proved that the
expression (41) is a Gaussian mixture (the idea is to
prove that the sum of the coefficients

∑Mk
j=1 βk, j

αk, j

Sk
is

equal to 1). The implementation of the optimal parti-
cle filter through expressions (40–41) remains simple as
the involved distributions are all mixtures of Gaussian
laws. In practice, for each particle, the implementation
of the sampling step is done as follows: first, a Gaussian
law of (41) is selected (random draw over the Gaussians
weights), and then the new state of the particle is drawn
from it. As the selected Gaussian law is associated to
one measurement-hypothesis, then the weight of the new
particle is calculated, knowing the chosen measurement-
hypothesis.

The partial linear Gaussian system presented in this
section is particularly interesting as it permits both to
consider several observations and to diffuse the particles
with the optimal importance function. As it will be shown
in the experimental section, such a system enables to
solve the ambiguous situations generated by a cluttered
background.

5.1. Validation Gate

The multimodal partial linear Gaussian model pro-
posed here enables us to take into account several
measurements-hypothesis. These measurements all be-
long to the validation gate area. As in the previous simple
case, a relevant validation gate needs to be defined at each
iteration through the distribution p(zk | z1:k−1). The same
approach is applied here to get an approximation of this

distribution. Using (16) and (40), we have:

p(zk | z1:k−1) � V 1−Mk
k

N∑
i=1

w
(i)
k−1

[
Mk∑
j=1

βk, jN
(
zk, j ;

Hk | I, j fk | I
(
x(i)

k−1

)
, Rk | I, j + Hk | I, j Q(i)

k | I H t
k | I, j

)]
(47)

It can be immediately deduced that the exact validation
gate is composed of the union of N×Mk ellipses, where N
is the number of particles and Mk the number of available
observations at time k. This expression is computation-
ally too expensive and has to be simplified. In the same
spirit as before and as illustrated in Fig. 6, the approxi-
mation we propose is to define the validation area Vk by
Mk ellipses (or modes). Each ellipse � j corresponds to
observation j .

Vk =
Mk⋃
j=1

� j ; � j = {zk, j :
(
zk, j − mvg

k, j

)t

�
vg
k, j

−1 (
zk, j − mvg

k, j

) ≤ γ j }. (48)

The value γ j is fixed in practice as the 99th percentile
of the probability for zk, j to be the true state-originated
measurement. The expressions of the parameters mvalid

k, j

and �
vg
k, j can be deduced from the simple monomodal

case:

mvg
k, j �

N∑
i=1

w
(i)
k−1 Hk | I, j fk | I

(
x(i)

k−1

)
, (49)

�
vg
k, j �

N∑
i=1

w
(i)
k−1

[
Rk | I, j + Hk | I, j Q(i)

k | I H t
k | I, j + ∥∥Hk | I, j

fk | I
(
x(i)

k−1

)∥∥2]−∥∥∥∥∥ N∑
i=1

w
(i)
k−1 Hk | I, j fk | I

(
x(i)

k−1

)∥∥∥∥∥
2

(50)
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Figure 7. Concorde sequence—tracker dedicated to ambiguities, with three measurements per tracked feature (frames 1, 10, 17, 22, 27, 30)—average

trajectories over 100 realizations.

5.2. Application to Point Tracking

To validate the relevance of the multimodal partial lin-
ear Gaussian model in presence of ambiguities, we have
extended the monomodal point tracker previously de-
scribed. This new tracker relies on:

• The same on-line evolution law:

p(xk | xk−1)=N (xk ; xk−1+P(xk−1)θk | I(xk−1), Qk | I).

(51)

The motion parameter and the noise covariance matrix
Qk | I are estimated in the same way as before ( i.e. from
a local robust least squares process and a Page-Hinkley
statistical test see Section 4.3.1)

• A vector of Mk observations zk = {zk,m}m=1:Mk of the
state defined as being the points of the current image
that are the most similar to the point of interest in a
reference template. These measurements are the result
of a matching process and correspond to the highest
correlation peaks. They all belong to the validation
area. The expression of the likelihood is:

p(zk | xk) ∝
Mk∑
j=1

βk, j N (zk, j ; xk, Rk | I, j ). (52)

The coefficient βk, j denotes the probability that the ob-
servation j is the target-originated observation at time
k. In our application, these coefficients are chosen pro-
portionally to the correlation score of the associated
measurement, such as

∑Mk
j=1 βk, j = 1.3 The effect of

that procedure is to give more weight to the measure-
ments with high correlation. However, in the sampling
step of the algorithm, the measurement-hypothesis that
will be favored will not necessarily be the one corre-
sponding to the highest correlation score. Indeed, the
choice of the favored direction takes into account the
value of {βk, j } j=1:Mk but also the coherence between
the measurements-hypothesis and the dynamic model
(see Eq. (41)).
Each measurement noise covariance matrix Rk | I, j is
estimated on line. These estimations are done fol-
lowing the scheme presented for the previous sim-
ple tracker, i.e. by modeling the correlation sur-
face as a probability distribution of the true match
location.

