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Abstract. We propose a new method for the
Lambertian Shape From Shading (SFS) problem
based on the notion of Crandall-Lions viscosity
solution. This method has the advantage of re-
quiring the knowledge of the solution (the sur-
face to be reconstructed) only on some part of the
boundary and/or of the singular set (the set of the
points at maximal intensity). Moreover it unifies
in an unique mathematical formulation the works
of Rouy et al. [50, 34], Falcone et al. [21], Prados
et al. [49, 46, 48], based on the notion of viscos-
ity solutions and the work of Dupuis and Olien-
sis [17] dealing with classical solutions and value
functions. Also, it allows to generalize their re-
sults to the “perspective SFS” problem recently
simultaneously introduced in [46, 55, 13].

While the theoretical part has been developed
in [44], in this paper we give some stability re-
sults and we describe numerical schemes for the
SFS based on this method. We construct provably
convergent and robust algorithms. Finally, we ap-
ply our SFS method to real images and we suggest
some real-life applications.

Keywords: Shape From Shading, Hamilton-
Jacobi equations, viscosity solutions, states
constraints, finite differences.

1 Introduction

Shape From Shading (SFS) has been a central
problem in the field of computer vision since the
early days. The problem is to compute the three-
dimensional shape of a surface from a black and
white bi-dimensional image of that surface. The
work in this field was pioneered by Horn who was
the first to pose the problem as that of finding the
solution of a nonlinear first-order Partial Differen-
tial Equation (PDE) called the brightness equation
[26]. From this work, a number of various PDE
based methods have been proposed; see for exam-
ple [6, 16, 50, 29, 22, 30, 49] amongst others, and
the overview papers [25, 31, 61, 19, 42].

The application of the partial differential equa-
tions theory to the Shape From Shading problem
has been hampered by several difficulties. The
first type arises from the simplification introduced
in the modeling: orthographic cameras looking at
Lambertian objects with a single point light source
at infinity is the set of usual assumptions [61, 25].
The second type is mathematical: characterizing
the solutions of the corresponding PDE has turned
out to be a very difficult problem [50, 49]. The
third type is algorithmic: assuming that the exis-
tence of a solution has been proved, coming up
with provably convergent numerical schemes has
turned out to be quite involved [20].

Concerning the mathematical aspects of the
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problem, a breakthrough was made by Lions,
Rouy and Tourin [50, 34] in the 90s by apply-
ing the notion of continuous viscosity solution.
The theory of viscosity solutions offers simple and
general theorems of existence and uniqueness for
exactly the type of PDEs that arise in the context
of SFS. In particular the theory allows to prove
that, given a particular Dirichlet condition on the
image boundary (verifying a compatibility condi-
tion), if the set of critical points (i.e. points x s.t. the
intensity I(x) is equal to 1; see section 2) is empty,
then there exists an unique continuous viscosity
solution satisfying the boundary conditions.

Unluckily two drawbacks limit the applicabil-
ity of the continuous viscosity solution theory to
SFS problems: the compatibility condition neces-
sary for the existence of a solution and the loss
of uniqueness of solution in presence of critical
points [33].

Concerning the first point, consider for example
the equation

|∇u(x)| = 1 for all x in ]0, 1[ (1)

with u(0) = u(1) = 0. In this case the problem
does not have a classical solution but has a con-
tinuous viscosity solution (see Figure 1-a)). The
same equation (1) with u(0) = 0, u(1) = 1.5
does not have continuous viscosity solution. Now
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Figure 1: a) Continuous viscosity solution of (1) with
u(0) = u(1) = 0; b) discontinuous viscosity solution
of (1) with u(0) = 0 and u(1) = 1.5.

let us suppose that we make a large error on the
boundary condition when we compute a numeri-
cal solution of the SFS problems. If this error is
too large then there do not exist continuous viscos-
ity solutions. In this case one may wonder what
the numerical algorithm of [50, 34] computes. In
[49, 48], Prados et al. answer this question by
proposing to use the more general idea of dis-
continuous viscosity solutions [1]. For example,
equation (1) with u(0) = 0, u(1) = 1.5 has a dis-
continuous viscosity solution (see figure (1-b) and
[45] for more details).

If the set of critical points is not empty there
exists an infinite number of continuous viscosity
solutions which are characterized by their values
at the critical points. Note that this result is gen-
eral and applies equally well to all the SFS mod-
els described in section 2 (see [45]). In practice
this set is generally not empty; as a consequence
the SFS problem is ill-posed and to compute a nu-
merical approximation of a solution, Rouy et al.
and Prados et al. [50, 49, 45] must assume that
the values of the solutions are given at the image
boundary and at the critical points. This is quite
unrealistic, because such values are not known,
and it is even more unsatisfactory since small er-
rors on these values create undesirable crests, see
Figure 2-b) or [49] for an example with a real im-
age. Therefore we would like to characterize rele-
vant solutions with a minimum of data. In the ap-
proach proposed by Falcone [7, 21], it is required
to specify the values of the solution on the bound-
ary of the image domain, but not at the critical
points. In order to achieve this, he uses the no-
tion of singular viscosity solutions developed by
Camilli and Siconolfi [8, 9]. Despite its advan-
tages, this approach is not really adapted to the
SFS problem, see for example Figure 2-c). In this
figure, the singular solution umax associated to the
image obtained from the original surface u shows
a highly visible crest where the surface should be
smooth. Moreover this approach still requires the
compatibility condition on the boundary datum.

An alternative approach to viscosity solution
theory was proposed by Oliensis and Dupuis [38,
39, 18, 17]. They characterize a C1 solution of a
SFS equation by specifying only its values at the
critical points which are local minima1. In par-
ticular, they do not specify the values of the so-
lution on the boundary of the image [17]. Also,
they provide algorithms for approximating these
solutions. A strong limitation to the application
of this method is the well known fact that first
order Hamilton-Jacobi equations do not generally
have classical solutions; see [33, 2, 1]. Moreover,
even if we make appropriate assumptions in order
to guarantee the existence of a classical solution,

1In [17, 40], Oliensis and Dupuis also characterize some
(very constrained) C2 solutions without any boundary data
(neither at the boundary of the image, nor at the critical points)
and propose a “global” algorithm. Such C2 solutions are also
considered by Kimmel and Bruckstein who propose another
“global” algorithm [28].
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Figure 2: a) original surface u; b) solution uε associated to corrupted boundary conditions and to the image
obtained from the original surface a) with the Eikonal equation; c) maximal solution umax (in Falcone’s sense
[7, 21]) associated to the same image. uε and umax present a kink at x0 and x1.

in practice, because of noise, of incorrect model-
ing, errors on parameters or on the depth values
enforced at the critical points, the SFS equation
really numerically solved may not have C1 solu-
tions.

Considering the drawbacks and the advantages
of all these methods, it seems important to con-
sider another class of weak solutions which ex-
tends the previous notions of viscosity solutions
in such a way that the characterization of Dupuis
and Oliensis still holds.
As we show in the second part of section 3.5.3 of
[45] (see also [48, 42]), the notion of discontinu-
ous viscosity solutions does not allow to impose
the values of the solution at the critical points.
Therefore, this notion cannot provide an exten-
sion of the Dupuis and Oliensis work. On the
other side, the notion of singular viscosity solu-
tions developed by Camilli and Siconolfi in [8, 9]
uses Dirichlet conditions all around the boundary
of the image and therefore it does not also pro-
vide a direct extension of the Dupuis and Oliensis
work.
For such an extension, we must modify these
notions and we must consider a “new” type of
boundary conditions (called “state constraints”
[53]). It turns out that the notion of viscosity solu-
tion for the SFS problem with the previous charac-
teristics is the “Singular Discontinuous Viscosity
Solution” (SDVS) with Dirichlet boundary con-
ditions and state constraints we design and study
here (a complete mathematical study of this no-
tion can be found in [44, 43, 42]). The advantage
of this notion is that it does not require a com-
plete knowledge of the boundary data. We impose
the Dirichlet condition on the part of boundary or
of the singular set where we know the height of
the surface, otherwise we “send” this datum to in-
finity, i.e. we impose a state constraint boundary
condition. These solutions can be interpreted as

maximal solutions and satisfy a comparison theo-
rem.

Since in presence of critical points, discontin-
uous viscosity solutions are not unique, they do
not satisfy stability properties. Oppositely, thanks
to a comparison result, the SDVS is unique and is
stable with respect to various perturbations of the
SFS problem. For example it is stable with respect
to smoothing effects or errors in the data, change
of parameters in the model, numerical approxi-
mation. Moreover the notion of SDVS provides
a mathematical framework unifying the work of
Rouy et al. [34, 50], Prados et al. [49, 46], Fal-
cone et al. [7, 21] and Dupuis and Oliensis [17].

