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Abstract

We introduce a generic structure-from-motion approach based on a previously introduced, highly general imaging model, where cam-
eras are modeled as possibly unconstrained sets of projection rays. This allows to describe most existing camera types including pinhole
cameras, sensors with radial or more general distortions, catadioptric cameras (central or non-central), etc. We introduce a structure-
from-motion approach for this general imaging model, that allows to reconstruct scenes from calibrated images, possibly taken by
cameras of different types (cross-camera scenarios). Structure-from-motion is naturally handled via camera independent ray intersection
problems, solved via linear or simple polynomial equations. We also propose two approaches for obtaining optimal solutions using
bundle adjustment, where camera motion, calibration and 3D point coordinates are refined simultaneously. The proposed methods
are evaluated via experiments on two cross-camera scenarios—a pinhole used together with an omni-directional camera and a stereo
system used with an omni-directional camera.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction and motivation

Many different types of cameras including pinhole,
stereo, catadioptric, omni-directional and non-central
cameras have been used in computer vision. Some of
these, especially the omni-directional class, provide more
stable ego-motion estimation and larger fields of view
than pinhole cameras [2,25,21]. Naturally, a larger field
of view allows to reconstruct 3D scenes using fewer imag-
es, although the spatial resolution is lower, i.e. pinhole
cameras can provide more useful texture maps. Non-cen-
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tral cameras, a review of which is given in [3], eliminate
the scale ambiguity in motion estimation and thereby
we do not need ground control points for scale computa-
tion. Thus using a variety of cameras will facilitate and
enhance the 3D reconstruction in both geometry and tex-
ture. For example, we can build a surveillance system
with one static omni-directional camera (which detects
moving objects) and several narrow-field-of-view pan-
tilt-zoom cameras that can be used to take close-up pic-
tures of objects. Also while reconstructing complete envi-
ronments, it is helpful to have a combination of omni-
directional and traditional images: the traditional ones
(narrow field-of-view, i.e. high spatial resolution) give
good accuracy locally, whereas the omni-directional imag-
es would be good for registering images scattered
throughout the environment to a single reference frame.
Despite these advantages, a general, unified, structure-
from-motion approach for handling different camera sys-
tems, does not exist yet.

mailto:Srikumar.Ramalingam@inrialpes.fr
mailto:lodha@soe.ucsc.edu
mailto:Peter.Sturm@inrialpes.fr
http://www.soe.ucsc.edu/~srikumar
http://www.soe.ucsc.edu/~lodha
http://www.soe.ucsc.edu/~lodha
http://perception.inrialpes.fr/member.php3?id_auteur=24
http://perception.inrialpes.fr/member.php3?id_auteur=24


S. Ramalingam et al. / Computer Vision and Image Understanding 103 (2006) 218–228 219
This statement holds also for camera calibration: most
existing calibration methods are parametric and camera
dependent [15,9]. For example, in the pinhole camera we
use a 3 · 3 matrix, called calibration matrix, to store the
internal parameters of a camera. This matrix along with
the camera pose provides the necessary calibration infor-
mation. Similarly, calibration of optical distortions and
of central or non-central catadioptric systems or other
omni-directional cameras, has been done using various spe-
cific parametric camera models. A non-parametric model
and approach to camera calibration, referred to as the
generic imaging model, was recently introduced by Gross-
berg and Nayar [12] (cf. also [5,11]): camera calibration is
formulated as computing a 3D projection ray for every
image pixel. Their method requires several images of cali-
bration objects, with known relative motions between
image acquisitions. We have recently introduced a more
general calibration approach, that does not need a specific
experimental setup; it only requires taking images of cali-
bration objects, from completely unknown viewpoints
[30,31,28]. This technique is used for calibrating the sys-
tems used in our experiments. Section 3.1 provides a brief
overview of the calibration algorithm.

Besides proposing algorithms, we want to stress, in this
paper, that most basic structure-from-motion problems can
be formulated in a unified, camera independent manner,
typically as ray intersection type problems. This is shown
for pose and motion estimation and triangulation, in
Sections 3.2–3.4.

The main contribution of this paper is the description of
an approach for 3D scene reconstruction from images
acquired by any camera or system of cameras following
the general imaging model. Its building blocks are motion
estimation, triangulation and bundle adjustment algo-
rithms, which are all basically formulated as ray intersec-
tion problems. Classical motion estimation (for pinhole
cameras) and its algebraic centerpiece, the essential matrix
[17], are generalized in Section 3.2, following [26]. As for
triangulation, various algorithms have been proposed for
pinhole cameras in [14]. In this work, we use the mid-point

approach because of its simplicity, see Section 3.3. Initial
estimates of motion and structure estimates, obtained using
these algorithms, are refined using bundle adjustment
[15,34], i.e. (non-linear in general) optimization of all
unknowns. This is described in Section 4.

