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Abstract. This paper addresses the problem of articulated motion track-
ing from image sequences. We describe a method that relies on an explicit
parameterization of the extremal contours in terms of the joint parame-
ters of an associated kinematic model. The latter allows us to predict the
extremal contours from the body-part primitives of an articulated model
and to compare them with observed image contours. The error function
that measures the discrepancy between observed contours and predicted
contours is minimized using an analytical expression of the Jacobian that
maps joint velocities onto contour velocities. In practice we model people
both by their geometry (truncated elliptical cones) and with their articu-
lated structure – a kinematic model with 40 rotational degrees of freedom.
We observe image data gathered with several synchronized cameras. The
tracker has been successfully applied to image sequences gathered at 30
frames/second.

1 Introduction and background

In this paper we address the problem of tracking complex articulated motions,
such as human motion, from visual data. More precisely, we describe humans by
a set of kinematically-articulated body parts with smooth surfaces. These sur-
faces project onto images as extremal contours. We observe humans with several
cameras, we extract image contours and we estimate the motion parameters
by minimizing the discrepancy between predicted extremal contours and image
contours.

The problem of human motion recovery has been thoroughly studied in the
recent past using either one or several cameras and without artificial markers
[1]. Previous work may be classified into two main approaches.

One approach extracts image features that can be used in the same way
as markers, such as texture [2] or point features [3]. Those methods can be
implemented in a straightforward manner since they have an explicit differential
model of the kinematics, and the latter can be inverted using non-linear least
squares methods. The difficulty is then to relate the positions of the features
with a geometric model of the human body. In practice, this usually implies full
knowledge of both the geometry and the appearance of the human actor [4],



Fig. 1. From left to right : The current model is matched against a new image. The
contours extracted from this image are compared with the extremal contours predicted
from the model using the chamfer-distance image. Finally, the newly estimated model
is consistent with this image.

although recent advances in multi-body factorization may provide solutions for
simultaneously recovering the motion and the structure [5].

Another approach relies on contours [6] or on silhouettes [7–9]. It is possible
to relate the deformation of a 2-D (image) silhouette to the geometry and the
motion of the articulated object which generated that silhouette. Methods based
on deformable silhouettes [10] can cope only with limited changes in viewpoint
and pose, and cannot deal with occlusions between primitives. Statistical meth-
ods in general and regressive models in particular are used to relate the shape of
a silhouette with three-dimensional motion in a lower-dimensional motion space,
learned from examples of a specific activity [11].

A slightly different approach was taken in [12], [13] for tracking mechanical
parts with sharp edges. By parameterizing the allowable contour deformations
with the actual degrees of freedom of the underlying rigid motions of the parts,
they demonstrated increased robustness and efficiency over fully deformable ac-
tive contours for tracking such objects. In the case of human motion tracking,
the task is made harder by the fact that the human body has fewer sharp edges
(if none), and its silhouette stems from the projection of smooth surfaces rather
than surfaces with sharp edges.

Problem formulation and originality. We model articulated objects such
as humans using truncated elliptical cones as basic primitives. These primitives
are joined together to form an articulated structure. Each joint has one to three
rotational degrees of freedom: let Φ be an n-dimensional vector whose compo-
nents are the motion parameters – the joint angles. The smooth surface of a
primitive projects onto an image as an extremal contour. The apparent motion
of this contour is a function of both the motion of the primitive and the motion of
the contour generator lying onto the smooth surface. An important contribution
of this work is to establish the relationship between the joint-angle velocities,
Φ̇ = ∂Φ/∂t, and the image velocity of a point lying onto an extremal contour,
v:

v = JΦ̇ (1)



Matrix J will be referred to as the extremal contour Jacobian. The ana-
lytic expression of this Jacobian allows us to cast the tracking problem into a
non-linear optimization problem. Therefore, the problem of articulated-motion
tracking will be formulated as the problem of minimizing a distance function
between sets of image contours (gathered simultenously from several cameras)
and sets of extremal contours. This can be written as:

min
Φ

E(Y,X (Φ)) (2)

where E is an error or a distance function, Y is the set of observed image contours
and X (Φ) is the set of predicted extremal contours. There are several ways of
computing the distance between image and model contours, including the sum
over point-to-point distances, the Hausdorff distance, and so forth. We use the
chamfer distance and has several interesting features. It does not require model-
contour-to-image contour matches and its computation is fast. Moreover, we
treat the chamfer distance as a differentiable function. In practice, a chamfer-
distance image is computed from the data. It combines image edges with a binary
silhouette which acts both as a mask and as a way to suppress artifacts in the
chamfer-distance image.

Paper organization. The remainder of this paper is organized as follows. In
section 2 we derive an analytical solution that relates the motion of an extremal
contour to joint parameters of an articulated object. In section 3 we provide
an explicit expression for measuring the distance between image contours and
extremal contours; Moreover, we explain the advantages of using both edges and
silhouettes. Finally, we present examples with complex and realistic motions that
require several cameras (section 4).

2 Kinematics of extremal contours

As we already explained above, we use truncated elliptical cones as our basic
primitives, i.e., Figure 2. These primitives are linked together with rotational
joints (with one, two, or three degrees of freedom) to form a kinematic chain.
Therefore, the motion of each such primitive is a constrained motion. Let R and
t denote the rotation and translation of a primitive-centered frame with respect
to a world-centered frame. Both R and t are therefore parameterized by the
joint angles Φ = (φ1, . . . , φn), i.e., we have R(Φ) and t(Φ).