This paper is the continuation of [48] in which
we have proposed a rigorous method for the per-
spective and orthographic SFS problem, based
on the notion of the continuous and discontinu-
ous viscosity solutions. In [48], the mathematical
study and the numerical computation of the solu-
tions require the knowledge of the values of the
solution all over the boundary of the image and
at all “critical points”. Because of this require-
ment, the experiments of [48] are limited to syn-
thetic images. Here, we relax this restrictive and
unrealistic assumption as much as possible. Also,
we apply with success our method to real images
and we can consider real-life applications.

The paper is organized as follows. We first re-
view briefly the definition (Section 2-3) and the
main existence and uniqueness properties of the
SDVS (Section 4). These definitions and prop-
erties are completely described and demonstrated
in the companion mathematical paper [44] (see
also [43, 42]). Afterwards we complement [44]
by explaining the state-constraints condition in il-
lustrative and intuitive terms, by analyzing the re-
lation between the SDVS and Dupuis-Oliensis so-
lutions (Section 5-6) and by studying some addi-
tional stability properties (see Section 7). Section
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8 is devoted to the numerical approximation of the
SDVS. In Section 9, we prove that our method can
be useful in a number of applications.

2 Hamiltonians for the Lam-
bertian SFS problem

In this section, we recall various formulations of
the SFS problem [48]. We deal with Lamber-
tian scenes and suppose that the albedo is con-
stant and equal to 1. Let Ω be the image domain.
We represent the scene by a surface S which can
be explicitly parameterized by using the function
S : Ω → R

3:

S =
{

S(x); x ∈ Ω
}

.

2.1 “Orthographic SFS”

This is the traditional setup for the SFS problem.
We denote by L = (α, β, γ) the unit vector repre-
senting the direction of the light source (γ > 0),
l = (α, β). The function S parameterizing the
surface S is given by S(x) = (x, u(x)). The SFS
problem is then, given I and L, to find a function
u : Ω −→ R satisfying the following brightness
equation:

∀x ∈ Ω, I(x) =
−∇u(x) · l + γ
√

1 + |∇u(x)|2
,

This classical equation has been associated to var-
ious Hamiltonians:
1) In [50], Rouy and Tourin introduce

Horth
R/T (x, p) = I(x)

√

1 + |p|2 + p · l− γ.

2) In [17], Dupuis and Oliensis consider

Horth
D/O(x, p) = I(x)

√

1 + |p|2 − 2p · l+p · l−1.

3) In the case where L = (0, 0, 1), Lions et al.
[34] deal with the Eikonal equation:

Horth
Eiko(x, p) = |p| −

√

1

I(x)2
− 1.

2.2 “Perspective SFS”

First, let us assume that the scene is illuminated
by a single point light source located at infinity. In

[41, 46, 55, 13], the surface S is parameterized by
S(x) = u(x) (x,−f), where f represents the fo-
cal length. Combining the expression of n(x) and
the change of variables v = log(u) (we assume
that the surface is visible and below the camera, so
u > 0), the following Hamiltonian follows from
the irradiance equation:

Hpers
P/F (x, p) = I(x)

√

f2|p|2 + (x · p+ 1)
2

− (f l + γx) · p− γ.

See [48, 42], for more details.
Now, we assume that the light source is located

at the optical center. This model corresponds
nicely to the situation encountered in some medi-
cal protocols like endoscopy, in which the (point)
light source is located very close to the camera,
because of space constraints, see section 9.3 and
[37, 23], for a SFS application in this area. This
modeling also corresponds approximately to the
situation encountered when we use a simple cam-
era equipped with a flash; see sections 9.1 and 9.2
for two applications (face reconstruction and page
restoration). In [48, 47], we parameterize the sur-

face S by defining S(x) =
f u(x)

√

|x|2 + f2
(x,−f).

Combining the expression of the normal vectors
n(x), the expression of light source direction and
the change of variables v = log(u), we obtain
from the irradiance equation the following Hamil-
tonian:

Hpers
F (x, p) =

I(x)
√

f2|p|2 + (p · x)2 +Q(x)2 −Q(x),

where Q(x) =
√

f2/(|x|2 + f2). See [48, 42], for
more details.

2.3 A generic Hamiltonian

In [48, 47], we prove that all the previous SFS
Hamiltonians are special cases of the following
“generic” Hamiltonian:

Hg(x, p) = κx

√

|Axp+ vx|2 +K2
x+wx·p+cx,

with κx,Kx ≥ 0, cx ∈ R, vx,wx ∈ R
2 and

Ax ∈ M2(R).
By using the Legendre transform (see appendix of
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[42]), we rewrite this “generic” Hamiltonian as a
supremum:

Hg(x, p) = sup
a∈B2(0,1)

{−fg(x, a) · p− lg(x, a)}.

In [48, 42], we detail the exact expressions of
fg and lg . This generic formulation considerably
simplifies the analysis of the problem. In partic-
ular, this formulation unifies the orthographic and
perspective SFS problems. Also, from a practical
point of view, an unique algorithm can be used to
numerically solve these various problems.

3 Singular Discontinuous Vis-
cosity Solutions with Dirich-
let Boundary Conditions and
State Constraints

In this section we recall the definition of “Singu-
lar Discontinuous Viscosity Solution with Dirich-
let boundary conditions and state constraints”
(SDVS) we completely describe and study in
[44, 43, 42].

Let Ω be a bounded open subset of R
N with

smooth boundary (say W 2,∞). In the SFS prob-
lem N = 2. So Ω is a smooth part of rectangular
domain ]0, X [×]0, Y [ which typically represents
the domain of definition of the image. We con-
sider the Hamilton-Jacobi equation

H(x,∇u) = 0, ∀x ∈ Ω, (2)

where H : Ω × R
N → R, the Hamilto-

nian, is continuous in (x, p), convex and coercive
(lim inf |p|→+∞H(x, p) = +∞, uniformly in x ∈
Ω) with respect with p. Moreover we assume that
there exists a subsolution ψ ∈ C1(Ω)∩W 1,∞(Ω)
of (2) (i.e: ∀x ∈ Ω, H(x,∇ψ(x)) ≤ 0) and for
any λ ∈ (0, 1) and p ∈ R

N s.t H(x, p) ≤ 0 and
p 6= ∇ψ(x) then

H(x, λp+ (1 − λ)∇ψ(x)) < 0. (3)

We denote by S the set of singular points of H
with respect to ψ :

S = {x ∈ Ω | H(x,∇ψ(x)) = 0},

i.e. the set where ψ fails to be a strict subsolution
of (2). S is closed by the continuity of ∇ψ andH .

We recall that if S is empty then there exists an
unique viscosity solution to (2) completed with an
appropriate boundary condition. If S is not empty,
then in general uniqueness fails. We assume that

S ∩ ∂Ω = ∅. (4)

With the exception of the coercivity condition,
all the previous hypotheses hold for the various
SFS Hamiltonians considered in section 2 (see
[48, 42]) as soon as the intensity image I is con-
tinuous and verifies I(x) > 0 for any x ∈ Ω.
The coercivity condition holds as long as the am-
biguity cone (set of the normal vectors n verifying
cos(n,L) = I(x)) does not intersect the orthogo-
nal plane to the projection line; see Figure 3.

In [48, 42], we prove that for all the SFS equa-
tions presented in section 2 the set of singular
points S corresponds to the set of “critical points”
{x ∈ Ω | I(x) = 1} where I is the brightness
image.

We complement (2) with a “boundary condi-
tion” which represents the part of the data of the
surface to reconstruct that we have at our disposal.
We consider a function ϕ : Ω → R ∪ {+∞},
ϕ 6≡ +∞, l.s.c. and continuous in {x ∈ Ω :
ϕ(x) < +∞}. Moreover we assume that the set
K = {x ∈ Ω : ϕ(x) < +∞} is a (possible
empty) subset of Ω such that

K ⊂ Ω, (5)

where K is the closure of K in R
N . The set K

represent the available data inside Ω.
With equation (2), we associate the “Dirichlet

Boundary Conditions” (DBC)

u(x) = ϕ(x), ∀x ∈ Ω (6)

(of course, this constraint defined on the whole set
Ω must not be considered in pointwise sense).

At points x ∈ ∂Ω where ϕ(x) = +∞, we say
that we impose a state constraint boundary condi-
tion (see [53], [10]).

We first give the definition of viscosity subso-
lution, which coincides with the standard one in
viscosity solution theory.

Definition 1 (Viscosity subsolution of (2)-(6))
A locally bounded function u, u.s.c in Ω, is called
a viscosity subsolution of (2)–(6) in Ω if
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Figure 3: Ambiguity cone and plane orthogonal to the projection line.

i) For any Φ ∈ C1(Ω), for any local maximum
x0 ∈ Ω of (u− Φ) in Ω,

H(x0,∇Φ(x0)) ≤ 0

ii) ◦ ∀x0 ∈ K, u(x0) ≤ ϕ(x0).

◦ ∀x0 ∈ ∂Ω, [u(x0) ≤ ϕ(x0)]
or [∀Φ ∈ C1(Ω) s.t. x0 is
a local maximum of (u − Φ) in Ω,
H(x0,∇Φ(x0)) ≤ 0].

