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Abstract. We present a new approach for self-calibrating the distor-
tion function and the distortion center of cameras with general radially
symmetric distortion. In contrast to most current models, we propose a
model encompassing fisheye lenses as well as catadioptric cameras with
a view angle larger than 180o.
Rather than representing distortion as an image displacement, we model
it as a varying focal length, which is a function of the distance to the
distortion center. This function can be discretized, acting as a general
model, or represented with e.g. a polynomial expression.
We present two flexible approaches for calibrating the distortion func-
tion. The first one is a plumbline-type method; images of line patterns
are used to formulate linear constraints on the distortion function param-
eters. This linear system can be solved up to an unknown scale factor
(a global focal length), which is sufficient for image rectification. The
second approach is based on the first one and performs self-calibration
from images of a textured planar object of unknown structure. We also
show that by restricting the camera motion, self-calibration is possible
from images of a completely unknown, non-planar scene.
The analysis of rectified images, obtained using the computed distortion
functions, shows very good results compared to other approaches and
models, even those relying on non-linear optimization.

1. Introduction

Most theoretical advances in geometric computer vision make use of the pin-hole
camera model. One benefit of such a model is the linearity of the projection which
simplifies multi-view constraints and other structure-from-motion computations.
Unfortunately in many cases, this model is a poor representation of how the
camera samples the world, especially when dealing with wide angle cameras
where radial distortion usually occurs. In addition to these cameras, catadioptric
devices (i.e. cameras pointed at a mirror) also admit a very large field of view.
Their image distortion can also be seen as a type of radial distortion, although,
in general, it cannot be modeled with traditional models. This is because the
view angle of these cameras can be larger than 180o, which is not compatible
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with the usual image-displacement approach. The effect of radial distortion is
that straight lines in the scene are not in general projected onto straight lines in
the image, contrary to pin-hole cameras. Many calibration algorithms can deal
with distortion, but they are usually tailor-made for specific distortion models
and involve non-linear optimization.

In this paper, we introduce a general distortion model, whose main feature is
to consider radially symmetric distortion. More precisely, we make the following
assumptions on the camera projection function:

• the aspect ratio is 1,
• the distortion center is aligned with the principal point3,
• the projection function is radially symmetric (around the distortion center),
• the projection is central, i.e. projection rays pass through a single (effective)
optical center.

Given the quality of camera hardware manufacturing, it is common practice
to assume an aspect ratio of 1. As for the second and third assumptions, they
are made to ensure our model is consistent with both catadioptric devices and
regular fisheye cameras. Finally, a central projection is assumed for simplicity
even for very large field of view cameras [1, 22] in which a non-single viewpoint
might be induced by the lens [3], or by a misaligned mirror [18].

Our full camera model consists therefore of the position of the distortion
center and the actual distortion function that maps distance from the distor-
tion center to focal length. This model, together with the above assumptions,
fully represents a camera projection function. It is a good compromise between
traditional low-parametric camera models and fully general ones, modeling one
projection ray per pixel [10, 17], in terms of modeling power and ease and sta-
bility of calibration. The model is indeed general enough to represent cameras
of different types and with very different view angles.

Problem statement. In this paper, we intend to solve the proposed model re-
lying on images of collinear points in space. Our algorithm makes no assumption
on the distortion function and on the distortion center position. Only a rough
initial value of the latter is needed.

Organization. A short review of the most popular distortion models is pre-
sented in the first section. The model we adopt is presented in §3. In §4 we
propose a plumbline method for calibrating our model using images of collinear
points. Based on this, we propose a plane-based self-calibration approach, in §5.
Finally, the performance of our methods is analyzed and compared to another
similar approach [6].