The whole method embedded into an optimal particle
filter implementation is briefly described in Algorithm 2.

5.3. Experimental Results

Experimental results are presented in order to enhance the
interesting features of our multimodal point tracker. The
used real-world sequences exhibit numerous photometric
ambiguities.

The first result concerns the sequence Concorde
shown previously and for which the monomodal point
tracker failed (cf. Fig. 5). As it can be noticed from Fig. 7,
considering three correlation hypothesis per feature im-
proves significantly the result quality. The whole trajec-
tories are now successfully recovered. Maintaining sev-
eral correlation modes enables in particular to recover the
right target even if a mis-estimation has been momentar-
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Algorithm 2 feature point tracker based on a partial linear
Gaussian model dedicated to ambiguities

• initialization: for i = 1 : N , generate x(i)
0 ∼ p(x0),

and fix w
(i)
0 = 1/N for k = 1, 2, . . .

• estimations on the image sequence:
1. detection of {zk, j } j=1:Mk with SSD criterion in the

validation gate Vk using Ĩ0,
estimation of {Rk | I, j } j=1:Mk and {βk, j } j=1:Mk

2. for i = 1 : N , estimation of θk | I(x
(i)
k−1) and Q(i)

k | I
using a robust parametric estimation technique on
a small neighborhood around x(i)

k−1

• sequential importance sampling:
1. sampling: for i = 1 : N , generate x(i)

k ∼
p(xk | x(i)

k−1, zk) with

p
(
xk | x(i)

k−1, zk
) =

Mk∑
j=1

βk, j
αk, j

Sk
N (xk ; mk | I, j , �k | I, j )

�k | I, j = (
Q(i)−1

k | I + R−1
k | I, j

)−1

mk | I, j = �k | I, j
(
Q(i)−1

k | I

[
x(i)

k−1 + P
(
x(i)

k−1

)
θk | I

(
x(i)

k−1

)] + R−1
k | I, j zk, j

)
The expressions of αk, j and Sk correspond respec-
tively to (45) and (42).

2. calculation of importance weights: for i = 1 : N ,
calculate w

(i)
k = p(zk | x(i)

k ) with

p
(
zk |x(i)

k

)∝
Mk∑
j=1

βk, jN
(
zk, j ; x(i)

k−1+P
(
x(i)

k−1

)
θk|I

(
x(i)

k−1

)
,

Rk | I, j + Q(i)
k | I

) ∑
i=1:N

w
(i)
k = 1.

• estimation of the feature position
• eventual update of the reference image Ĩ0

• resampling if necessary

ily done (such a behavior can be noticed for the point
located on the bus in the upper part of the image).

A second comparison is given on the 20-frame se-
quence Hand. Three target points have been fixed on
finger intersections. These points are quite close to each
other and correspond to highly similar photometric pat-
terns. The multimodal and monomodal trackers have
been run both on this sequence. The results are presented
in Figs. 8(a) and (c) respectively. It can be noticed in Fig.
8(a) that the results provided by the monomodal tracker
are not satisfactory. The feature located between the fore-
finger and the middle finger is wrongly tracked (cf. the
2 last images). The tracking of this point is studied in

more details in Fig. 8(b). On this illustration are repre-
sented the particles (in yellow), the point estimate (in
red) and the measurement (in blue). The tracking failure
is clearly due to a false alarm generated by a high correla-
tion score. This high correlation score causes the setting
of small values in the noise covariance matrix and induces
finally the diffusion of the particles around this wrong
observation.

On the contrary, the results obtained with the extended
version of the tracker considering three measurements per
feature are correct (cf. Fig. 8(c)): the tracking is not per-
turbed anymore by false alarms. As in Fig. 8(b), Fig. 8(d)
focuses on the tracking of the point between the index
and middle fingers. On this illustration are represented
the particles (in yellow), the point estimate (in red), the
measurement of highest correlation score (in blue) and
the two secondary observations (in green). Paying atten-
tion to image 15, it can be noticed that the main mea-
surement is located on a wrong position whereas it is a
secondary observation associated to a lower correlation
peak which actually corresponds to the state. In that case,
let us remind that the optimal importance function is a
mixture of Gaussian laws whose coefficients depend on
the correlation peaks but also on the distance between
these measurements and the prediction. Such a weight-
ing is naturally handled within a diffusion based on the
optimal importance function permits here to estimate the
correct feature location.

6. Dealing with Large State Space Dimension

In this section, we extend the simple partial linear
Gaussian model to the case of large state space. The
methodological study shows that one may have access
to the Optimal Rao-Blackwellized particle filter, whose
sampling exploration is done efficiently, as well as to a
validation gate. This new algorithm is applied to object
tracking. A model for tracking objects described by a
set of points is proposed. The original resulting tracker
is shown to be resistant to partial/complete occlusions,
object deformations and motion blur.