The regularity of ∂Ω and the hypotheses onH im-
ply that a viscosity subsolution of (2) is Lipschitz
continuous in Ω.

Before giving the definition of the singular vis-
cosity supersolution of (2)-(6), we need to detail
various preliminary definitions. Let Z(x) be the
multivalued map on Ω defined as:

Z(x) = {p ∈ R
N : H(x, p) ≤ 0}. (7)

By the assumptions on H , it follows that for any
x ∈ Ω the set Z(x) is compact, convex and strictly
star-shaped with respect to ∇ψ(x) and

∂Z(x) = {p ∈ R
N | H(x, p) = 0}. (8)

For all the SFS Hamiltonians, it is easy to see that

Z(x) = {∇ψ(x)} for any x ∈ S . (9)

Remark: Under the hypothesis (9), the continu-
ity of H provides a new characterization of S:
x ∈ S ⇐⇒ Z(x) = {∇ψ(x)}.

As explained in [9], (8) is a geometric prop-
erty which allows us to study the equation
H(x,∇u) = 0 through the level sets Z(x). Let
W be an open subset of Ω. If F (x, p) is any con-
tinuous function representing Z(x) in the sense

that for all x ∈ W ,

F (x, p) < 0 if and only if p ∈ Int(Z(x)),
F (x, p) = 0 if and only if p ∈ ∂Z(x),

(10)
then equation

F (x,∇u) = 0, ∀x ∈W,

is equivalent to equation

H(x,∇u) = 0, ∀x ∈W,

from the viscosity point of view.
The multiplicity of the classical viscosity solu-

tions is due to the fact that the subsolution ψ fails
to be strict at the points x ∈ S. So, to get around
this difficulty the main idea consists in transform-
ing the equation H(x,∇u) = 0 in a new equa-
tion F (x,∇u) = 0 equivalent on Ω \ S such that
∀x ∈ S, F (x,∇ψ(x)) < 0 (i.e. ψ still is a strict
subsolution on S). To this end, let us introduce the
gauge function ρ(x, p) of Z(x); see [27, 8, 9]. We
set for any x ∈ Ω, p ∈ R

N ,

ρ(x, p) = inf{λ > 0 :

λ−1p+ (1 − λ−1)∇ψ(x) ∈ Z(x)}. (11)

As in [2], (see also Proposition 5.1 of [9]), we can
prove that the function ρ is continuous in (Ω\S)×
R

N and verifies the homogeneity condition:

∀µ > 0 and ∀(x, p) ∈ Ω × R
N ,

ρ(x, µp+ (1 − µ)∇ψ(x)) = µρ(x, p). (12)

Moreover, p ∈ Z(x) if and only if ρ(x, p) ≤ 1.
In particular, we can easily verify that for all x in
Ω \ S,

ρ(x, p) < 1 if and only if p ∈ Int(Z(x)),
and
ρ(x, p) = 1 if and only if p ∈ ∂Z(x).
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Then the equation

ρ(x,∇u(x)) − 1 = 0,

defines an equation equivalent to (2) in Ω \ S.
Moreover, if x ∈ S, we have ρ(x,∇ψ(x)) = 0;
so ρ(x,∇ψ(x)) − 1 < 0.

Roughly speaking, the definition of the classi-
cal notion of viscosity supersolution is equivalent
to “There does not exist a subtangent which
is also a strict subsolution” (globally, we
say that a function φ is a subtangent to u at x0 if
φ(x0) = u(x0) and φ ≤ u on a neighborhood of
x0).
In other respects, if u is a classical viscosity
solution of (2), we can prove (see for example
[44, 42, 43]) that, on each regular2 connected
component Si of S, there exists ci such that

∀x ∈ Si, u(x) = ψ(x) + ci.

So, if x0 ∈ Int(Si) 6= ∅, then ψ is always a sub-
tangent to u at x0 and a strict subsolution of the
new equation ρ(x,∇u(x)) − 1 = 0. If we want
to adapt the previous definition for the singular
points, we need to weaken the topology in such
a way that all the neighborhoods of x0 contain the
whole subset Si. Thus ψ would be not systemati-
cally a subtangent.

Let us set, for any x ∈ Ω,

r(x) = sup{r > 0 | B(∇ψ(x), r) ⊂ Z(x)}.

By Lemma 3.1 in [9], it is proved that r(x) is non-
negative and r(x) = 0 if and only if x ∈ S. As in
[8, 9], we proceed defining a semidistance on Ω.
We set for any x, y ∈ Ω,

S(x, y) = inf
{

∫ 1

0
r(ξ(t)) | ξ′(t)|dt :

ξ ∈ W 1,∞

([0,1],Ω)
s.t. ξ(0) = x and ξ(1) = y} .

(13)

S is a semidistance on Ω, but in general not a dis-
tance since, if x0 ∈ S, the set of points which
have 0 S-distance from x0 is in general a subset
of S containing elements different from x0. The
family of balls:

BS(x0, R) = {x ∈ Ω | S(x0, x) ≤ R}
2In [8], a counterexample based on the classical Whitney’s

function shows that if Si is not regular the previous property
can be false.

induces a topology τS in Ω. Note that on a
neighborhood of a point x ∈ Ω \ S the topol-
ogy τS is equivalent to the Euclidean topology.
At a point x ∈ S, it is a weaker topology. We
denote by BS(x0) the subset BS(x0) = {x ∈
Ω | S(x0, x) = 0}.

Definition 2 A Lipschitz-continuous function φ is
said to be a strict subsolution of (2) in an open
subset A of Ω if v is a viscosity subsolution of

ρ(x,∇φ) ≤ θ x ∈ A

for some θ ∈ ]0, 1[.

Definition 3 (Singular viscosity supersolution
of (2)-(6)) A locally bounded function v : Ω →
R, l.s.c. on Ω, is called a singular viscosity super-
solution of (2)-(6) if:

i) For any x0 ∈ Ω \K, it does not admit a S-
subtangent at x0 which is a strict subsolution
of (2) in a neighborhood of BS(x0)

ii) For any x0 ∈ ∂Ω ∪K,

◦ it does not admit a S-subtangent at x0

which is a strict subsolution of (2) in a
neighborhood of BS(x0)

◦ or there exists x ∈ BS(x0) such that
v(x0) ≥ ϕ(x) + ψ(x0) − ψ(x).

Let us emphasize that, if the set S ∪K is empty,
then the singular supersolutions of (2)-(6) coin-
cide with the standard discontinuous viscosity su-
persolutions of (2)-(6). Let us also recall that, at
the points x0 ∈ ∂Ω where ϕ(x0) = +∞, the
Dirichlet boundary condition corresponds with the
classical state constraint condition [53, 10]. Now,
we can give the definition of the singular viscosity
solution of (2)-(6).

Definition 4 (Singular viscosity solution of (2)-
(6)) A continuous function u : Ω → R is called a
singular viscosity solution of (2)-(6) if it is a sub-
solution and a singular supersolution of (2)-(6).

We will call “Singular Discontinuous Viscosity
Solutions” (SDVS) with Dirichlet boundary con-
ditions and state constraints , the singular solution
of (2)-(6).

7



4 Existence and uniqueness of
SDVS

In this section we recall the main results we prove
in [44, 42, 43]. We start with an existence result
given by a representation formula for a SDVS of
(2)-(6).

Let δ : Ω×R
N → R be the support function of

the set Z̃(x), i.e.:

δ(x, p) = max{pq : q ∈ Z̃(x)}, (14)

where Z̃(x) = Z(x) − ∇ψ(x)
.
= {y −

∇ψ(x) | y ∈ Z(x)}. The function δ(x, p) is con-
tinuous in Ω × R

N , convex and positively homo-
geneous in p. We denote for any x, y ∈ Ω,

L(x, y) = inf{
∫ 1

0
δ(ξ(t),−ξ̇(t))dt |

ξ ∈ W 1,∞

([0,1],Ω)
s.t. ξ(0) = x and ξ(1) = y

}

.

(15)

REMARK. If x ∈ S, then Z̃(x) = {0} and
therefore δ(x, p) = 0 for any p ∈ R

N . Also, the
inverse statement holds. Hence

δ(x, p) = 0 for any p ∈ R
N

⇐⇒ x ∈ S ⇐⇒ r(x) = 0.

So for any x, y ∈ Ω,

L(x, y) = 0 ⇐⇒ S(x, y) = 0.

Theorem 1 (Existence) The function

V (x) = ψ(x) + min{ L(x, y) + ϕ(y) − ψ(y)

| y ∈ ∂Ω ∪K }. (16)

is a SDVS to (2)-(6).

Now, let us analyze the uniqueness of the SDVS.
We assume that there exists a neighborhood A of
∂Ω and λ > 0 such that ∀p, q ∈ R

N and ∀x ∈ A

|H(x, p) −H(x, q)| ≤ λ|p− q|. (17)

In other words, we impose that H is Lipschitz
continuous in p (with a Lipschitz constant which
does not depend on x ∈ A) on a neighborhood
of ∂Ω. We have the following strong comparison
result.