Bundle adjustment needs a good initial solution, and
also depending on the cost functions the convergence rate
and the optimality of the final solutions vary [14,34]. In this
work we utilize two different cost functions to design and
implement two different bundle adjustment algorithms.
The first cost function is based on minimizing the distance
between 3D points and associated projection rays, which
we refer to as the ray-point method. The main reason for
using this cost function is that it was straightforward to
use for the general camera model. The second cost function
is, as usually desired, based on the re-projection error, i.e.
the distance between re-projected 3D points and originally
measured image points (possibly weighted using uncertainty
measures on extracted image point coordinates). The main
reason for using this cost function is its statistical founda-
tion [14], and the fact that it leads to a least-squares type
cost function, for which efficient optimization methods
exist, such as Gauss–Newton or Levenberg–Marquardt.
There is a major challenge in applying this cost function
to the general imaging model used here, due to the fact that
we have no analytical projection equation, and thus no
analytical expression for the re-projection error based cost
function and its derivatives. In order to address this chal-
lenge, we approximate the n rays of a given camera, central
or non-central, by k clusters of central rays, i.e. rays that
intersect in a single point. For example we have k = 1 for
central cameras (e.g. pinhole), k = 2 for a stereo system,
k = n for oblique cameras [24], etc. Each such cluster of
rays, therefore, corresponds to a single central camera.
Given any 3D point we find the corresponding cluster of
rays to which it belongs. The rays in every cluster are inter-
sected by a plane to synthesize a perspective image. This
allows us to formulate an analytical function that maps
the 3D point to a 2D pixel on the synthesized image, and
thus to drive bundle adjustment. Details are discussed in
Section 4.2.

Experimental results with two cross-camera scenarios
are given in Section 5: we have applied the structure-
from-motion algorithm to two cross-camera scenarios—a
pinhole camera used together with an omni-directional
camera, and a stereo system (interpreted as a single non-
central camera) used together with an omni-directional
camera. We compare the performances with ground truth
where available, and 3D reconstruction from pinhole imag-
es, obtained using classical techniques.

2. Previous work and background

We briefly explain previous efforts in 3D reconstruction
using various cameras. Pinhole cameras have a long history
of being employed for 3D reconstruction [15]. In the last
decade or so, omni-directional cameras and non-central
cameras have also been used for 3D reconstruction
[3,2,7,16]. Recently, Mičušik et al. extended multi-view
metric 3D reconstruction to central fish-eye cameras [20].
Central catadioptric cameras such as para-catadioptric sys-
tems (orthographic camera facing a parabolic mirror) were
calibrated and utilized in 3D reconstruction by Geyer and
Daniilidis [10]. Omni-directional images, with known cam-
era motion, obtained from a GPS or a robot, have also
been used in 3D reconstruction [19,4]. All these efforts have
utilized parametric calibration techniques and camera
dependent structure-from-motion algorithms. In contrast,
in this work we utilize a generic camera calibration tech-
nique and a generic structure-from-motion algorithm that
apply equally well to all types of cameras—pinhole, stereo,
omni-directional, etc.

The importance of using cross-camera networks for
3D reconstruction and video surveillance has been
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observed by few researchers as yet. One of the first
steps in this direction is the process of proposing unify-
ing models and multiview relations for different cameras.
Geyer and Daniilidis [8] developed a unified theory that
encompasses all central catadioptric systems, observed
by Baker and Nayar in [1]. Sturm developed multi-view
relations for any mixture of para-catadioptric, perspec-
tive or affine cameras [29]. Our work is complementary
to these efforts in enhancing and promoting the use of
cross-camera scenarios for practical applications. This
paper is an extended version of [27].
3. Generic structure-from-motion

Fig. 1 describes the pipeline for the proposed generic
structure-from-motion approach.

3.1. Generic camera calibration

We use the generic calibration approach developed in
[30,31] to calibrate the different camera systems. For
the sake of completeness, we briefly explain the algo-
rithm. Calibration consists in determining, for every pix-
el, the 3D projection ray associated with it. In [12], this is
done as follows: two images of a calibration object with
known structure are taken. We suppose that for every
pixel, we can determine the point on the calibration
object, that is seen by that pixel. For each image and
each pixel, we thus obtain two 3D points. Their coordi-
nates are usually only known in a coordinate frame
attached to the calibration object; however, if one knows
the motion between the two object positions, one can
align the coordinate frames. Then, every pixel’s projec-
tion ray can be computed by simply joining the two
observed 3D points.