The two previous parts have demonstrated the interest
of alternative tracking system based on an informative
evolution model, a simple likelihood and a sound esti-
mation of the measurement noise covariance matrices.
These partial linear Gaussian models have been success-
fully validated on a feature point tracking application.
However, as the measurement model considered assumes
a linear link between observations provided by a detec-
tion module and the state, one may object that such a
setting is limited to the tracking of low dimensional fea-
tures and can hardly be extended to state vector of larger
dimension and associated only to local observations. The
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Figure 8. Hand sequence—(a–b) simple tracker—(c–d) tracker dedicated to ambiguities.
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goal of this section is to contradict such assertion and to
show that a partial linear Gaussian model can be advanta-
geously implemented for tracking in a state space of large
dimension. To this aim we will apply such a framework
to a problem of object tracking.

For the sake of generality, we assume here that the
target object can be represented as a collection of D de-
scriptors (such as feature points, sift points, edge portions,
etc.). To overcome the difficulty of devising a global ob-
ject detector in the image, we assume that only local and
independent observations for each descriptor are avail-
able. Let us note xk the state vector composed by the
complete set of characteristics (locations, direction, etc.)
of all the descriptors; zk is the measurement vector which
gathers the whole set of descriptors measurements (one
per descriptor involved). In order to use a partial linear
Gaussian model, a linear measurement equation is as-
sumed:

zk = Hk | I xk + vk, (53)

where Hk | I is the measurement matrix and vk is a white
noise of zero mean and of covariance Rk | I. As for the
construction of the object evolution law, the ideal case is
to consider a dynamic equation that describes both the
spatial coherence of the set of descriptors and its dy-
namic evolution. To that end, in order to take benefit
from the available information on the object motion and
on its geometric structure, the descriptor set is divided
in two subsets rk (the motion descriptors) and yk (the
geometric descriptors). Two different components of the
object evolution law are attached to this decomposition.
The first one, associated to the motion descriptors, en-
codes the rigid motion of a reference frame connected
to the object. The second one describes the object defor-
mations. Let us note that similar assumptions coupling
a rigid motion component (rotation and translation) with
a blend-shape component are widely used in structure-
from-motion tracking (Brand, 2001; Torresani and Bre-
gler, 2002). The dynamic model we consider may be writ-
ten:

xk =
[

rk

yk

]
=

[
fk | I (rk−1)

gk | I,r (yk−1)

]
+

[
wr

k

wy
k

]
, (54)

where wr
k and wy

k are white noises of zero mean and co-
variance matrices respectively Qr

k | I and Qy
k | I. As previ-

ously, in order to be reactive to any unpredictable changes
of speed and direction of the object, we rely on an on-
line dynamic model for the reference frame rigid mo-
tion. Even if it describes a rigid motion, the function
fk | I may be non linear w.r.t. components rk as its esti-
mation may depend in a non linear way on the location
of the associated descriptors. As for the function gk | I,r

(whose definition may depend on rk), it links the de-
scriptors of subset yk . It is devoted to the description
of the a priori geometric deformation of the object be-
tween two successive instants. Several parametric con-
straints may be used depending on the object tracked.
Let us remark that the function gk | I,r is linear if yk can be
described in a linear interpolation scheme—eventually
knowing rk (for ex. yk is described using piecewise lin-
ear splines with rk as control point, or using blend shape
decomposition).

There is no particular constraint on the state space
dimension to implement partial linear Gaussian mod-
els (53–54) through sequential Monte Carlo methods.
Nevertheless, as large dimensional state space is well-
known to be the Achille’s heel of nonlinear Bayesian
filters, any procedures allowing dimension reduction is
welcome. Among them, Rao-Blackwellization allows re-
ducing the sampling space when some state components
can be optimally estimated conditionally to the others.
The idea is to estimate the truly nonlinear/non-Gaussian
part of the state using a particle filter, while the re-
maining conditional state components can be estimated
analytically using the Kalman filter, a hidden Markov
model filter, or any other finite-dimensional optimal fil-
ter (Doucet et al., 2000). The resulting algorithms are
called Rao-Blackwellized particle filters. They have been
successfully applied for bearings only tracking and nav-
igation (Gustafsson et al., 2002), digital communication
(Chen and Liu, 2000) and recently in computer vision
(Khan et al., 2004).

Rao-Blackwellized filters assume that the evolution
law of the state xk = [rk, yk]t , is such that compo-
nent rk is independent of component yk conditionally to
rk−1:

p(xk | xk−1) = p(rk, yk | rk−1, yk−1)

= p(rk | rk−1) p(yk | rk, yk−1). (55)

Assuming in addition that the density p(yk | rk, z1:k)
can be optimally estimated, as the objective distribution
reads:

p(xk | z1:k)= p(rk, yk | z1:k)= p(yk | rk, z1:k) p(rk | z1:k),

(56)

the only remaining difficulty relies in the estimation of
p(rk | z1:k). Compared to the original filtering density this
new density lives in a space of reduced dimension. Given
a particle swarm {r(i)

k , w
(i)
k }i=1:N and a particle filter ap-

proximation of p(rk | z1:k):

p(rk | z1:k) �
N∑

i=1

w
(i)
k δr(i)

k
(rk), (57)