Theorem 2 (Uniqueness) Let u, v : Ω → R be
respectively an u.s.c. subsolution of (2)-(6), and a
l.s.c. singular supersolution of (2)-(6). Then

∀x ∈ Ω, u(x) ≤ v(x).

Let us note that clearly the strong uniqueness in-
volves the uniqueness on Ω of the singular vis-
cosity solution of (2)-(6): i.e, if u1 and u2 are
two singular viscosity solutions of (2)-(6), then for
any x ∈ Ω, u1(x) = u2(x). Moreover, it proves
that this solution is continuous on Ω, therefore it is
Lipschitz continuous on Ω (because subsolutions
are Lipschitz continuous).
Note that all the SFS Hamiltonians H∗

pers and
H∗

orth verify the hypothesis (17) (see [48, 42]).
Also, we can prove easily that Theorems 1 and
2 apply for all the Shape From Shading equa-
tions described in section 2 (see [42, 43]). Conse-
quently the SFS equations complemented by the
constraint (6) have an unique SDVS.

5 A general framework for
SFS

In this section, we explain why the notion of state
constraints is relevant when we do not know the
values of the solution and we describe this bound-
ary condition in a more intuitive way. Moreover,
we show that the notion of SDVS provides a gen-
eral mathematical framework unifying the previ-
ous mathematical frameworks based on viscosity
solution theory proposed in the SFS literature.

The main contribution of the notion of SDVS
lies in the possibility to impose the heights of the
solution at the singular points if we know them3

and on the possibility to “send to infinity” the
boundary conditions if we do not know them. This
possibility also holds for all the points located on
the boundary of the image ∂Ω. Let us recall that
in the previous work [50, 49, 46, 45, 7, 21], the
various notions of viscosity solutions [continuous,
discontinuous or singular] are used with (finite)
Dirichlet conditions on the boundary of the im-
ages. Note that, in [34], Lions et al. have already

3This is impossible with discontinuous viscosity solutions;
see the second part of section 3.5.3 of [45]. It is possible with
continuous viscosity solutions but compatibility conditions are
required. In [7, 21], Falcone et al. “send” systematically the
singular points “at the infinity”.

8



used the notion of states constraints, but they used
it only to deal with apparent contours and in the
eikonal setup. More precisely, they use it only
at the points x ∈ ∂Ω such that I(x) = 0 and
“ ∂u

∂n = −∞”. Here, we use the state constraints at
each point of ∂Ω, where we do not know the value
of the solution. Also, let us remark that in [17], the
authors implicitly impose state constraints.

Let us focus on the points on the boundary ∂Ω
of the image. For simplicity, let us assume that
we know the values of the solution at all the sin-
gular points. First, in contrast with the Dirichlet
and Neumann boundary conditions, the state con-
straints are interesting because they do not require
any data. Let us recall that the Dirichlet (respec-
tively, Neumann) boundary conditions require the
knowledge of the values of the solution (respec-
tively, the values of ∇u(x) · n(x), where n(x) is
the unit inward normal vector to ∂Ω at the point
x) on the boundary of the domain. But, in gen-
eral, we rarely have such data at our disposal. Sec-
ond, the notion of state constraints is also interest-
ing because it provides a relevant solution as soon
as the image is yielded by a “surface” u which
verifies the supersolution constraint on ∂Ω. Also,
as we explain below, this constraint is very weak
and it is commonly verified with real observable
surface. Recall that an equivalent way to define
the viscosity supersolution constraint at a point
x ∈ ∂Ω is to require that

H(x, ξ) ≥ 0, ∀ξ ∈ D−u(x) (18)

where

D
−

u(x) =


ξ ∈ R
N | lim inf

y→x,y∈Ω

u(y) − u(x) − ξ(y − x)

|y − x|
≥ 0

ff

(19)

(see for example [2, 1, 10]). This constraint can
be roughly interpreted as follows: For all plan P
subtangent to u at x, the gradient ∇P verifies
H(x,∇P ) ≥ 0. To better understand the con-
straint (18) for x in ∂Ω, let us consider the partic-
ular case of a differentiable solution.

Proposition 1 Let u be a solution differentiable
on Ω of the HJB equation associated with the
Hamiltonian

H(x, p) = sup
a∈A

{−f(x, a).p− l(x, a)}. (20)

and denote by a0(u, x) the optimal control of (20)
associated to u at the point x (i.e. a0(u, x) is the
control a ∈ A maximizing −f(x, a) · ∇u(x) −
l(x, a)). If for x ∈ ∂Ω,

f(x, a0(u, x)) · n(x) > 0, (21)

where n(x) is the unit inward normal vector to ∂Ω
at the point x, then (18) is satisfied.

In other words, the surface u is a supersolution on
∂Ω (i.e. u verifies the state constraints on ∂Ω) as
soon as the dynamic of the optimal control (asso-
ciated with u) points inward of Ω at all points x on
the boundary ∂Ω. In the classical example of the
Eikonal equation, the optimal control associated
to a differentiable function u is

f(x, a0(u, x)) = −a0(u, x) = − ∇u(x)
|∇u(x)| .

So in this example, u is a supersolution on ∂Ω as
soon as for all x on ∂Ω, the gradient∇u(x) points
outward of Ω, i.e. roughly speaking, when u(x)
“increases” when x come up to ∂Ω. More gener-
ally, (21) can be globally interpreted as “u(x) −
ψ(x) increases when x come up to ∂Ω”.
In other respects, let us note that proposition 1
shows that the notion of state constraints coin-
cides with the constraint formulated by Dupuis
and Oliensis in assumption 2.1 of [17] and intro-
duced in the case of solutions C1.

PROOF OF PROPOSITION 1. Let x ∈ ∂Ω be such
that (21) is satisfied. We have for c ≤ 0

H(x,∇u(x) + cn(x)) =

H(x,∇u(x) + cn(x)) − H(x,∇u(x)) ≥

− f(x, a0(x, u)) · (∇u(x) + cn(x)) − l(x, a0(x, u))

− (−f(x, a0(x, u)) · ∇u(x) − l(x, a0(x, u)))

= −f(x, a0(x, u)) · cn(x) ≥ 0. (22)

Moreover, since u is differentiable on Ω, we have

D−u(x) = {ξ | ξ = ∇u(x) + cn(x), c ≤ 0}.

Thus, for any ξ ∈ D−u(x),

H(x, ξ) ≥ 0.

So the constraint (18) holds. �

Now, let us focus on the singular points. We
denote by Πu the set of points in Ω such that a
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constant function is S-subtangent to u − ψ at x.
If x 6∈ S or BS(x) = {x}, this means that x is a
local minimum point for u − ψ. For this reason
we call Πu the set of minimum points of u − ψ.
We also set

Γu = {x ∈ Ω | ∃y ∈ BS(x) verifying

u(x) ≥ ϕ(y) + ψ(x) − ψ(y)}. (23)

Now, let us assume that K ⊂ S. Here we are
interested in fixing the values of the solution in a
subset of the singular set.

Theorem 3 Let u be a (discontinuous) viscosity
solution of (2)-(6) such that u(x) ≤ ϕ(x) for any
x ∈ K. If Πu ⊂ Γu then u is the SDVS of (2)-(6).

In other words, the SDVS is the unique discon-
tinuous viscosity solution u of (2)-(6) (verifying
∀x ∈ K,u(x) ≤ ϕ(x)) without local minima on
Ω\Γu. Of course, the reciprocal statement of The-
orem 3 holds. That is to say that the SDVS cannot
have points of local minimum (in Ω) outside of
Γu. In effect, by contradiction, if u − ψ admits a
constant function S-subtangent to x0 6∈ Γu, then
the function ψ is a S-subtangent to u at x0. Since
by the definition of S, ψ is a strict subsolution of
(2) it follows that u cannot be a (singular) super-
solution at x0.
An important interpretation and consequence of
Theorem 3 is the following:

The (discontinuous) viscosity solutions of (2)-(6)
can be characterized only by their minima.

That is to say, if u is a (discontinuous) viscosity
solutions of (2)-(6) then u is the (unique) SDVS
of

{

H(x,∇u) = 0, ∀x ∈ Ω,
u(x) = ϕ̂(x), ∀x ∈ ∂Ω ∪ S,

where

ϕ̂(x) = ϕ(x), ∀x ∈ Πu ∪ ∂Ω,

ϕ̂(x) = +∞, ∀x ∈ S \ Πu.

Thus this result extends the work of Dupuis and
Oliensis [17]. In [17], Dupuis and Oliensis char-
acterize the C1 solutions by their values at the
local minimum points4. Here, we have extended

4Let us recall that in [17], the functional cost l had to be
positive. This is why Dupuis and Oliensis need to introduce
the SFS Hamiltonian Horth

D/O
(instead of dealing with Horth

R/T
).

Here, we relax this constrained assumption.

this characterization to the (discontinuous) viscos-
ity solutions.