In [30,31], we propose a more general approach,
that does not require knowledge of the calibration
object’s displacement. In that case, three images need
to be taken at least. The fact that all 3D points
observed by a pixel in different views, are on a line
in 3D, gives a constraint that allows to recover both
the motion and the camera’s calibration. The constraint
is formulated via a set of trifocal tensors, that can be
estimated linearly, and from which motion, and then
calibration, can be extracted (details are given in
[30,31]).
Fig. 1. The overall pipeline of the gener
3.2. Motion estimation

We describe how to estimate ego-motion, or, more gen-
erally, relative position and orientation of two calibrated
general cameras. This is done via a generalization of the
classical motion estimation problem for pinhole cameras
and its associated centerpiece, the essential matrix [17].
We briefly summarize how the classical problem is usually
solved [15]. Let R be the rotation matrix and T the transla-
tion vector describing the motion. The essential matrix is
defined as E = [T] · R. It can be estimated using point cor-
respondences (x,x 0) across two views, using the epipolar
constraint x 0TE x = 0. This can be done linearly using eight
correspondences or more. In the minimal case of five corre-
spondences, an efficient non-linear minimal algorithm,
which gives exactly the theoretical maximum of 10 feasible
solutions, was only recently introduced [22]. Once the
essential matrix is estimated, the motion parameters R

and T can be extracted relatively straightforwardly [22].
In the case of our general imaging model, motion esti-

mation is performed similarly, using pixel correspondences
(x,x 0). Using the calibration information, the associated
projection rays can be computed. Let them be represented
by their Plücker coordinates [15], i.e. 6-vectors X and X 0.
The epipolar constraint extends naturally to rays, and man-
ifests itself by a 6 · 6 essential matrix, defined as:

E ¼
R �E

0 R

� �
:

The epipolar constraint then writes: X 0TEX ¼ 0 [26]. Lin-
ear estimation of E requires 17 correspondences. Once E is
estimated, motion can again be extracted straightforward-
ly: R can simply be read off E, as the upper left or lower
right 3 · 3 sub-matrix, or the average of both. The ob-
tained R will usually not obey the orthonormality con-
straints of a rotation matrix. We correct this by
computing the orthonormal matrices that are closest to
the original matrices (in the sense of the Frobenius norm).
This can be done in the following way. Let the SVD of the
estimated R be given by R = URVT. An orthonormal esti-
mate for the rotation matrix R is then given by UVT, plus
possibly a multiplication of the whole matrix by �1, to
make its determinant equal to +1 (otherwise, the recovered
matrix represents a reflection and not a rotation). This
approximation is also reasonable because we anyway refine
the rotation matrix using bundle adjustment.
ic structure-from-motion approach.
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The next step is the computation of the translation com-
ponent T. Note that there is an important difference
between motion estimation for central and non-central
cameras: with central cameras, the translation component
can only be recovered up to scale. Non-central cameras
however, allow to determine even the translation’s scale.
This is because a single calibrated non-central camera
already carries scale information (via the distance between
mutually skew projection rays). Later in Section 5 we will
observe a scenario with stereo camera and a central
omni-directional camera. Since the stereo camera (by con-
sidering it as a single general camera) models a non-central
camera we automatically extract the scale information dur-
ing the motion estimation. However in experiments involv-
ing only central systems, we need to use some knowledge
about the scene to obtain the scale information. In any case
the evaluation methods are independent of the absolute
scale of the scene.

Estimation of T can be done as follows: E is usually esti-
mated up to scale, and we first eliminate this ambiguity. Let
A and B be the upper left and lower right 3 · 3 submatrices
of E. We estimate a scale factor k, that minimizes the sum
of the squared Frobenius norms of kA � R and kB � R.
This is a simple linear least squares problem. Then, multi-
ply E with k and let C be the upper right 3 · 3 submatrix of
the product. We compute T as the vector that minimizes
the Frobenius norm of C + [T]·R. This is again a linear
least squares problem.

Other algorithms for computing R and T from E are
possible of course, but in any case, the computation
may be followed by a non-linear optimization of R and
T (by carrying out the associated sub-part of a bundle
adjustment). Also note that the theoretical minimum
number of required correspondences for motion estima-
tion is 6 instead of 5 (due to the absence of the scale
ambiguity), and that it might be possible, though very
involved, to derive a minimal 6-point method along the
lines of [22]. More details on motion estimation are avail-
able in [32].