2. Related Work

As the field of view of a camera lens increases, the distortion occurring in the
captured images becomes more and more important. Traditionally, researchers

3 We will see that this constraint may be dropped in some cases.
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have sought new models with more degrees of freedom and complexity. These
models include the traditional polynomial model [11] (which can be combined
with a field of view model (FOV) [6]), division [7] and rational [5]. Most of
the time the models are calibrated using non-linear optimization of either a full
projection model from points located on a calibration object [23] or a homogra-
phy mapping from a planar grid [5]. Recent papers have also shown that radial
distortion models can be calibrated linearly from a calibration grid [12] of by
feature point matching between images [7, 5, 19, 20].

Other approaches focus only on calibrating the distortion function by impos-
ing either that a straight line in space should appear straight in the image [4, 6]
or that spherical objects should appear circular [16].

The aforementioned models all apply to cameras with a field of view smaller
than 180o since the distortion is image-based. They fail to handle data captured
by a camera with a view angle larger than 180o, typical for catadioptric devices.
Different models and algorithm have been specifically designed to address these
cases [9, 14] and their parameters have an explicit geometric interpretation rather
than expressing distortion directly.

Finally, only few attempts were made to find models able to deal with dioptric
systems (including radial distortion) and catadioptric ones [22, 2]. The model we
propose fits in this category with the benefit that its distortion function can be
general.

3. Camera Model

We describe the camera model that corresponds to the assumptions explained in
the introduction. Consider a camera with canonical orientation, i.e. the optical
axis is aligned with the Z-axis and image x and y-axes are parallel to world
X and Y -axes respectively. Our camera model is then fully described by the
position of a distortion center (cx, cy)> and a distortion “function” f : R → R,
such that an image point (x, y)> is back-projected to a 3D line spanned by the
optical center and the point at infinity with coordinates:

[

x − cx, y − cy, f(r), 0
]>

, r =
√

(x − cx)2 + (y − cy)2

The distortion function (it should actually be called “undistortion function”, but
we did not find this very elegant) can for example be chosen as a polynomial
with even powers of r, in which case we have the division model, as used in [7,
19]. The model also subsumes fisheye models [8, 15] and cameras of the ’unified
central catadioptric model’ [9].

In this paper, we use two representations for the distortion function. The
first one is a polynomial of a degree d to be fixed, like in the division model,
however including odd powers:

f(r) =

d
∑

i=0

λir
i. (1)
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The second one is a discrete representation, consisting of a lookup table of the
distortion function values at a set of discrete values for r (in practice, we use
one sample per step of one pixel). We denote these values as:

f(r) = fr. (2)

Note that a constant function f allows the representation of a pinhole camera
with f ’s value as focal length. From the above back-projection equation, it is
easy to deduce equations for distortion correction, also called rectification in the
sequel. This can for example be done by re-projecting the points at infinity of
projection rays into a pinhole camera with the same optical center and orien-
tation as the original camera. As for the intrinsic parameters of the (virtual)
pinhole camera, we usually also adopt an aspect ratio of 1 and zero skew; if
the distortion center is to have the same coordinates in the rectified image as
in the original one, and if g denotes the rectified image’s focal length, then the
homogeneous coordinates of the rectified point are:





g 0 cx

0 g cy

0 0 1









x − cx

y − cy

f(r)



 .

In the following, we introduce a few geometric notions that will be used in
this paper. A distortion circle is a circle in the image, centered in the distortion
center. Projection rays of points lying on a distortion circle span an associated
viewing cone in space. In our model, all cones have the same axis (the optical
axis) and vertex (the optical center).

Each cone can actually be understood as an individual pinhole camera, with
f(r) as focal length (r being the distortion circle’s radius). Geometrically, this is
equivalent to virtually moving the image plane along the optical axis, according
to the distortion function. This situation is depicted in fig. 1. In the case of a
camera with a view angle larger than 180o, the focal length becomes equal or
smaller than zero. In the zero case, the cone is actually the principal plane,
i.e. the plane containing the optical center and that is perpendicular to the
optical axis. Let us call the associated distortion circle principal distortion

circle. A negative f(r) is equivalent to a camera with positive focal length,
looking backward and whose image is mirrored in x and y. Typical situations
for rectification are depicted in fig. 2.