PROOF OF THEOREM 3. See [44, 42, 43]. �

Finally, let us emphasize that the notion of SDVS
allows to unify the various theories based on vis-
cosity solutions used for solving the SFS problem.
In effect,

◦ in the case where the Dirichlet Boundary Con-
ditions (DBC) are finite on ∂Ω ∪ S and the
compatibility condition (see [33]) holds, then
the SDVS of (2)-(6) is the continuous viscos-
ity solution used by [50, 34, 49, 46];

◦ in the case where the DBC are finite on ∂Ω
and where there do not exist singular points,
then the SDVS of (2)-(6) coincides with
the discontinuous viscosity solution used by
[46, 45] (the compatibility conditions are no
more required);

◦ when the DBC are finite on the boundary of the
image and state constraints are imposed at
the singular points, the SDVS of (2)-(6) cor-
responds to the Camilli and Siconolfi’s sin-
gular viscosity solutions [8, 9] used by Fal-
cone et al. [7, 21];

◦ as we have demonstrated above the SDVSs co-
incide with the C1 solutions of (2) verify-
ing the assumption 2.1 of Dupuis and Olien-
sis (when smooth solutions exist). Therefore,
when there do not exist C1 solutions, the no-
tion of SDVS allows to extend the work of
Dupuis and Oliensis [17].

As a consequence, all the theoretical results of
Falcone et al. [7, 21], Rouy et al. [50, 34], Pra-
dos et al. [49] and Oliensis et al. [17] which
only deal with “orthographic Shape From Shad-
ing”, are automatically extended to the “perspec-
tive SFS” (use Hpers

F and Hpers
P/F ).

6 Minimal and global viscosity
solutions

The SDVS allows to send the boundary conditions
to +∞; thereby obtaining the “maximal” solution.
So for obtaining the “minimal” solution, it can
seem natural to send them to −∞. Nevertheless

10



with such boundary conditions there do not ex-
ist solutions. In other respects, the viscosity solu-
tions of the equation H(x,∇u) = 0 are different
from the viscosity solutions of −H(x,∇u) = 0.
For example, the opposite two equations on ]0, 1[
associated with H1(x, p) = |p| − 1 constrained
by u(0) = u(1) = 0 have an unique viscos-
ity solution given by Figure 4. By schematiz-
ing, the solution of H(x,∇u) = 0 allows upward
kinks whereas −H(x,∇u) = 0 allows downward
kinks. Moreover, it is well known that:

[u solution of −H(x, p)]

⇐⇒ [−u solution of H(x,−p)]. (24)

Thus it is natural to define the “minimal” so-
lution of H(x, p) by the opposite of the SDVS
of H(x,−p). Obviously, the Hamiltonians
H(x,−p) associated with all the SFS Hamiltoni-
ans are particular cases of the generic SFS Hamil-
tonian. Therefore all the previous theoretical and
algorithmic results hold for the “minimal” SFS so-
lutions.
The interest of the notion of the “minimal” solu-
tion is twofold: first it allows to recover surface
which are “globally” concave (whereas SDVSs
are “globally” convex). The second interest of
these “minimal” solutions lies on a possible exten-
sion of the “global algorithm” of Oliensis [40, 17].

x

1
2

10 1
−1

2

x
0

a) solution with H1 b) solution with −H1

Figure 4: solutions of H versus −H ; minimal so-
lutions

7 Stability of SDVS and appli-
cations to SFS

Now we state a stability result. This stability
has important and attractive consequences for the

Shape From Shading problem. We consider for
n ∈ N the equations:

Hn(x,∇u) = 0, ∀x ∈ Ω (25)

with continuous, convex and coercive Hamiltoni-
ansHn satisfying the same assumptions asH . We
set for any x ∈ Ω:

Zn(x) = {p ∈ R
N | Hn(x, p) ≤ 0},

Sn = {x ∈ Ω | Hn(x,∇ψ(x)) = 0}.
We require the following conditions:

∗ There exists M > 0 such that

Zn(x) ⊂ B(0,M), ∀x ∈ Ω, n ∈ N; (26)

∗ θnZ(x) + (1 − θn)∇ψ(x) ⊂ Zn(x),

for any x ∈ Ω, n ∈ N; (27)

∗ H(x, p) ≤ lim inf
n→+∞

∗Hn(x, p),

for any (x, p) ∈ Ω ×B(0,M); (28)

where θn is a sequence converging toward 1.
Above, we have denoted

lim inf
n→+∞

∗Hn(x, p)
.
= inf{lim inf

n
Hn(xn, pn) :

(xn, pn) → (x, p)}. (29)

Theorem 4 (Stability) Let un : Ω → R be a se-
quence of SDVS of (25)-(6) on Ω. Assume that
(26)-(28) are satisfied. If u is the SDVS of (2)-(6),
then

u(x) = lim
n→∞

un(x)

uniformly in Ω.

In computer vision, the images are always cor-
rupted by noise. It is therefore very important to
design schemes and algorithms robust to noise.
That is, the result obtained from a noisy images
should be close to the ideal result from the perfect
image. Moreover, the computer vision algorithms
use frequently various parameters. In this work,
we assume that the camera is calibrated and that
the position of the light source is known. So, for
applying our algorithms, the user must input (as
parameters) the focal length, the size of the pix-
els (width, height) and a vector representing the
light source direction (following the chosen mod-
eling). In practice, this additional data can be not
known precisely and the inputs provided by the
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user can contain important errors. Consequently,
to be applicable, the algorithms must be robust to
these unavoidable errors on parameters. In other
words, the returned results by the algorithms with
corrupted parameters must be close to the results
returned with the perfect theoretical parameters.

Mathematically, the robustness is expressed by
the continuity of the application which from an
image I (a focal length f or a light source direc-
tion L,..., respectively), returns the solution u of
the associated PDE. In other words, we would like
that, for all sequences of noisy images In (of fo-
cal lengths fn or of light source directions Ln,...,
respectively) converging toward an image I (f or
L,..., respectively), the sequence of recovered so-
lutions un converges toward the solution u asso-
ciated to I (f or L, respectively). If we denote
Hn the Hamiltonian obtained by replacing the pa-
rameters L, f and I by Ln, fn and In in H , then
the desired stability property corresponds with the
convergence of the SDVSs of (25)-(6) towards the
SDVS of (2)-(6) when n→ +∞. In lots of cases,
Theorem 4 allows to demonstrate that this prop-
erty is satisfied.

In the sequel, we propose a way allowing to use
Theorem 4 and to prove that such results hold for
the Shape From Shading problem. We consider
the case where Ln and fn converge toward L and
f while we fix In = I (the case in which also I
varies is studied in some situations in the report
[43]). Up to a change of variables, we can assume
that ψ ≡ 0. Our aim is to verify assumptions (26)-
(28).

Let us recall that the classical SFS Hamiltoni-
ans are special cases of the generic SFS Hamilto-
nian (see Section 2)

Hg(x, p) = κx

√

|Axp+ vx|2 +K2
x+wx ·p+cx

where κx,Ax,vx,Kx,wx and cx are completely
described in [48, 42]. For all the SFS Hamiltoni-
ans, the functions κx,Ax,vx,Kx,wx and cx de-
pend continuously on x,L and f. Let us denote
by κn

x ,A
n
x ,v

n
x ,K

n
x ,w

n
x , c

n
x the approximations of

κx,Ax,vx,Kx,wx, cx obtained by replacing L

and f by Ln, fn andHn
g the corresponding approx-

imation of Hg .

Proposition 2 If Hg is coercive, thenHn
g is coer-

cive for n sufficiently large and therefore (26) is
verified.

PROOF. Let us remind that the coercivity of
the SFS Hamiltonians corresponds to assume that
there exists δ > 0 such that

κx − |tA−1
x wx| > δ for any x ∈ Ω

(see [48, 42]). Since Ln → L and fn → f then for
n large enough, we have

∀x ∈ Ω, κn
x −

∣

∣(t
A

n
x)−1

w
n
x

∣

∣ >
δ

2

so, the functions Hn
g are coercive in p uniformly

with respect to x ∈ Ω. In particular, the hypothe-
sis (26) holds. �

For all x ∈ Ω and p ∈ S1 (the unit sphere
in R

2), let us consider g : Ω × R
+ → R defined

by
g(x, r) = Hg(x,∇ψ + rp)

and gn the approximation of g designed from
Hn

g . Clearly, there exist a(x, p), b(x, p), c(x, p),
µ(x, p) and ν(x, p) in R such that

g(x, r, p) = κx

√

a(x, p)r2 + b(x, p)r + c(x, p)

+ µ(x, p)r + ν(x, p). (30)

and we have a similar expression for gn with an

, bn, cn, µn and νn which are the appropriate ap-
proximations. The uniform coercivity of the func-
tions Hn

g and Hg involves that there exists δ > 0

such that ∀x ∈ Ω, p ∈ S1, n ∈ N,

(κn
x)2 an(x, p) − µn(x, p)2 > δ

and κ2
xa(x, p) − µ(x, p)2 > δ.