3.3. Structure recovery/triangulation

We now describe an algorithm for 3D reconstruction
from two or more calibrated images with known relative
position. Let P = (X,Y,Z)T be a 3D point that is to be
reconstructed, based on its projections in n images. Using
calibration information, we can compute the n associated
projection rays. Here, we represent the ith ray using a start-
ing point Ai and the direction, represented by a unit vector
Bi. We apply the mid-point method [14,26], i.e. determine P

that is closest in average to the n rays. Let us represent
generic points on rays using position parameters ki. Then,
P is determined by minimizing the following expression
over X, Y, Z and the ki :

Pn
i¼1kAi þ kiBi � Pk2.

This is a linear least squares problem, which can be
solved e.g. via the Pseudo-Inverse, leading to the following
explicit equation:
P
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where I3 is the identity matrix of size 3 · 3. Due to its
sparse structure, the inversion of the matrix M in this equa-
tion, can be performed very efficiently, as typically done in
bundle adjustment for example [34]. Here, we even get a
closed-form solution, based on:

M�1 ¼
1
n I3 þ BBTC�1
� �

C�1B

BTC�1
In þ BTC�1B

 !
;

where B = (B1 � � � Bn)3·n and C = nI3 � BBT.
The closed-form solution for P (C�1 can be computed in

closed-form) is then:

P ¼ 1

n
I3 þ BBTC�1
� �Xn

i¼1

Ai � C�1
Xn

i¼1

BiBT
i Ai:

To summarize, the triangulation of a 3D point using n rays,
can by carried out very efficiently, using only matrix multi-
plications and the inversion of a symmetric 3 · 3 matrix.

3.4. Pose estimation

Pose estimation is the problem of computing the relative
position and orientation between an object of known struc-
ture, and a calibrated camera. A literature review on algo-
rithms for pinhole cameras is given in [13]. Here, we briefly
show how the minimal case can be solved for general cam-
eras. For pinhole cameras, pose can be estimated, up to a
finite number of solutions, from 3 point correspondences
(3D–2D) already. The same holds for general cameras.
Consider 3 image points and the associated projection rays,
computed using the calibration information. We parame-
terize generic points on the rays via scalars ki, like in the
previous section: Ai + kiBi.

We know the structure of the observed object, i.e. we
know the mutual distances dij between the 3D points. We
can thus write equations on the unknowns ki, that param-
eterize the object’s pose:

kAi þ kiBi � Aj � kjBjk2 ¼ d2
ij for ði; jÞ ¼ ð1; 2Þ; ð1; 3Þ; ð2; 3Þ:

This gives a total of three equations that are quadratic in
three unknowns. Many methods exist for solving this prob-
lem, e.g. symbolic computation packages such as MAPLE

allow to compute a resultant polynomial of degree 8 in a
single unknown, that can be numerically solved using any
root finding method.

Like for pinhole cameras, there are up to eight theoret-
ical solutions. For pinhole cameras, at least four of them
can be eliminated because they would correspond to points
lying behind the camera [13], a concept that is not applica-
ble (at least in a direct way) to non-central cameras. In any
case, a unique solution can be obtained using one or two
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additional points [13]. More details on pose estimation for
non-central cameras are given in [6,23].

4. Bundle adjustment

4.1. Ray-point bundle adjustment

This technique minimizes the distance between projec-
tion rays and 3D points, over camera motion and 3D struc-
ture. We briefly describe our cost function. Let
Cj ¼ ðX j; Y j; ZjÞT be the 3D coordinates of the jth point.
Consider the ith image and assume that the projection
ray corresponding to Cj is the kth ray of the camera. Let
this ray be represented like above by a base point Ak and
a direction Bk (Bk is chosen to have unit norm). Note that
here, we assume these are known, since we consider cali-
brated cameras. Let Ri and Ti be the pose of the camera
for the ith image. Then, points on the considered projection
ray are represented by a scalar k:

Ak þ T i þ kRiBk:

We now seek to compute the (squared) distance between
this ray and the point Cj. It is given by:

eijk ¼ min
kijk

kAk þ T i þ kijkRiBk � Cjk2
:

It can easily be computed in closed-form; the kijk minimiz-
ing the above expression is:

kijk ¼ BT
k RT

i Cj � Ak � T i

� �
:

Bundle adjustment consists then in minimizing the sum of
all squared distances eijk (for all available matches between
points and pixels/rays), over the 3D point positions and the
camera motions. This is a non-linear least squares problem,
and appropriate optimization methods such as Gauss–
Newton or Levenberg–Marquardt may be used for its
solution.

Note that this bundle adjustment is completely generic:
due to working with projection rays, it may be applied to
any calibrated camera, be it central or non-central. One
might include the calibration in the optimization and min-
imize the cost function also over projection ray coordinates
(in that case, the representation using a base point and a
direction may not necessarily be the best choice). This is
easy to write down and implement, but one needs sufficient
data to get meaningful estimates: in a fully non-central
model for example, each estimated ray needs at least two
associated 3D points, i.e. the pixel associated with that
ray, has to correspond to actual interest points in at least
two images. This can only be achieved for sufficiently many
rays if a reliable dense matching is possible.