Rectification for cameras with a view angle larger than 180o cannot be done
as usual: the above rectification operation is no longer a bijection (two points in
the original image may be mapped to the same location in the rectified one) and
points on the principal distortion circle are mapped to points at infinity (fig. 2b).
It is still possible to rectify individual parts of the image correctly, by giving the
virtual pinhole camera a limited field of view and allowing it to rotate relative
to the true camera.

4. Plumbline Calibration

In this section, we show that the distortion function f and the distortion center
can be recovered linearly from the images of lines (straight edges) or points that
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Fig. 1. Distortion circles are associated with cones in space. Theoretically, any point
of the image can be projected into a single plane. a) Pixel from a cone looking forward,
b) one from a cone looking backward.

are collinear in space. This is thus akin to the classical plumbline calibration
technique [4, 6].

4.1. Calibration of Distortion Function

We obtain linear constraints on the distortion function as follows. Consider the
images of three collinear points, pi = (xi, yi)

>. For now, let us assume that the
distortion center is known and that the image coordinate system is centered in
this point. Hence, ri = ||(xi, yi)|| is the distance of a point from the distortion
center. Provided that these points should be collinear once rectified, we know
that:
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which can be written explicitly as a linear constraint on the f(ri)’s:
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= 0. (4)

If f is of the form (1) or (2), then this equation gives a linear constraint on its
parameters λi respectively fr.

Constraints can be accumulated from all possible triplets of points that are
projections of collinear points in space. We thus obtain a linear equation system
of the form Ax = 0, where x contains the parameters of f (the λi’s or the fr’s).
Note that constraints from triplets where two or all three image points lie close
to one another are not very useful and hence can be neglected in order to reduce
the number of equations. Solving this system to least squares yields parameters
that maximize the collinearity of the rectified points4. Note that the equation

4 However, it is not optimal in terms of geometric distance.
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Fig. 2. Situations where three points are rectified into collinear positions. a) Three
points corresponding to forward cones. b) One point located on principal distortion
circle, i.e. scene point on principal plane. c) Two points on forward cones and one on
a backward cone.

system is homogeneous, i.e. the distortion parameters are only estimated up to
scale. This is natural, as explained below; a unique solution can be guaranteed
by setting λ0 = 1 as is usually done for the division model, or by setting one fr

to a fixed value.

4.2. Calibration of Distortion Center

So far, we have assumed a known distortion center. In this section, we show
how it can be estimated as well, in addition to the actual distortion function.
A first idea is to sample likely positions of the distortion center, e.g. consider
a regular grid of points in a circular region in the image center, and compute
the distortion function for each of them using the above method. We then keep
the point yielding the smallest residual of the linear equation system as the
estimated distortion center. This approach is simple and not very elegant, but is
fully justified and works well in practice. Its downside is that the computation
time is proportional to the number of sampled points.

Therefore, we investigate a local optimization procedure, as opposed to the
above brute force one. Let (cx, cy) be the unknown distortion center. Equation
(3) now becomes:
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= 0. (5)

First, this constraint cannot be used directly for the discretized version of the
distortion function. Second, if we use the polynomial model, the constraint is
highly non-linear in the coordinates of the distortion center.

We thus consider an approximation of (5): we assume that a current estimate
of the distortion center is not too far away from the true position (||(cx, cy)|| is
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small), so that f can be approximated with (cx, cy) = 0 and

f(
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Equation (5) thus simplifies to:
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which is linear in cx and cy. Once again, combining many constraints leads to an
over-determined linear equation system. The recovered distortion center may not
be optimal because the points are expressed relative to the approximate center
and because of the simplification of (5). Hoping that the previous assumptions
are applicable, this new center should nevertheless improve our rectification.
This estimation is used in a local optimization scheme of alternation type:

0. Initialize the distortion center with e.g. the center of the image.
1. Fix the distortion center and compute the distortion function (§4.1).
2. Fix the distortion function and update the distortion center (§4.2).
3. Go to step 1, unless convergence is observed.