Partial Linear Gaussian Models for Tracking in Image Sequences 93

the marginal density p(yk | z1:k) can then be approximated
by the following mixture of laws:

p(yk | z1:k) =
∫

p(yk | rk, z1:k) p(rk | z1:k) drk

�
N∑

i=1

w
(i)
k p

(
yk | r(i)

k , z1:k
)
. (58)

Theoretical results deduced from the Rao-Blackwell the-
orem (Casella and Robert, 1996) demonstrate the interest
of this marginalization approach. In particular, consid-
ering two estimates of E[yk | z1:k], namely the standard
estimate:

Ê1[yk | z1:k] = 1

N

N∑
i=1

y(i)
k

where
(
y(i)

k , r(i)
k

) ∼ p(yk, rk | z1:k)(59)

and the Rao-Blackwellized estimate :

Ê2[yk | z1:k] = 1

N

N∑
i=1

E
[
yk

∣∣ r(i)
k , z1:k

]
where r(i)

k ∼ p(rk | z1:k) (60)

it can be shown that (Doucet et al., 2000):

var [Ê2[yk | z1:k]] ≤ var [Ê1[yk | z1:k]]. (61)

This result proves the better efficiency of the Rao-
Blackwellized estimate. Let us remark that the superior-
ity of the Rao-Blackwell estimate will also be validated
from an experimental point of view Section 6.3. For inter-
ested reader, other theoretical results are given in Doucet
et al. (2000). The resulting Rao-Blackwellized particle
filter consists finally in three main steps. First, an impor-
tance sampling stage is performed to generate the swarm
{r(i)

k , w
(i)
k }i=1:N which approximates p(rk | z1:k). For each

particle r(i)
k , the density p(yk | r(i)

k , z1:k) is estimated. A
final resampling step is eventually required.

Considering the system (53–54), if one wishes to
use the Kalman filter to compute optimally the density
p(yk | rk, z1:k) the dynamic equation of the geometric de-
scriptors has to be linear. We will therefore consider the
following partial linear Gaussian model (which is a par-
ticular case of model (53–54)):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

rk = fk | I(rk−1) + wr
k

yk = Gk | I,ryk−1 + wy
k

zk =
[

zr
k

zy
k

]
= Hk | Ixk + vk =

[
Mk | I 0

0 Nk | I

] [
rk

yk

]
+

[
vr

k

vy
k

]
,

(62)

where Gk | I,r is a matrix whose entries may depend on the
current estimation of rk . We assume that vr

k and vy
k are

white noises of zero mean and covariances respectively
Rr

k | I and Ry
k | I.

As for the estimation of p(rk | z1:k), this model al-
lows the exploration of the state space using the op-
timal importance function. Indeed, similarly to the
case presented in Section 4, the two densities re-
quired for the optimal sampling, p(rk | rk−1, zk) and
p(zk | rk−1), are Gaussian. This leads to consider the Op-
timal Rao-Blackwellized Particle filter that corresponds
to a bank of Kalman filters (one filter per particle) since
the distributions p(yk | r(i)

k , z1:k) = N (yk ; ŷk | k, �k | k)
are estimated through the Kalman filter’s recursive
expressions:

ŷk | k−1 = Gk | I,rŷk−1 | k−1 (63)

�k | k−1 = Gk | I,r�k−1 | k−1 Gt
k | I,r + Qy

k (64)

Kk = �k | k−1 N t
k | I

(
Nk | I�k | k−1 N t

k | I + Rk | I
)−1

(65)

ŷk | k = ŷk | k−1 + Kk
[
zy

k − N t
k | Iŷk | k−1

]
(66)

�k | k = �k | k−1 − Kk �k | k−1. (67)

6.1. Validation Gate

Following the same schemes as before, a validation gate
may be still considered for this kind of partial linear Gaus-
sian model using:

p(zk | z1:k−1) =
∫

p(zk | xk−1) p(xk−1 | z1:k−1) dxk−1

�
N∑

i=1

w
(i)
k−1 p

(
zk | x(i)

k−1

)
, (68)

where in that case the particle swarm {x(i)
k−1, w

(i)
k−1}

i=1...N = {r(i)
k−1, y(i)

k−1, w
(i)
k−1}i=1...N has been obtained with

the optimal Rao-Blackwellized particle filter. Applying

p(zk | xk−1) =
∫

p(zk | xk) p(xk | xk−1) dxk, (69)

we can remark that for the model under concern (62), we
have:

p
(
zk

∣∣ x(i)
k−1

) = N
(

zk ;

[
Mk | I fk | I

(
r(i)

k−1

)
Nk | I Gk | I,r y(i)

k−1

]
,[

Ry
k | I + Mk | I Qy (i)

k | I Mt
k | I 0

0 Rr
k | I + Nk | I Qr (i)

k | I N t
k | I

])
.