4.2. Re-projection-based bundle adjustment

We now describe some challenges in using re-projection-
based bundle adjustment for the generic imaging model
and our approaches to overcome these. In the generic
imaging model, there is no analytical projection equation,
since calibration more or less corresponds to a lookup table
that gives projection ray coordinates for individual pixels
(or, image points). Thus, to project a 3D point, search
and interpolation are required: one searches for a certain
number (could be equal to 1) among the camera’s projec-
tion rays that are closest to the 3D point. The coordinates
of the image point can then be computed by interpolating
the coordinates of the pixels associated with these rays.
Efficient optimization for re-projection-based bundle
adjustment would require the computation of derivatives
of this projection function; although numerical differentia-
tion is possible and rather straightforward, it is time-
consuming.

We solve this problem by considering a camera as a clus-
ter of central cameras: given a set of rays belonging to a
non-central camera, we partition them into k clusters of
rays, each having its own optical center. For example,
k = 2 for a stereo system. In addition we also impose the
condition that each ray should be contained by only one
cluster. In the following, we describe a simple clustering
method and then, how we perform bundle adjustment over
these ray clusters.

The clustering is obtained using a 3D Hough transform
(mapping rays in 3D to 3D points), which we explain brief-
ly. First we transform the ‘‘ray space,’’ consisting of rays in
space, to a discretized ‘‘point space,’’ where we use a count-
er (initialized to zero) for every 3D point. Then every ray
updates the counters (increase by 1) of the 3D points lying
on it. Next we identify the 3D point having the largest
count. This point becomes the center of the first cluster
and the rays that contributed to its count, are grouped to
form the cluster. The contribution of these rays to other
points’ count is then deleted, and the process repeated to
determine other clusters. With a reasonably good resolu-
tion for the point space in 3D Hough transform, we can
obtain the correct number of clusters in simple configura-
tions such as stereo camera and multi-camera network,
where the centers are distinct. However in catadioptric sys-
tems having complex caustics, the resolution of 3D point
space in Hough transform determines the number of dis-
crete clusters we can obtain. Each such cluster is in the fol-
lowing interpreted as a central camera. We synthesize a
perspective image for each one of them, that will be used
in the parameterization for the bundle adjustment. A per-
spective image for a cluster of rays, can be easily computed
by intersecting the rays with some properly chosen plane,
henceforth denoted as image plane (cf. [30]). We thus gen-
erate k perspective images, one per cluster of rays. Each of
them is parameterized by the position of its optical center
(the center point of the cluster), the directions of the projec-
tion rays and the position of the image plane. We have thus
created a parameterization for an analytical projection
equation from 3D points to 2D coordinates (instead of
only a lookup table between rays and pixels). It is used in
bundle adjustment to compute and minimize the re-projec-
tion error simultaneously on all these synthesized images.
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We now briefly describe how to choose an image plane
for a cluster of rays. To do so, we propose to minimize
the ‘‘uncertainty’’ in the intersection points of image plane
and rays: ideally the rays should be perpendicular to the
plane, and therefore we find the plane’s orientation which
minimizes the sum of all acute angles between the plane
and rays:

min
m1;m2;m3

Xn

i¼1

ðm1li
1 þ m2li

2 þ m3li
3Þ

2
;

where ðli
1; l

i
2; l

i
3Þ refers to the direction of the ith ray (unit

vector) and (m1, m2, m3) is the normal of the image plane.
The normal is given as the unit null-vector of the matrix:P
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The distance between the image plane and the center of the
cluster does not matter as long as we keep it the same for
all clusters. Thus we place the image planes at the same dis-
tance for all the individual clusters.

It is useful to discuss what happens to our algorithm in
extreme cases. The first case is when we have only one ray
in a cluster. For example in a completely non-central cam-
era, which is referred to as an oblique camera [24], where
each ray belongs to a separate central cluster. In that case
we consider a plane perpendicular to that ray and the cen-
ter will be kept at infinity. Our re-projection-based algo-
rithm will be exactly the same as a ray-point approach.

The next interesting case is that of a highly non-central
camera, where the number of clusters is very large. We will
have to generate many perspective images and if we use the
above optimization criterion for computing the normal for
the intersecting plane, then this algorithm tends to become
a ray-point distance based bundle adjustment. Finally if the
camera has just one cluster it becomes the conventional re-
projection-based algorithm, if the image coordinates in the
synthesized perspective image match with that of the origi-
nal image. In addition to allowing the use of a re-projection
based approach, our clustering technique makes a compro-
mise between fully central (stability) and fully non-central
(generality).