Since ψ ≡ 0 is a subsolution, we have

(κn
x)2cn(x, p) − νn(x, p)2 ≤ 0

and κ2
xc(x, p) − ν(x, p)2 ≤ 0

with a strict inequality outside of S (recall that
since In = I then Sn = S). Note also that ν
and νn are non positive.
So, by using the Appendix of [42], we can claim
that for x 6∈ S and p ∈ R

N , the equation
g(x, r, p) = 0 has an unique solution in R

+ 5,

5Let us fix x in Ω \ S. For all our SFS Hamiltonians we
have ψ(x) = argminpH(x, p) and H(x,∇ψ(x)) < 0. So,
by continuity, coercivity and convexity ofH, for all p 6= 0, the
equation (in r ∈ R) H(x,∇ψ + rp) = 0 has two solutions:
a positive one and a negative one.
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given by:

r(x, p) =

−
`

κ2
xb(x, p) − 2µ(x, p)ν(x, p)

´

+
p

∆(x, p)

2 (κ2
xa(x, p) − µ(x, p)2)

where

∆(x, p) =
`

κ
2
xb(x, p) − 2µ(x, p)ν(x, p)

´2

−4
`

κ
2
xc(x, p) − ν(x, p)2

´ `

κ
2
xa(x, p) − µ(x, p)2

´

.

and the same result holds for the equation
gn(x, r, p) = 0. We denote rn(x, p) its solution
and, by using the adequate approximations, we
obtain an expression similar to the one of r(x, p).
For all x ∈ Ω \ S and p ∈ S1, let us denote

θn(x, p) =
rn(x, p)

r(x, p)
.

If (x, p) is fixed in (Ω \ S) × S1, then we have
θn(x, p) → 1, when n→ +∞.

Proposition 3 If θn(x, p) → 1, uniformly in x ∈
Ω \ S and p ∈ S1, then assumption (27) holds.

PROOF. Let us denote by

θn = min
(x,p)∈Ω\S×S1

θn(x, p),

we have θn → 1 when n → +∞. In other re-
spects, by hypothesis (3), we have that for any
x ∈ Ω and q ∈ Z(x), there exists µ ≥ 1 such
that

µq ∈ ∂Z(x).

By definition of θn(x, p), we have

θn

(

x,
q

|q|

)

(µq) ∈ ∂Zn(x).

Since 0 ≤ θn ≤ µθn

(

x, q
|q|

)

, the hypothesis (3)

involves
θnq ∈ Zn(x).

Thus, we have proved that for any x ∈ Ω,

θnZ(x) ⊂ Zn(x).

and therefore hypothesis (27) holds. �

Since (28) clearly holds, we can apply The-
orem 4 to get the stability statement.

We now give an examples for which
θn(x, p) → 1, uniformly. Unfortunately, we
have not found a generic proof. Note that the
difficulty is in a neighborhood of S where r(x, p)
and rn(x, p) get arbitrarily small.

EXAMPLE : Let us consider the example of the
Hamiltonian Horth

D/O with Ln → L. So

H(x, p) = I(x)
√

1 + |p|2 − 2p · l + p · l− 1

and

Hn(x, p) = I(x)
√

1 + |p|2 − 2p · ln + p · ln − 1.

Easily, one can verify that

r(x, p) =

p

1 − I(x)2
I(x)

p

1 − (p · l)2 − (p · l)
p

1 − I(x)2

I(x)2 − (p · l)2
,

and that for any x ∈ Ω, p ∈ S1,

θn(x, p) =

I(x)
p

1 − (p · ln)2 − (p · ln)
p

1 − I(x)2

I(x)
p

1 − (p · l)2 − (p · l)
p

1 − I(x)2

·
I(x)2 − (p · l)2

I(x)2 − (p · ln)2
.

We claim that if the brightness image I is
Lipschitz-continuous on Ω, then ∂xθn(x, p) is
bounded independently of x ∈ Ω, n ∈ N and p
on a neighborhood of S1.

To prove the claim, denote sn = p · ln and s =
p · l.
Note that sn → s uniformly with respect to p in a
neighborhood of S1. Let us consider the function
T : R → R defined by

T (X) =

√
1 − snX − sn

√
1 −X2

√
1 − sX − s

√
1 −X2

.

For δ > 0 (and small enough), we have for all n
large enough, |sn| < |s| + δ ≤ 1, T is contin-
uously derivable on [s + δ, 1] and T ′ is bounded
independently of sn

6.
By the uniform coercivity assumption, there exists

6so independently of n and p in a neighborhood of S1.
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δ > 0 such that for all p in a neighborhood of S1

and for all n large enough,

|sn| < |s| + δ < min
x∈Ω

I(x) ≤ 1.

Since,

∇x(T ◦ I)(x) = T ′(I(x))∇xI(x),

therefore ∇x(T ◦ I) is bounded independently of
x, p and n. We can conclude by using the fact that
the function

x 7→ I(x)2 − (p · l)2
I(x)2 − (p · ln)2

and its gradient is bounded independently of x in
Ω, n in N and p in a neighborhood of S1.

In a same way, we prove that ∂pθn(x, p) is uni-
formly bounded. Let us denoteX = (x, p). So we
have ∇Xθn(X) uniformly bounded. Moreover,
∀X,Y ∈ Ω × S1,

|θn(X) − θn(Y )| ≤ |∇Xθn|∞d(X,Y ),

where d(X,Y ) is the Euclidean geodesic distance
in Ω × S1. Also, it is well known [33] that for
any fixed X ∈ Ω, Y 7→ d(X,Y ) is Lipschitz
continuous in Ω × S1 and that the Lipschitz
constant does not depend with respect to X .
Thus the functions θn are uniformly Lipschitz
continuous. Therefore the convergence of the
sequence θn is uniform.

8 Numerical approximation of
the SDVS for generic SFS

This section explains how to compute a numerical
approximation of the SDVS of the generic SFS
equation. This requires three steps. First we “reg-
ularize” the equation. Second, we approximate
the “regularized” SFS equation by approximation
schemes. Finally, by the approximation schemes,
we design numerical algorithms.

8.1 Regularization of the equation

The first step of the approximation scheme is a
regularization of the equation obtained by cutting
the image intensity at a certain level strictly less

than 1 before applying the approximation proce-
dure. Given a continuous image I and n ∈ N, we
set

In(x) = min

(

I(x), 1 − 1

n

)

, x ∈ Ω.

As a consequence of Theorem 4 (see [42, 43]), it is
possible to show that, if un denote the solution of
(2)-(6) with the Hamiltonian Hn obtained replac-
ing I(x) by In(x) inH , then un converges toward
the unique singular viscosity solution of (2)-(6).
Now, let us remark that, for any n, the SFS Hamil-
tonianHn is not degenerate anymore (i.e Sn = ∅).
So, its (unique) singular viscosity solution is the
(unique) discontinuous viscosity solution. Thus
from now we consider the case of an image inten-
sity strictly less than 1 and therefore, for approx-
imating the corresponding equation, we can use
the classical tools we have developed in [48].

8.2 Management of the state con-
straints

In this section, we explain how to deal with the
state constraints in practice. In particular, we
show that, in the setup of this paper, the state
constraints can always be rewritten as a Dirichlet
boundary condition.
Let u be the SDVS of equation (2)-(6):

{

H(x,∇u) = 0 ∀x ∈ Ω,
u(x) = ϕ(x) ∀x ∈ ∂Ω ∪ S

In section 3, we have seen that u is Lipschitz con-
tinuous and then bounded on Ω. Let M ∈ R an
upper bound of u on Ω such that

∀x ∈ Ω, u(x) < M − 1.

Now, let us consider ϕ̃ the real function defined
on ∂Ω ∪ S by

ϕ̃(x) = min(M,ϕ(x)),

and let ũ be the SDVS of equation
{

H(x,∇u) = 0 ∀x ∈ Ω,
u(x) = ϕ̃(x) ∀x ∈ ∂Ω ∪ S.

Following these notations, we have

Proposition 4 ũ and u coincide on Ω, i.e.

∀x ∈ Ω, ũ(x) = u(x).
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PROOF. We refer the interested reader to our
technical report [43]. �

Therefore, equations (2)-(6) with some state
constraints (i.e. such that for some x ∈ ∂Ω ∪ S
ϕ(x) = +∞) can rewritten as equations without
state contraints; i.e with (finite) Dirichlet bound-
ary conditions on the whole set ∂Ω ∪ S. So in
practice, we always consider (finite) Dirichlet
boundary conditions: when we know the values
of the solution on ∂Ω we can transfer these
informations in ϕ; when we do not have this data
and we want to compute the solution of with state
contraints, we impose ϕ to be a “great” constant
(in practice in our C++ code, we have chosen the
constant FLT_MAX). Let us emphasize that by
modifying ϕ in such a way, we do not change
the solution of (2)-(6) neither the approximation
computed by our algorithm.