(70)
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As we have chosen to consider only local and indepen-
dent measurements, the matrices involved in the mea-
surement model, i.e. Mk | I, Nk | I, Ry

k | I and Rr
k | I are

block-diagonal (where each block corresponds to one
descriptor). Making the additional weak assumption that
the state noise covariance matrices Qy

k | I and Qr
k | I are

block-diagonal, the covariance matrix of the Gaussian
law p(zk | x(i)

k−1) (Eq. (70)) is also block diagonal. Each
block of this matrix is associated to one descriptor of
the object representation. As a consequence, it is pos-
sible to consider a global validation gate composed of
a collection of ellipsoidal regions, each of these re-
gions being associated to one descriptor. The param-
eters of each of these local validation gates are com-
puted following the same procedure as the one described
in Section 4.1 for the simplest partial linear Gaussian
model.

If zk,d denotes the observation associated to descriptor

d (noted xk,d ) at time k, and m(i)
k,d and �

(i)
k,d the two first

moments of the Gaussian density p(zk,d | x(i)
k−1,d ) (whose

expression may be directly deduced from Eq. (70)), the
global validation gate is defined as:

Vk =
D⋃

d=1

�d , (71)

with each ellipse �d (corresponding to the descriptor d)
is given by:

�d = {
zk,d :

(
zk,d − mvg

k,d

)t
�

vg
k,d

−1(zk,d − mvg
k,d

) ≤ γd
}
.

(72)

The parameter γd is chosen in practice such as the proba-
bility of finding the real measurement of the descriptor d
is equal to 0.99. The expressions of the parameters mvg

k,d
and �

vg
k,d are:

mvg
k,d �

N∑
i=1

w
(i)
k−1 m(i)

k,d , (73)

�
vg
k,d �

N∑
i=1

w
(i)
k−1

[
�

(i)
k,d + ∥∥m(i)

k,d

∥∥2]−∥∥∥∥∥ N∑
i=1

w
(i)
k−1m(i)

k,d

∥∥∥∥∥
2

.

(74)

6.2. Application to Object Tracking Relying on a Point
Cloud Description

In this section, we propose to apply the optimal Rao-
Blackwellized particle filter to the tracking of an ob-
ject described by a set of feature points. This tracking
problem has been mainly investigated for structure from
motion problems (Brand, 2001; Torresani and Bregler,
2002). These approaches rely on factorization methods

and assume as a hard constraint that a sufficient number
of correspondences are known for the whole sequence.
Alternatively, trackers for groups of feature points in
video shots has been defined through epipolar fits and
RANSAC estimator (Sivic et al., 2004). All these studies
rely on deterministic successive instantaneous estimation
processes such as optic flow, correlation from frame to
frame or wide baseline matching. Indeed, they aim more
at estimating a global structure of the point cloud than
at tracking features in a robust way. By robust we mean:
robust to image sequence noise (such additive noise, blur
and motion blur), free of drift, robust to occlusions or
to failures of the measurement process and robust to
model’s imprecisions. Stochastic filters enable naturally
such an estimation. In addition, as previously explained,
these approaches provide a prediction of the image re-
gion to focus on. The recursive aspect of these filters
(online estimation) constitutes also a major difference
with batch structure from motion techniques based on
factorization which require all point correspondences in
the sequence. However, to the best of our knowledge, no
study has been done to propose an efficient tracker allow-
ing partial or complete occlusions of the target and being
robust to problematic sources of noise such as motion
blur.

In the following paragraphs we describe all the dif-
ferent components of the tracking system of the form
(62) devoted to point cloud tracking. We detail suc-
cessively the initialization process, the estimation of
the different ingredients of the dynamic model (i.e.
the motion function fk | I and the geometric matrix
Gk | I,r), and the elements related to the measurement
model.

6.2.1. Selection of the Feature Points. The target point
cloud is automatically determined using the Harris point
detector (Harris and Stephens, 1988) on the first image
of the sequence. This detector relies on the assumption
that characteristic points in a region of interest are
associated with maxima of the local autocorrelation
function. Compared to other detectors, it has been
shown to provide feature points of good quality for a
tracking application (Tissainayagam and Suter, 2004).
Relying on the assumption that the more discriminant
the neighborhood of the feature, the more reliable the
tracking of this feature, we set the motion points to
features associated to the highest maxima. These points
are used to define a reference frame related to the object.
The other points constitute the geometric subset.

6.2.2. Motion Function. Following the same idea as for
the previous tracker we wish to rely on a dynamic model
describing as accurately as possible the global motion of
the point cloud. To this aim we still rely on a motion model
estimated online through a robust estimation process. The
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Figure 9. Illustration of the steps to be achieved for each particle—red: motion points ; green: geometric points.

resulting evolution law of the set of motion points rk

reads:

p(rk | rk−1) = N
(
rk ; rk−1 + P(rk−1)θk | I(rk−1), Qr

k | I

)
.

(75)

The estimation support on which the motion parameter
vectorθk | I is estimated is a square window region includ-
ing the whole set of motion points. The noise covariance
matrix Qr

k | I is estimated as before.