Instead of using the least-squares cost function based on the algebraic distance
(3), we also consider a more geometric cost function to judge convergence in step
3. Consider a set of image points belonging to a line image. From the current
values of distortion center and function, we compute their projection rays and
fit a plane as follows: determine the plane that contains the optical center and
that minimizes the sum of (squared) angles with projection rays. The residual
squared angles, summed over all line images, give the alternative cost function.

4.3. Discussion

The estimation of distortion center and function is based on an algebraic distance
expressing collinearity of rectified image points. Better would be of course to use
a geometric distance in the original images; this is possible but rather involved
and is left for future work.

We briefly describe what the calibration of the distortion function amounts
to, in terms of full metric calibration. First, recall that the distortion function
can be computed up to scale only from our input (see §4.1). This is natural:
if we have a distortion function that satisfies all collinearity constraints, then
multiplying it by a scale factor results in a distortion function that satisfies them
as well. This ambiguity means that once the distortion function is computed (up
to scale) and the image rectified, the camera can be considered as equivalent to
a pinhole camera with unknown focal length, with the difference that the field
of view is potentially larger than 180o. Any existing focal length calibration or
self-calibration algorithm designed for pinhole cameras can be applied to obtain
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a full metric calibration. A direct application of such algorithms can probably
use only features that lie inside the principal distortion circle, but it should be
possible to adapt them so as to use even fields of view larger than 180o. At this
step, the second assumption of §1 can also be relaxed if desired: a full pinhole
model, i.e. not only focal length, can in principle be estimated from rectified
images.

5. Self-Calibration

We now develop a plane-based self-calibration approach that is based on the
plumbline technique of the previous section. Consider that the camera acquires
two images of a textured plane with otherwise unknown structure. We suppose
that we can match the two images densely; the matching does not actually need
to be perfectly dense, but assuming it simplifies the following explanations. This
is discussed below in more details.

We now describe how dense matches between two images of a planar scene
allow the generation of line images and hence to apply the plumbline technique.
Consider any radial line (line going through the distortion center) in the first
image; the projection rays associated with the points on that line are necessarily
coplanar according to our camera model. Therefore, the scene points that are
observed along that radial line must be collinear: they lie on the intersection of
the plane of projection rays, with the scene plane. Due to the dense matching,
we know the projections of these collinear scene points in the second image. By
considering dense matches of points along n radial lines in one image, we thus
obtain n line images in the other image, and vice versa. In addition, these line
images usually extend across a large part of the image, bringing about strong
constraints.

We now simply stack all plumbline constraints (4) for all pairs of images,
and solve for the distortion parameters as in §4. Here, we have assumed the
knowledge of the distortion center (in order to define radial lines); the distortion
center can of course also be estimated, using e.g. the exhaustive approach of
§4.2. Moreover, the input, once rectified, can be given to a classical plane-based
self-calibration algorithm to obtain a full metric calibration, using e.g. [21].

Dense Matching. Dense matching can be achieved rather straightforwardly.
If the camera acquires a continuous image sequence, most existing optical flow
algorithms can be applied for successive frames and their results propagated in
order to obtain a dense matching between two images with a substantial motion
between them. In addition, the fact that a planar scene is observed eliminates
the occlusion problem. If the scene is not sufficiently textured, but only allows to
extract and track sparse interest points, then we proceed as follows. We extract
dominant lines in each image using a Hough transform of the extracted interest
points, and only keep the lines passing near the current distortion center esti-
mate. These are almost radial lines. An example is shown in fig. 3a,b. The rest
of the self-calibration is as above.

Constrained Camera Motions. Another way to obtain line images without
the need for linear features in the scene is to acquire images under constrained
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camera motions. A first possibility is to carry out pure rotations about the
optical center, as suggested also by [19]. The scene can then be assimilated to a
plane, and the above self-calibration method can be directly applied. A second
possibility is to perform pure translations (with e.g. a tripod) and to track image
points across several images. In this case, any point track constitutes a line image
(an example is shown in fig. 3c,d).