8.3 Approximation schemes and nu-
merical algorithms for the generic
SFS problem

In [48, 45, 47], we have designed SFS
monotonous approximation schemes which
are always stable (we say that a scheme
S(ρ, x, u(x), u) = 0 is stable7 if for all fixed
mesh size ρ it has solutions and if all the solutions
are bounded independently of ρ). Moreover, we
also prove in [48, 45, 42] that (as soon as the
intensity image is Lipschitz continuous and the
Hamiltonian is coercive) the solutions of these
schemes converge toward the viscosity solution
of the adequate SFS equation when the mesh
size vanishes. For each scheme described in
[48, 45], we design (in [48, 45]) an algorithm
that computes some numerical approximations
of a solution uρ of the considered scheme.
Moreover, we prove that the computed numerical
approximations converge toward uρ. In the sequel
of this section, we quickly remind our numerical
method.

The reader unfamiliar with the notion of ap-
proximation schemes can refer to [3] or [42]. Let
us just recall that, following [3], an approximation

7 Following Barles and Souganidis definitions [3].

scheme is a functional equation of the form

S(ρ, x, u(x), u) = 0 ∀x ∈ Ω,

which “approximates” the considered PDE. S is
defined on M × Ω × R × B(Ω) into R, M =
R

+ × R
+ and ρ = (h1, h2) ∈ M defines the

size of the mesh that is used in the correspond-
ing numerical algorithms. B(D) is the space of
bounded functions defined on a set D. For ensur-
ing the stability of a scheme, it is globally suf-
ficient that it is monotonous (i.e. the function
u 7→ S(ρ, x, t, u) is nonincreasing) and that the
function t 7→ S(ρ, x, t, u) is nondecreasing, see
[48, 45]. For obtaining such a scheme, we approx-
imate the generic Hamiltonian Hg by

Hg(x,∇u(x)) ≈ sup
a∈B(0,1)

{

P2
i=1(−fi(x, a))u(x)−u(x+si(x,a)hi

−→ei)
−si(x,a)hi

−lg(x, a) }

where fi(x, a) is the ith component of
fg(x, a) and si(x, a) is its sign (see [48, 45]).
Thus, we obtain the approximation scheme
Simpl(ρ, x, u(x), u) = 0 with Simpl defined by:

Simpl(ρ, x, t, u) = sup
a∈B(0,1)

{

P2
i=1(−fi(x, a)) t−u(x+si(x,a)hi

−→ei)
−si(x,a)hi

− lg(x, a) }.

By introducing a fictitious time ∆τ , we also trans-
form this implicit scheme in a “semi-implicit”
scheme (also monotonous):

Ssemi(ρ, x, t, u) =

t− ( u(x) + ∆τ Simpl(ρ, x, u(x), u) ),

where ∆τ = (fg(x, a0) · (1/∆x11, 1/∆x12))
−1;

a0 being the optimal control associated with
Simpl(ρ, x, u(x), u). Let us emphasize that these
two schemes have exactly the same solutions
and that they verify the previous monotonicity
conditions (with respect to t and u). Thus, we can
prove (see [48, 42, 45]) the stability of these two
schemes.
By construction, these two schemes are
consistent7 with the SFS equations as soon
as the brightness image I is Lipschitz continuous;
see [48, 42, 45]. Using the stability and the
monotonicity of the schemes and some unique-
ness results, it follows directly from [3] that the
solutions of the approximation schemes Simpl

and Ssemi converge towards the viscosity solution
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of the considered equation (complemented with
the adequate boundary conditions) when the mesh
size vanishes; see [48, 42, 45].

We now describe an iterative algorithm that
computes numerical approximations of the solu-
tions of a scheme S(ρ, x, u(x), u) = 0 for all
fixed ρ = (h1, h2). We denote, for k ∈ Z

2,
xk = (k1h1, k2h2), and Q := {k ∈ Z

2 s.t.
xk ∈ Ω}. We call “pixel” a point xk in Ω. Since
Ω is bounded the number of pixels is finite. The
following algorithm computes for all k ∈ Q a se-
quence of approximationsUn

k of u(xk):

Algorithm:

1. Initialisation (n = 0): ∀k ∈ Q, U 0
k =

u0(xk);

2. Choice of a pixel xk and modification (step
n+ 1) of Un

k : we choose Un+1 such that

{

Un+1
l = Un

l if l 6= k,
S(ρ, xk, U

n+1
k , Un) = 0;

3. Choose the next pixel xk (using alternating
raster scans [15]) and go back to 2.

In [45], we prove that if u0 is a supersolution of
the SFS scheme Simpl (respectively, Ssemi) then
step 2 of the algorithm has always an unique so-
lution and that the computed numerical solutions
converge (when n → +∞ ) toward the solutions of
the scheme. Many details about the implementa-
tion of the algorithms can be found in [48, 42, 45].

8.4 Examples of SFS results obtained
from synthetic images

Let us recall that our method does not necessarily
require boundary data. Figure 5 shows some re-
constructions of the Mozart face when using the
exact boundary data on the boundary of the im-
age and at all critical points (Fig.5-c), when using
the exact boundary data at all the critical points
and state constraints on the boundary of the image
(Fig.5-d), and with no boundary data, except for
the tip of the nose (Fig.5-e). Let us remark that,
as the theory predicted, our algorithms show an
exceptional robustness to noise and errors on the
parameters; This robustness is even bigger when
we send the boundary to infinity (apply the state
constraints). Figure 6 displays a reconstruction of
Mozart’s face from an image perturbed by addi-
tive uniformly distributed white noise (SNR ' 5)

by using the implicit algorithm (see [45]) with the
wrong parameters lε = (0.2,−0.1) and fε = 10.5
(focal length) and without any boundary data. The
original image Fig.6-a) has been synthesized with
l = (0.1,−0.3) and f = 3.5. The angle between
the initial light vector L and the corrupted light
vector Lε is around 13◦.

9 Toward applications of
Shape From Shading

In this section, we suggest some applications of
our SFS method. We do not provide complete de-
scriptions, but we hope that the results will con-
vince the reader of the applicability of our SFS
method to real problems. Let us emphasize that
all the results we present in this section are ob-
tained from real images:
Note: When we apply SFS methods to real im-
ages we assume that the camera is geometrically
and photometrically calibrated. In our experi-
ments of sections 9.1 and 9.2 we know the focal
length (5.8 mm) and approximately the pixel size
(0.0045 mm; CCD size = 1/2.7”) of our cheap dig-
ital camera (Pentax Optio 330GS). In section 9.3,
we choose some arbitrary reasonable parameters.
Also, note that there exist classical methods to cal-
ibrate photometrically a camera [35, 36]. In our
tests, we do not use them, but we make some ed-
ucated guesses for gamma correction (when the
photometric properties of the images seem incor-
rect).

9.1 Document restoration using SFS

In this section, we propose a reprographic system8

to remove the geometric and photometric distor-
tions generated by the classical photocopy of a
bulky book. A first solution has been proposed
by Wada and coworkers [58] who deal with scan-
ner images involving a complex optical system
(with a moving light). Here, the acquisition pro-
cess we use is a classical camera (a camera snap-
shot is practically instantaneous, whereas a scan
takes several seconds). The book is illuminated
by a single light source located at infinity or close

8Suggested to us by Durou (private communication); see
[13].
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a) b)

c) d) e)

Figure 5: Reconstruction of Mozart’s face with and without boundary data.
a) original surface; b) image generated from a) [size ' 200 × 200]; c) reconstructed surface from b)
with the implicit algorithm (IA) after only 3 iterations, using the exact boundary data on the boundary
of the image and at all critical points: ε1 ' 0.56, ε2 ' 0.0018, ε∞ ' 0.42; d) reconstructed surface by
the IA (after 3 iterations) with state constraints on the boundary of the image: ε1 ' 0.58, ε2 ' 0.0019,
ε∞ ' 0.42; e) reconstructed surface by the IA (after 3 iterations) with state constraints on the boundary
of the image and at all the critical points except at the one on the nose: ε1 ' 0.60, ε2 ' 0.0020,
ε∞ ' 0.42.

a) b) c)

Figure 6: Reconstruction of Mozart’s face from a noisy image with the wrong parameters lε =
(0.2,−0.1) and fε = 10.5.
a) Image generated from Mozart’s face represented in Fig.5-a) with l = (0.1,−0.3) and f = 3.5 [size