6.2.3. Geometric Matrix. The geometric matrix Gk | I,r

depends on the motion subset. It can be evaluated for
any given configuration of the reference frame consti-
tuted by the motion points. This matrix describes the
evolution of the geometric points between two frame in-
stants. Several constraints may be used. Two cases have
been considered here to distinguish the tracking of a pla-
nar object from the tracking of a non planar object. In
both cases, the evolution law of the geometric subset yk

reads:

p(yk | rk, yk−1) = N
(
yk ; Gk | I,r yk−1, Qy

k | I

)
, (76)

where the noise covariance matrix Qy
k | I is fixed and set

to σ 2 × Id.

• The Tracked Object has a Non Planar Structure. For
the tracking of a non planar object, the simplest and
more general solution is to set the dynamic model of
the geometric points to a constant position model in
the coordinate reference frames defined by the motion
points. In that case Gk | I,r is thus a matrix describ-
ing a change of coordinate system. Associated to high
covariance value such a model defines just a weak dy-
namic model which a priori penalizes configurations
resulting from large deformations between two frame
instants.

• The Tracked Object has a Planar Structure. In this case
the projective coordinates of the point cloud at distinct
instants are linearly linked by an homography matrix.
This matrix can be estimated from at least four matched
motion points (Faugeras and Lustman, 1988). Assum-
ing therefore that rk is composed of at least four fea-
ture points, an homography matrix may be estimated
for each configuration (i.e. for each particles) of the
motion points.

Let us remark that other models could be considered.
The only limitation, related to the linearity of Gk | I,r,
is that yk has to be described using a linear interpo-
lation scheme. Such a description can handle a large
number of cases. For example, articulated motion can
be described by piecewise linear splines where main
articulations are control points (here the control points
are rk , estimated with a local or global motion model).
We can also think of deformable objects described by
a mesh of points yk that may be estimated as a linear
combination of possible configurations (blend shape de-
scription). In that case the set rk may describe the rigid
motion.

6.2.4. Measurement Model. In order to avoid the diffi-
culty of defining a global detection process for the set of
points, we propose to rely on local independent measure-
ments of the different features. The considered observa-
tion vector zk gathers all the correlation peaks of each
point composing xk . In the same way as in the case of a
single point tracking, this vector is determined through
a matching technique between the current image and a
target representation Ĩ0. This representation which con-
stitutes a reference image of the object is composed by
a collection of local image patches centered at the ini-
tial point locations in the first image of the sequence. In
the same manner as done previously, this reference may
be updated by warping the collection of image patches.
The matching criterion used to quantify the similarity
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Figure 10. Desk sequence—dealing with complete occlusions (frames 1, 16, 37, 41, 47, 53)—average trajectory over 100 runs.

between two points is the SSD criterion. The resulting
measurement equation reads:

p(zk | xk) = N (zk ; xk, Rk | I) (77)

The noise covariance Rk | I is a block-diagonal matrix. For
each point, the associated block accounts for an accuracy
measurement of the matching procedure. The estimation
of these blocks follows the procedure detailed in Section
4.3.2. Such online estimations of the noise covariance
matrices improve greatly the tracker robustness to occlu-
sions.

The final object tracker is based on the model com-
posed of Eqs. (75)–(77). This model is a partial linear
Gaussian model and its structure allows using the opti-
mal Rao-Blackwellized particle filter. The steps of the
filter are summarized in Algorithm 3, and illustrated for
a single particle in Fig. 9.

6.3. Experimental Results

In this section experimental results obtained on real-
world sequences are presented. To highlight the tracker
efficiency, we have chosen to present some results on dif-
ficult situations that would make deterministic trackers
fail (i.e. motion blur, complete/partial occlusions, partial
exit of the object out the image frame). On these results,
the red crosses denote the motion points and the green
crosses account for the geometric points. All the used
sequences have been shot with a hand-held-camera and
present therefore global chaotic motions generating mo-
tion blur on some images.

Algorithm 3 Object tracker

• initialization:
for i = 1 : N , generate r(i)

0 ∼ p(r0), set w
(i)
0 = 1/N ,

ŷ(i)
0 | 0 = ŷ0 and �

(i)
0 | 0 = �0 or k = 1, 2, . . .

• estimations on the image sequence:
1. detection of zk using SSD criteria in Vk , and estima-

tion of Rr
k | I and Ry

k | I

2. for i = 1 . . . N estimation of θk | I(r
(i)
k−1) and Qr (i)

k | I
using a robust parametric estimation technique on
an image region including r(i)

k−1

• sequential importance sampling:
1. sampling: for i = 1 : N , generate r(i)

k ∼
p(rk | r(i)

k−1, zk)
2. calculation of normalized importance weights: for

i = 1 . . . N , calculate w
(i)
k = p(zk | r(i)

k )

• estimations on the image sequence:
for each particle r(i)

k , estimation of the geometric

matrix G(i)
k | I,r

• bank of Kalman filters:
for each particle r(i)

k , estimation of the parameters

ŷ(i)
k | k , �

(i)
k | k of the Gaussian law

p(yk | r(i)
k , z1:k) using the Kalman filter (Eqs. (63—67))

• estimation of the point cloud position
• resampling if necessary

Tracking of Planar Objects. The first results (Figs. 10
and 11) present the tracking of a planar structure and
have been obtained using an homography model for the
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Figure 11. Book sequence—dealing with partial exit out of the image, large amplitude motion and motion blur (frames 1, 48, 87, 121)—average

trajectory over 100 realizations.