A possible improvement to the above approach is to
identify a plane and generate a perspective view where
the image coordinates are close to the original image coor-
dinates, which would better preserve the noise model in the
image. Preliminary results with this approach are
promising.

In general non-central omni-directional cameras are
constructed using mirrors and lenses. These catadioptric
configurations, constructed using spherical, parabolic and
hyperbolic mirrors, are either central or approximately cen-
tral. The second scenario can either be approximated to a
central camera or accurately modeled using a large number
of clusters. On following the second option we observe the
following. First, it is very difficult to cluster in the presence
of noise. Second, the bundle adjustment is more or less the
same as the ray-point one. Thus it was not necessary for us
to demonstrate the clustering for non-central omni-direc-
tional cameras. More precisely the re-projection based
approach is meaningful only to non-central configurations
with distinct clusters such as stereo and multi-camera
scenarios.

5. Results and analysis

We consider three indoor scenarios:

• A house scene captured by an omni-directional camera
and a stereo system (cf. Fig. 4(b)).

• A house scene captured by an omni-directional and a
pinhole camera (same scene as in Fig. 4(b)).

• An objects scene, which consists of a set of objects
placed in random positions as shown in Fig. 4(a),
captured by an omni-directional and a pinhole camera.

The following cameras were used: Nikon Coolpix 5400 as
pinhole camera, the ‘‘Bumblebee stereo camera,’’ and the
Nikon Coolpix 5400 with an ‘‘FC-E8’’ fisheye converter
to give omni-directional images with a field of view of
360� · 183�.

We first briefly describe how the cameras used were
calibrated, and then present experiments and results with
the algorithms described in this paper.

5.1. Calibration

We calibrate three types of cameras in this work. They
are pinhole, stereo, and omni-directional systems. Sample
calibration images for these are shown in Fig. 2 and some
visual calibration information is given in Fig. 3.

5.1.1. Pinhole camera
Fig. 3(a) shows the calibration of a regular digital

camera using the single center assumption [31].

5.1.2. Stereo system

Here we calibrate the left and right cameras separately
as two individual central cameras. In the second step we
capture images of a 3D scene and compute the motion
between the two cameras using the technique described in
Section 3.2. Finally, using the computed motion we obtain
the rays of the two cameras in the same coordinate system,
which thus constitutes the calibration information for this
non-central system.

5.1.3. Omni-directional camera

We assume the camera to be central. Fig. 3(c) shows
that we have used more than three calibration grids to
calibrate the camera, which is due to the fact that the
minimum required number of three images is seldom suf-
ficient to completely calibrate the whole field of view.



Fig. 2. Sample calibration images (not necessarily the ones used for the calibration, as shown in Fig. 3). For (a) pinhole and (b) stereo, circular calibration
targets are used. For (c) omni-directional, checkerboard grids are used.

Fig. 3. Calibration information. (a) Pinhole. (b) Stereo. (c) Omni-directional. The shading shows the calibrated regions, i.e. the regions of pixels for which
projection rays were determined. The 3D rays shown on the bottom correspond to the image pixels marked in black. We also show the outlines of the
calibration grids (enclosing the image pixels).
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Thus we placed a checkerboard grid, shown in Fig. 2(c),
on a turntable and captured a sequence of images to cov-
er the entire field of view. Then we used a few overlap-
ping images to obtain a partial initial calibration [31].
This provides, in a single coordinate system: the pose
of the calibration grid for the images used, the position
of the camera’s optical center and the direction of projec-
tion rays for the pixels in the overlap region. Then, for
each calibration grid whose pose has been determined,
we can compute projection rays for all pixels covered
by that grid’s image: the rays are simply given by joining
the camera’s optical center and the point on the grid cor-
responding to the pixels under consideration. Further-
more, the pose of further calibration grids can be
computed, as soon as they cover sufficiently many pixels
with already known projection rays (the pose estimation
method of Section 3.4 is used). This process of alternat-
ing between grid pose estimation and projection ray com-
putation, is repeated until all grid poses have been
determined. Finally, all poses are refined using the ray-
point bundle adjustment algorithm explained in Section
4.1. The calibrated image region shown in Fig. 3(c) was
obtained using 23 images.