' 200× 200]; b) noisy image (SNR ' 5); c) reconstructed surface from b) after 4 iterations of the implicit
algorithm, using the incorrect parameters lε = (0.2,−0.1) and fε = 10.5, and with state constraints on
the boundary of the image and at all the critical points except at the critical point on the nose.
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to the optical center (following the models we de-
scribe in section 2). Note that Cho et al. [11]
propose a similar system but they use two light
sources9. The acquired images are then processed
using our SFS method to obtain the shape of the
photographed page. Let us emphasize that, for ob-
taining a compact experimental system, the cam-
era must be located relatively close to the book.
Therefore the perspective model is especially rel-
evant for this application. Also, the distortion due
to the perspective clearly appears in the image a)
of Figure 9.
In our SFS method we assume that the albedo
is constant. In this application, this does not
hold because of the printed parts. Before recov-
ering the surface of the page, we therefore lo-
calize the printed parts by using image statistic
(similar to Cho’s [11])10 and we erase them au-
tomatically by using e.g. the inpainting algorithm
of Tschumperlé and Deriche [57]. This step can
produce an important pixel noise. Nevertheless,
this is not a problem for us because, as Figure 8-
b) shows, our SFS method is extremely robust to
pixel noise: Figure 8-b) displays the result pro-
duced by our algorithm (after 10 iterations) using
the image of a text page with its pigmented parts,
Fig.8-a). In this test, characters are considered as
noise. Note that one could say that such a restora-
tion system (based on SFS) is flawed because it
does not use the information provided by the rows
of characters. This is partially true but neverthe-
less, for pages containing few rows of characters
but a lot of graphics and pictures (separated by
large white bands as it is often the case for sci-
entific documents), such a SFS method could pro-
vide a simple and efficient solutions.
Once we have recovered the three-dimensional
shape of the page, we can flatten the surface by
using e.g. the algorithm of Brown and Seales
[5]. Note that at each step of this restoration pro-
cess (3D reconstruction and flattening) we keep
the correspondences with the pixels in the image.
Thus, at the final step, we can restore the printed
parts.
To prove the applicability of this method, we have

9We can also note that the numerical method proposed by
[11] requires that global variations of depth only exist along
one direction. Our method does not require this hypothesis.

10Most probably, we can also achieve this step by using
the excellent work of Bell and Freeman [4] who propose a
learning-based approach.

a) b)

Figure 7: Critical points of the profile of a face. a)
Critical points (6) for a homogeneous horizontal
light; b) Critical point for a point light source at
the optical center.

tested it on a page mapped on a cylindric surface
(we have used our cheap camera and flash in an
approximately dark room). Figure 9 shows the
original image in a), the reconstructed surface (af-
ter 10 iterations) (textured by the ink parts of a))
in b) and an orthographic projection of the recon-
structed surface, in c). Figure 9-c) indicates that
our method allows to remove the perspective and
photometric distortions.

9.2 Face reconstruction from SFS

The interest of the SFS methods for some applica-
tions dealing with faces has been demonstrated in
e.g. the work of Zhao and Chellappa [62] (who use
symmetric SFS for illumination-insensitive face recog-
nition), by Smith and Hancock [51] (who use SFS
needle map for face recognition), and by Choi and
coworkers [12] (who use SFS for determining the face
pose). In this section we propose a very simple
protocol based on SFS for face reconstruction. We
use one camera equipped with a basic flash in an
approximately dark place. As shown in Figure 7,
the interest of this method lies in the fact that, with
such a protocol, the generated image should con-
tain an unique critical point (if the distance of the
face to the camera and the focal length are suffi-
ciently small). Therefore, the propagation of the
height information starts from this unique critical
point.

We have tested our generic algorithm on a real
image of a face (slightly made-up to be more Lam-
bertian) located at '700 mm of the camera in an
approximately dark place (see Fig.10-a)). Figure
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10-b) shows the surfaces recovered by our generic
algorithm (after 5 iterations) with the perspective
SFS model with a point light source at the optical
center. As in the previous application, the albedo
is not constant over the whole image. Therefore
we removed the eyes and the eyebrows in the
image by using e.g. the inpaiting algorithm of
Tschumperlé and Deriche [57]. Moreover, note
that this step can be automated by matching the
image to a model image already segmented (we
can use for example the very robust multi-modal
and non-rigid matching method proposed by Her-
mosillo and Faugeras in [24]). Figure 10 shows in
c) the surface recovered from the image obtained
after the inpainting process.

9.3 Potential applications to medical
images

In this section, we are interested in applying our
SFS method to some medical images. Our inter-
est is motivated by the work of Craine et al. [14],
Okatani and Deguchi [37], Forster and Tozzi [23],
Smithwick and Seibel [52], Yeung et al. [60],
Gillies et al. [54, 32] and Yamany et al. [59]. For
illustrating the relevance of the “perspective SFS”
modeling with the light source located at infinity,
we apply our algorithm to an endoscopic image of
a normal stomach11 (see Figure 11-a)). In fact, for
producing such an image, the light source must be
very close to the camera, because of space con-
straints. In Figure 11-b), we show the result ob-
tained (after 3 iterations) by our generic algorithm
in the perspective case with the light source at the
optical center. In Figure 11-b), the surface is vi-
sualized with a light source located at the optical
center. This reconstruction looks quite good. To
further show the quality of the reconstruction, we
display in c), the surface b) with a different illumi-
nation. Finally, notice that the stomach wall is not
perfectly Lambertian (see Fig.11-a)). This sug-
gests the robustness of our SFS method to depar-
tures from the Lambertian hypothesis.

11Suggested by Tankus and Sochen (pri-
vate communication,[56]) and downloaded from
http://www.gastrolab.net/.

a) b)

Figure 8: a) Real image of a page of text [size
' 800×800]; b) Surface recovered from a) by our
generic algorithm (without removing the printed
parts of a)).

10 Conclusion

We have developed a new mathematical frame-
work which unifies various SFS theories (in par-
ticular, it unifies the work of Lions et al. [34, 50],
of Dupuis and Oliensis [17], of Falcone et al.
[7, 21] and of Prados and Faugeras [49, 46]) and
generalizes them to all SFS Hamiltonians, (in par-
ticular, we generalize them to “perspective SFS”
with a light source located at the infinity or at the
optical center). The class of weak solutions we
have defined in this paper is really more adapted
to the SFS specifications than the other classical
notions used in [34, 50, 7, 21, 49, 46]; in par-
ticular, it does not necessarily require boundary
data. Finally, we have successfully applied our
SFS method to real images and we have suggested
that it may be useful in a number of real-life ap-
plications.
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University of Nice-Sophia Antipolis, France (In
French), INRIA, September 2001.

[42] E. Prados. Application of the theory of the viscos-
ity solutions to the Shape From Shading problem.
PhD thesis, University of Nice-Sophia Antipolis,
October 2004.

[43] E. Prados, F. Camilli, and O. Faugeras. A vis-
cosity method for Shape-From-Shading without
boundary data. Technical Report RR-5296, IN-
RIA, 2004.

[44] E. Prados, F. Camilli, and O. Faugeras. A viscos-
ity solution method for shape-from-shading with-
out boundary data. Submitted to ESAIM: Mathe-
matical Modelling and Numerical Analysis, 2005.

[45] E. Prados and O. Faugeras. A mathematical and
algorithmic study of the lambertian SFS problem
for orthographic and pinhole cameras. Technical
Report RR-5005, INRIA, 2003.

[46] E. Prados and O. Faugeras. “Perspective Shape
from Shading” and viscosity solutions. In Pro-
ceedings of ICCV’03, volume 2, pages 826–831.
IEEE Computer Society, 2003.

[47] E. Prados and O. Faugeras. Unifying approaches
and removing unrealistic assumptions in Shape
from Shading: Mathematics can help. In Pro-
ceedings of ECCV’04 (4), volume 3024 of Lec-
ture Notes in Computer Science, pages 141–154.
Springer, 2004.

[48] E. Prados and O. Faugeras. A generic and prov-
ably convergent shape-from-shading method for
orthographic and pinhole cameras. Accepted to
The International Journal of Computer Vision,
2005.

[49] E. Prados, O. Faugeras, and E. Rouy. Shape from
shading and viscosity solutions. In Proceedings of
ECCV’02, volume 2351 of Lecture Notes in Com-
puter Science, pages 790–804. Springer, 2002.

[50] E. Rouy and A. Tourin. A Viscosity Solutions Ap-
proach to Shape-from-Shading. SIAM J. of Nu-
merical Analysis, 29(3):867–884, 1992.

[51] W.A.P. Smith and E.R. Hancock. Face recogni-
tion using Shape-from-Shading. In Proceedings
of British Machine Vision Conference (BMVC)),
pages 597–606, September 2002.

[52] Q.Y.L. Smithwick and E.J. Seibel. Depth en-
hancement using a scanning fiber optical endo-
scope. In Proceedings of SPIE BiOS, 2002.

[53] H. M. Soner. Optimal control with state space
constraints. SIAM J. Contr. Optim, 24:Part I: 552–
562, Part II: 1110–1122, 1986.

[54] L. E. Sucar, D. F. Gillies, and H. Rashid. Integrat-
ing shape from shading in a gradient histogram
and its application to endoscope navigation. In
Proceedings of 5th International Conference on
Artificial Intelligence (ICAI-V), 1992.

[55] A. Tankus, N. Sochen, and Y. Yeshurun. A
new perspective [on] Shape-from-Shading. In
ICCV’03, volume 2, pages 862–869, 2003.

[56] A. Tankus, N. Sochen, and Y. Yeshurun. Recon-
struction of medical images by perspective Shape-
from-Shading. In ICPR’04, 2004.
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