Figure 12. Paper sequence—dealing with object deformations (frames 1, 26, 39, 50)—average trajectory over 100 realizations.

geometric constraint. The results obtained on the Desk
sequence are illustrated on Fig. 10. It shows a success-
ful tracking of a book lying on an overstuffed desk that
constitutes a cluttered background. As it can be observed
on frames 16 and 41, this object is completely occluded
twice. Although the tracker is naturally disturbed during
the occlusions (as it can be observed by the trajectories
of few points of the cloud), it recovers well the respective
locations of all the points at the occlusion end. The sec-
ond results shows a successful tracking of another book
lying on a desk. This is a long sequence of 121 frames
exhibiting long range motion, motion blur and a partial
exit of the target.

Tracking of Non Planar Objects. The two last results
are dedicated to the tracking of deformable and non planar

structures. They have been obtained setting the geomet-
ric constraint as a simple constant position model in a
coordinate reference defined by the motion subset. The
Paper sequence shows a textured planar object undergo-
ing deformations. As it is illustrated in Fig. 12, the trajec-
tories of each feature of the cloud have been successfully
recovered in spite of the several possible ambiguities.
Finally, our algorithm has been tested on the challeng-
ing Tiger sequence. The obtained results are presented
on Fig. 13. The non rigid deformations of the walking
tiger are very important. Strong similarities can also be
observed between the different feature appearances, and
these latter may change a lot along the image sequence.
However, the tracker succeeds in recovering the right tra-
jectory on the point cloud. In order to validate the interest
of the Rao-Blackwellization version of the particle fil-
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Figure 13. Tiger sequence—frames 1, 6, 13, 20, 26, 30—average trajectory over 100 realizations—Rao-Blackwellized optimal particle filter.

ter, Fig. 14 presents the result obtained with and without
the Rao-Blackwellization (simple optimal particle filter).
Comparing the results shows clearly the efficiency of the
Rao-Blackwell estimate.

7. Remarks on Computational Complexity

Before concluding, let us make some remarks about the
trackers complexity. Concerning the two point trackers
(Algorithms 1 and 2), the computational cost is essen-
tially due to the motion model estimation, to the mea-
surement computation and to its associated confidence
measure. The computation of the dynamic model update
has to be relativized. Indeed, the robust motion estima-
tion process can be implemented very efficiently. The
version we use works in real time. Nevertheless, since
the dynamic model has to be calculated for each particle,

it is true that such an image-based model costs more than
usual auto-regressive models. Concerning the observa-
tion step, a way to accelerate the computing time would
be to use a correlation criterion, that can be efficiently
computed in the Fourier domain. The measurement con-
fidence could be also estimated in the Fourier space. The
filtering part is not time consuming as the peculiar pro-
posed models lead to very simple and efficient algorithms
(involving only Gaussian densities). However, the com-
plexity of the multi-hypothesis tracker slightly increases
with respect to the simple one. Obviously, this increase
depend on the number of considered measurement-
hypothesis.

As for the object tracker (Algorithm 3), the same re-
marks as before account for the model calculations. How-
ever, since the filter is composed of a set of particles, for
each of them one need to compute a Kalman filter, the
whole procedure is time-consuming.
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Figure 14. Tiger sequence—frames 1, 6, 13, 20, 26, 30—average trajectory over 100 realizations—optimal particle filter.

8. Conclusion

The work presented in this paper takes place in the frame-
work of Sequential Monte Carlo approaches for tracking
in image sequences. In particular, the use of partial linear
Gaussian systems to model the unknown dynamic model
has been deeply investigated. Such systems have been
shown to describe the problem in an opposite manner
as the traditional tracking models since they associate a
rough linear measurement model with a non linear dy-
namic equation. They have the great advantage to allow
an exact expression of the optimal importance function.
The knowledge of this optimal function enables us to
include naturally the measurements into the state space
exploration process and authorizes to build a relevant
approximation of a validation gate. Three instances of
increasing complexity have been introduced, allowing to
cope with occlusions, ambiguities and large state space.

These models have been first successfully validated

on a point tracking application. The obtained results
have demonstrated the ability of the proposed method
to deal with occlusions, motion blur, complex trajecto-
ries and clutter without defining any specific scheme.
The a priori-free system we have considered has been
entirely defined on the image data. This latter has finally
been extended and validated for a planar object tracking
application.

9. Annexe

Let us consider the following multimodal partial linear
Gaussian model (studied in Section 5):

⎧⎪⎨⎪⎩
p(xk | xk−1) = N (xk ; fk | I (xk−1), Qk | I)

p(zk | xk) = V 1−Mk
k

∑Mk
j=1 βk, j N (zk, j ;

Hk | I, j xk, Rk | I, j ).