5.2. Motion and structure recovery

Two scenarios are considered here: combining an omni-
directional camera with either a pinhole camera or a stereo
system.
5.2.1. Pinhole and omni-directional

Since the omni-directional camera has a very large field
of view and consequently lower resolution compared to the
pinhole camera, the images taken from close viewpoints
from these two cameras have different resolutions as shown
in Fig. 4(a). This poses a problem in finding correspon-
dences between images. Operators like SIFT [18], are scale
invariant, but not fully camera invariant. Direct applica-
tion of SIFT failed to provide good results in our scenario.
Thus, we had to manually give the correspondences. One
interesting research direction would be to work on the
automatic matching of feature points in these images.
From the matched points, we triangulated the 3D struc-
ture. The result suggests that the algorithms used here (cal-
ibration, motion estimation, and triangulation) are correct
and work in practice.

5.2.2. Stereo system and omni-directional

Here, we treat the stereo system as a single, non-central
camera; the same procedure as for the above case are
applied: manual matching, motion estimation, triangula-
tion. The only difference is that the same scene point
may appear twice in the stereo camera, but this makes
no difference for our algorithms. Although a simple 3D
structure is used here, the result again suggests that the
algorithms are correct. This experiment underlines the
fact that they are generic, i.e. may be used for any camera
and combination of cameras that are modeled by the
generic imaging model.



Fig. 4. Results of motion estimation and 3D reconstruction for cross-camera scenarios. (a) Pinhole and omni-directional. (b) Stereo and omni-directional.
Shown are the reconstructed 3D points, the optical centers (computed by motion estimation) and the projection rays used for triangulation.

S. Ramalingam et al. / Computer Vision and Image Understanding 103 (2006) 218–228 225
5.3. Pose estimation

We conducted a simple experiment to test the accuracy
of the pose estimation algorithm, described in Section
3.4. A calibration grid was placed on a turntable in near
to vertical position. We captured omni-directional images
of the grid at 14 different rotation angles; a sample image
is shown in Fig. 2(c). The grid’s pose at each of the 14 posi-
tions was computed (the camera was previously calibrated,
as explained in Section 5.1). This is shown in Figs. 5(a) and
(b). Fig. 5(c) shows the extension of a line in the grid’s
coordinate system, for the different poses. Due to the turn-
table motion, these should envelope a quadric close to a
cone, which indeed is the case. A complete quantitative
analysis is difficult, but we evaluated how close the trajec-
tories of individual grid points are to being circular (as they
should be, due to the turntable motion). The least-squares
circle fit for one of the grid points, from its 14 recovered
positions, is shown in Fig. 5(d). The least-squares fit error
was found to be as low as 0.64% with respect to the overall
scene size (largest distance between two grid points in this
scene).

5.4. Bundle adjustment statistics

We discuss the convergence rate, error criteria and
performance of the two bundle adjustment algorithms.
Fig. 5. Experiment on pose estimation. (a and b) Estimated poses of calibratio
14 positions. (d) Least squares circle fit to the estimated positions of one grid
Convergence rate is measured by the number of iterations.
Accuracy is measured as follows: the reconstructed 3D
points are first scaled such that the sum of squared distanc-
es from their centroid equals 1. This way, the accuracy
measurements become relative to scene size. Then, we com-
pute all possible pairwise distances between reconstructed
3D points. These are then compared to ground truth values
if available. We also compare them to the analogous infor-
mation obtained from 3D reconstruction using pinhole
images only and classical structure-from-motion methods:
motion estimation, triangulation and re-projection-based
bundle adjustment for perspective cameras [15].

5.4.1. House scene

For the house scene (cf. Fig. 4(b)), ground truth is avail-
able (manual measurement of distances). We compute the
relative error between reconstructed distances dij and
ground truth distances �dij between all pairs (i, j) of 3D
points:

jdij � �dijj
�dij

:

Table 1 shows the mean of these relative errors, given in
percent. Values are shown for three camera setups: omni-
directional image combined with a pinhole or a stereo sys-
tem, and two pinhole images. Three methods are evaluated:
classical (perspective) algorithms (called ‘‘Parametric’’
n grid in 14 positions. (c) Extensions of a line on the calibration grid, in all
point.



Table 1
Statistics for the house scene

Scene Points Camera 1 Camera 2 Parametric (it, error) Ray-point (it, error) Re-projection (it, error)

House 8 Stereo Omni — (26, 2.33) (7, 1.54)
House 8 Pinhole Omni — (18, 3.05) (5, 4.13)
House 8 Pinhole Pinhole (8, 2.88) — —

it refers to the number of iterations of bundle adjustment and error refers to the mean relative error on distances between 3D points, expressed in percent.
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here), and generic algorithms, with the two different bundle
adjustment methods (‘‘Ray-Point’’ and ‘‘Re-projection’’).
Histograms giving the distribution of relative distance er-
rors are also shown, in Fig. 6.