(a) (b) (c) (d)

Fig. 3. (a)+(b) Two images of a planar scene. a) shows interest points lying on a
radial line in the first image and b) corresponding points in the second image. (c)+(d)
Two images of a general scene, taken with pure translation. c) shows two interest points
in the first image and d) their paths, accumulated in the last image.

6. Results and Analysis

We tested our algorithm with data acquired from real and simulated cameras.
An 8.0 mm lens, a 3.5mm fisheye lens and a para-catadioptric camera were used.
We also simulated ten cameras featuring distortions from small to very large.

6.1. Convergence Analysis of the Distortion Center Detection

Two aspects of convergence of the plumbline method were evaluated. First, eval-
uating if the minimization of the constraints given by (6) instead of (5) leads to
similar results. This is not critical though, as the path of the optimizer needs not
be the same to ensure convergence. On the other hand, if the paths are similar, it
suggests that the convergence pace is not penalized too much with the simplified
cost function. We proceeded as follows. For samples of distortion center positions
in a box around the initial position, we computed the two cost functions and
found their minima (fig. 4a,b). We see that the functions’ general shapes are
almost identical, as well the positions of their respective minima. Another eval-
uation consists in initializing the distortion center randomly around the optimal
one and finding the minima of the two cost functions. Figure 4c shows the av-
erage distance between these minima, as a function of the distance of the given
distortion center from the optimal one. It is generally small, suggesting that both
cost functions may lead to similar optimization paths.

Secondly, the overall convergence was tested with simulated and real data.
In the first case, three criteria were considered: the number of line images given
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Fig. 4. Plots of cost functions and optimization paths associated with (a) eq. (5) and
(b) eq. (6). (c) Distance between minima of these two cost functions, with respect
to distance of current estimate of distortion center from optimal one. Data from the
3.5mm fisheye lens.
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Fig. 5. Precision of the recovered distortion center on simulated data w.r.t. a) noise
and number of lines, b) number of lines and initialization distance.

as input, the amount of noise added to the data and the distance of the given
initial distortion center from the true one. For each simulated camera, up to 11
line segments were generated randomly, Gaussian noise of standard deviation 0
to 6 pixels was added to image point coordinates and these were then quantized
to pixel precision. For every camera, 50 initial values for the distortion center
were randomly chosen in a circle of 60 pixels radius around the true position (for
images of size 1000× 1000) and given as input to the algorithm. This a realistic
test considering that for our real cameras, we found that the estimated distortion
center converged to around 30 pixels from the initial value (image center) in the
worst case. The results in fig. 5 show that the number of lines has a much larger
impact on the quality of the recovered distortion center than the noise and the
initialization distance. This is especially true when the number of line is larger
than 7.

6.2. Plumbline Calibration

We acquired images of lines with our real cameras, calibrated the distortion and
then performed rectification. Once again, we tested the convergence and also the
quality of the rectification by checking the collinearity of rectified line images.
Convergence was never found to be an issue, especially for the two dioptric lenses
(fig. 6). Even with a really bad initialization of the distortion center, resulting
in a poor initial estimate of the distortion function, the algorithm converged
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(a) (b) (c)

Fig. 6. Convergence examples of the algorithm for a) the 8.0 mm, b) the 3.5 mm
fisheye, c) the para-catadioptric. The density plots show the value of the cost function
explained at the end of §4.2, with f computed using distortion center positions (cx, cy)
in a box of 60 × 60 pixels around the final distortion centers. In dark-green, different
initializations of the algorithm; in black, the centers at each step of the algorithm; in
purple, the final centers.
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to (2). For the 8.0 and 3.5mm, both representations lead to virtually identical results
(details at table 1).

surprisingly fast (fig. 8). The distortion functions for our real cameras are shown
in fig. 7 as well as rectified images in fig. 9 (images not used for the calibration).
We compared our approach with the one presented in [6], run on the same data.
Since that approach performs non-linear optimization, it can easily incorporate
different distortion models. Results for different models are shown in table 1;
we initialized the distortion centers with the one that was estimated with our
approach and the distortion function as a constant.