(78)
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we have

p
(
zk | x(i)

k−1

) =
∫

p(zk | xk)p
(
xk | x(i)

k−1

)
dxk

= V 1−Mk
k

Mk∑
j=1

βk, jN
(
zk, j ; Hk | I, j fk | I

(
x(i)

k−1

)
,

Rk | I, j + Hk | I, j Q(i)
k | I H t

k | I, j

)
. (79)

Remarking that:

p(xk | xk−1, zk) = p(zk | xk) p(xk | xk−1)

p(zk | xk−1)
, (80)

and using the expressions of model (78), and Eq. (79) one
can write:

p
(

xk | x(i)
k−1, zk

)
= V 1−Mk

k N (xk ; fk | I(x
(i)
k−1), Q(i)

k | I)
∑Mk

j=1 βk, jN (zk, j ; Hk | I, j xk , Rk | I, j )

V 1−Mk
k

∑Mk
j=1 βk, jN (zk, j ; Hk | I, j fk | I(x

(i)
k−1), Rk | I, j + Hk | I, j Q(i)

k | I H t
k | I, j )

.

(81)

The denominator can be replaced by a constant Sk , in-
dependent of xk , such as:

Sk =
Mk∑
j=1

βk, jN
(
zk, j ; Hk | I, j fk | I

(
x(i)

k−1

)
, Rk | I, j

+ Hk | I, j Q(i)
k | I H t

k | I, j

)
, (82)

then, we have:

p
(
xk | x(i)

k−1, zk
) = 1

Sk

Mk∑
j=1

βk, jN (zk, j ; Hk | I, j xk, Rk | I, j )

N
(
xk ; fk | I

(
x(i)

k−1

)
, Q(i)

k | I

)
. (83)

Let us introduce the variable N :

N = (xk − fk | I(xk−1))t Q−1
k | I(xk − fk | I(xk−1))

+ (zk, j − Hk | I, j xk)t R−1
k | I, j (zk, j − Hk | I, j xk). (84)

By noting that:

N = xt
k

(
Q−1

k | I + H t
k | I, j R−1

k | I, j Hk | I, j
)
xk (85)

− 2xt
k

(
Q−1

k | I fk | I(xk−1) + H t
k | I, j R−1

k | I, j zk, j
)

+ ( fk | I(xk−1))t Q−1
k | I fk | I(xk−1) + zt

k, j R−1
k | I, j zk, j

= (xk − mk | I, j )
t�−1

k | I, j (xk − mk | I, j ) + K (86)

where

�k | I, j = (
Q−1

k | I + H t
k | I, j R−1

k | I, j Hk | I, j
)−1

(87)

mk | I, j = �k | I, j
(
Q−1

k | I fk | I(xk−1) + H t
k | I, j R−1

k | I, j zk, j
)
(88)

K = ( fk | I(xk−1))t Q−1
k | I fk | I(xk−1) + zt

k, j R−1
k | I, j zk, j

+ mt
k | I, j�

−1
k | I, j mk | I, j , (89)

the optimal importance function reads:

p
(
xk | x(i)

k−1, zk
) =

Mk∑
j=1

βk, j
αk, j

Sk
N (xk ; mk | I, j , �k | I, j )

(90)

with

αk, j = C exp

(
− 1

2

[∥∥ fk | I
(
x(i)

k−1

)∥∥2

Q(i)−1
k | I

+ ‖zk, j‖2
R−1

k | I, j

−‖mk | I, j‖2
�−1

k | I, j

])
(91)

and C = (2π )−
nz
2 | �k | I, j | 1

2

∣∣ Q(i)
k | I

∣∣ − 1
2 | Rk | I, j | − 1

2 ,

(92)

where nz denotes the dimension of the measurement
vector zk .

Notes

1. Let us note that all the system’s ingredients may depend on the

image data. Ideally one should consider a conditioning upon the

image sequence data I0:k as in Arnaud et al. (2005) and rely therefore

on the probability distributions p(zk | xk , I0:k ) and p(xk | xk−1, I0:k ).

In that case, the new filtering density is p(xk | z1:k , I0:k ). Such a

conditioning is omitted along the whole paper for sake of clarity.

2. Let us remark that the problem of data association is all the more

difficult in the case of multi-target tracking. As we focus here on

single feature tracking application, we will not address this issue.

For more details, interested readers may refer to Bar-Shalom and Li

(1995) and Vermaak et al. (2005).

3. Let us remark that in this work, the value of {βk, j } j=1:Mk is estimated

without taking into account the covariance matrices {Rk | I, j } j=1:Mk ,

contrary to an optimal EM strategy (Bilmes, 1997). However, we

think that our method has the advantage to be simple and fast. In the

next future, we plan to compare it with the optimal strategy.
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Vermaak, J., Godsill, S.J., and Pérez, P. 2005. Monte Carlo filtering

for multi-target tracking and data association. IEEE Transations on
Aerospace and Electronic Systems 41(1):309–332.
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