As for the two generic bundle adjustment methods, we
observe that the re-projection method converges faster
than the ray-point method. Both bundle adjustments
reduce the error in the initial 3D estimate (after motion
estimation and triangulation) significantly. As for the accu-
racy, each one of the two bundle adjustments is better than
the other one in one scenario.

We also observe that the generic approaches perform
better than the classical parametric one in the case they
use an omni-directional camera and a stereo system; this
is not surprising since one more image is used than the
two pinhole images of the classical approach. Another pos-
sible reason might be the use of more number of parame-
ters as compared to classical approaches. Thus they will
have a good local minima. Nevertheless, this again con-
firms the correctness and applicability of our generic
approaches. It is no surprise either that performance is
worse for the combination of a pinhole and an omni-direc-
tional image, since the spatial resolution of the omni-direc-
tional image is much lower than those of the pinhole
images.

5.4.2. Objects scene

For this scene (cf. Fig. 4(a)), no complete ground truth is
available. We thus computed the differences between point
Fig. 6. Histograms for the house scene. Top: results for the combination of ste
pinhole images are used). Bottom: combination of a pinhole and an omni-dir
along the y-axis.
distances obtained in reconstructions with the three meth-
ods. Concretely, for some methods X and Y, we compute,
for all point pairs (i, j):

jdX
ij � dY

ijj
dY

ij

;

where dX
ij respectively dY

ij are pairwise distances obtained by
using methods X and Y, respectively. Fig. 7 shows the his-
tograms for this measure and Table 2 gives some details on
this scene and the number of iterations for the different
methods. In this scenario as well, re-projection method
converges faster than the ray-point method.

The mean values of the above measure are as follows:

X ¼ Ray-point Y ¼ Parametric! 4:96

X ¼ Re-projection Y ¼ Parametric! 5:44

X ¼ Re-projection Y ¼ Ray-point! 0:69

We observe that the refinements produced by both bundle
adjustments seem to be comparable to each other.

5.4.3. Outdoor scene

Fig. 8 shows results for a 3D reconstruction of an out-
door scene from two images, one omni-directional and
the other pinhole. The reconstruction has 121 3D points.
Fig. 8c–e allow a qualitative evaluation of the reconstruc-
tion, e.g. reasonable recovery of right angles (between win-
dow edges or between walls). We analyzed the
reconstruction quantitatively, by measuring the deviations
reo and an omni-directional image (besides for the left column, where two
ectional image. Please note that the different graphs are scaled differently



Fig. 7. Histograms for the relative distance errors for the objects scene. Please note that the histograms are scaled differently along both axes.

Table 2
Details on the objects scene

Scene Points Camera 1 Camera 2 Parametric Ray-point Re-projection

Objects 31 Pinhole Omni 7 25 5

The last three columns give the number of iterations of bundle adjustment for the three methods used.

Fig. 8. Outdoor scene. (a) Pinhole image. (b) Omni-directional image. (c) Texture-mapped model. (d) Mesh representation. (e) Top view of the points. We
reconstructed 121 3D points, which lie on three walls shown in the images.

Table 3
DPlanarity and DOrthogonality refer to the mean residual for the least
squares plane fit (relative to scene size and expressed in percent) and to the
mean errors of deviations from right angles (see text for more details)

Scene Camera 1 Camera 2 DPlanarity
(Ray-point,
Re-projection)

DOrthogonality
(Ray-point,
Re-projection)

House Stereo Omni (0.37, 0.27) (5.1, 3.5)
Objects Pinhole Omni (0.38, 0.42) (3.8, 4.14)
Outdoor Pinhole Omni (0.59, 0.63) (4.2, 5.4)
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from right angles and from coplanarity for appropriate sets
of points. To do so, we computed a least-squares plane for
coplanar points and measured the residual distances. We
then compute the mean distance, and express it relative
to the overall size of the scene (largest distance between
two points in the scene).

We also measure the angle between planes that ideally
should be orthogonal, and consider the deviation from
90�. The errors are found to be low (cf. Table 3), consider-
ing that the images are certainly not ideal for the recon-
struction task. Table 3 also contains these error measures
for the house and objects scenes used above.
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6. Conclusions

We have designed and developed a generic approach for
structure-from-motion, that works for any camera or mix-
ture of cameras that fall into the generic imaging model
used. Our approach includes methods for motion and pose
estimation, 3D point triangulation and bundle adjustment.
Promising results have been obtained for different image
sets, obtained with three different cameras: pinhole,
omni-directional (fisheye) and a stereo system. Using simu-
lations and real data, we are interested in investigating our
approach and the clustering issues in more exotic catadiop-
tric cameras and multi-camera configurations.
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