Details are given in fig. 10 for the catadioptric cameras. We observe that a
polynomial function did not give satisfying results. Using higher degrees (up to
10) and changing the distortion function did not give much better results. On
the other hand, we see that a division function is very well suited to model the
distortion in the image.

6.3. Self-Calibration from Real Sequences

Two sequences were tested. In the first one, points were tracked from a flat
surface (our laboratory floor) with a hand-held camera. In the second case, a
tripod was used and the camera was translated in constant direction. Overall,
the results were satisfying although not as precise as with the direct plumbline
technique using images of actual linear features. Results are summarized in ta-
ble 2; values shown were computed like explained in table 1 and using images of
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bration algorithm for an initial center very far from the true position (200,400). The
final estimate of (512,523) was found in only 5 iterations (image of size 1000 × 1000
pixels). Subsequent steps were only minor improvements.

(a) (b) (c) (d)

Fig. 9. Rectification examples. a,b) A 3.5mm fisheye original and rectified images.
c,d) a catadioptric image. The radius of the principal distortion circle was estimated
as 329 pixels, so circles of radius 0 to 320 pixels were rectified.

actual lines. The distortion center detection was also not as precise. The algo-
rithm converged as usual, but not exactly to the best distortion center. In fact, it
was much closer to the image center. This is explained by the fact that towards
the image border, features are much more difficult to track: they are smaller and
blurry. In this case, they are usually dropped by the tracking algorithm resulting
in less data for large radiuses, where the distortion is the worst. Consequently,
the distortion is a little bit under-evaluated and the distortion center less well
constrained.

7. Conclusion

We presented flexible calibration methods for a general model for radial distor-
tion, one plumbline type method and one for plane-based self-calibration. The
methods were applied for simulated and real images of different cameras (fish-
eye and catadioptric). Results are satisfying, in terms of convergence basin and
speed, precision as well as accuracy.

The most closely related works are [19, 20]. There, elegant though rather more
involved procedures are proposed. These start with an even more general camera
model than here, that does not enforce radial symmetry; only after computing
and exploiting multi-view relations for that model, radial symmetry is enforced
in order to compute distortion parameters. Our methods are much simpler to
implement, use radial symmetry directly and can work with fewer images (two
for plane-based self-calibration). Future work will mainly concern improving the
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Table 1. Results using our models and algorithm (first two rows) and other models
and the non-linear algorithm of [6]. Shown values refer to residual distances for fitting
lines to rectified points (average and worst case). The rectified images were scaled to
have the same size as the original. For the catadioptric camera, our approach used all
the points, whereas the others used only the points corresponding to forward viewing
cones (they failed otherwise). “—” means the algorithm did not converge without
careful initialization or gave very bad results.

Models and rectifying equations 8mm 3.5mm catadioptric

Discrete model of (2) 0.16 1.03 0.35 3.7 0.51 7.6

Model of (1) with d = 6 0.16 1.12 0.35 5.5 0.47 6.3

6th order polynomial
p(1 + λ1||p|| + ... + λ6||p||

6)
0.16 1.08 0.42 7.0 1.5 14.4

6th order division (non-linear) 0.16 1.08 0.36 5.6 — —

FOV-model [6]: p tan(ω||p||)

2 tan( ω

2
)||p||

0.23 4.86 0.54 7.9 — —

FOV-model + 2nd order polynomial 0.16 1.06 0.37 6.1 — —

Table 2. Results for the 3.5mm fisheye with data from real sequences (fig. 3).

Models plane translation

Discrete model of (2) 0.68 8.05 0.55 7.0

Model of (1) with d = 6 0.58 9.7 0.85 14.6

tracking for the self-calibration method and investigating the optimization of
reprojection based cost functions.
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