Moreover we consider the smooth surface of the elliptical cone. This surface is
present in the image under the form of extremal contours. The image motion of
a point belonging to such an extremal contour should, therefore, depend on the
kinematic motion of the corresponding cone. One can further define a contour
generator onto the cones’s smooth surface – the locus of points where the surface
is tangent to lines of sight. When the cone moves, the contour generator moves
as well and is constrained both by the kinematic motion of the cone itself and
by the relative position of the cone with respect to the camera. Therefore, the
contour generator has two motion components and we must explicitly estimate



Fig. 2. A truncated elliptical cone projects onto an image as a pair of extremal contours.
The 2-D motion of these extremal contours is a function of both the motion of the cone
and the sliding of the contour generator along the smooth surface of the cone.

these components. First, we will develop an analytical solution for computing the
contour generator as a function of the motion parameters. The extremal contour
is simply the projection of the contour generator. Second, we will develop an
expression for the image Jacobian that maps joint-velocities onto image point-
velocities.

The kinematics of the contour generator. Let X be a 3-D point that lies
onto the smooth surface of a body part.

We derive now the constraint under which this surface point lies onto the
contour generator associated to a camera. This constraint simply states that
the line of sight associated with this point is tangent to the surface. Both the
line of sight and the surface normal should be expressed in a common reference
frame, and we choose to express these entities in the world reference frame:
(Rn)> (RX + t−C) = 0, where vector n = ∂X

∂z × ∂X
∂θ = Xz ×Xθ is normal

to the surface at X, and C is the camera optical center in world coordinates.
The equation above becomes:

XT n + (t− C)T Rn = 0 (3)

For any rotation, translation, and camera position, equation (3) allows to esti-
mate X as a function of the surface parameters.

The surface of a truncated elliptical cone is parametrized by an angle θ and
a height z:

X (θ, z) =

a(1 + kz) cos(θ)
b(1 + kz) sin(θ)

z

 (4)



where a and b are the minor and major half-axes of the elliptical cross-section, k is
the tapering parameter of the cone, and z ∈ [z1, z2]. With this parameterization,
eq. (3) can be developed to obtain a trigonometric equation of the form F cos θ+
G sin θ +H = 0 where F , G and H depend on Φ and C but do not depend on z.
With the standard substitution t = tan θ

2 we obtain a second-degree polynomial:

(H − F )t2 + 2Gt + (F + H) = 0 (5)

This equation has two real solutions, t1 and t2, (or, equivalently, θ1 and θ2)
whenever the camera lies outside the cone that defines the body part. Note that
in the case of elliptical cones, θ1 and θ2 do not depend on z and the contour
generator is composed of two straight lines, X(θ1, z) and X(θ2, z). From now on
and without ambiguity, X denotes a point lying onto the contour generator.

The motion of extremal contours. The extremal contour is the projection of
the contour generator. Without loss of generality, let the world frame be aligned
with the camera frame. A point x of the extremal contour is therefore defined
by its image coordinates: x1 = Xw

1 /Xw
3 and x2 = Xw

2 /Xw
3 , with

Xw = RX + t (6)

The velocity of x, v is computed with:

v = JI

(
ṘX + ṫ + RẊ

)
= JI(A + B)

(
Ω
V

)
(7)

where A and B are defined below and JI is the classical 2×3 matrix:

JI =
[

1/Xw
3 0 −Xw

1 /(Xw
3 )2

0 1/Xw
3 −Xw

2 /(Xw
3 )2

]

Eq. (7) reveals that the motion of extremal contours has two components:
a component due to the rigid motion of the smooth surface, and a component
due to the sliding of the contour generator onto the smooth surface. The first
component is:

ṘX + ṫ = ṘR>(Xw − t) + ṫ = A
(

Ω
V

)
(8)

where A = [−[Xw]× I] and (Ω,V ) is the kinematic screw. The notation [m]×
stands for the skew-symmetric matrix associated with a vector m.

The second component can be made explicit by taking the time derivative
of the contour generator constraint, i.e., eq. (3). After some algebraic manipula-
tions, we obtain:

RẊ = B
(

Ω
V

)
(9)



where B = b−1RXθ (Rn)> [[C − t]× − I] is a 3 × 6 matrix and b = (Xg +
RT (t− C))T nθ is a scalar.

The sliding of the contour generator infers an image velocity that is tangent to
the extremal contour. Approaches based on the estimation of the optical flow for
tracking [14] cannot take into account this tangential component of the velocity
field. Within our approach this term is important and it will be argued in the
experimental section below that it speeds up the convergence of the tracker by
a factor of 2.

Finally we notice that the kinematic screw of a body-part can be related
to the joint velocities associated with a kinematic chain [15], where JK is the
chain’s Jacobian matrix: (Ω V )> = JKΦ̇. By combining this formula with
eq. (7) we obtain eq. (1):

v = JI(A + B)JKΦ̇ (10)

3 Fitting extremal contours to images

We now go back to the error function introduced in eq. (2). A well known
difficulty is that one can only recover noisy and cluttered image contours and,
therefore, the error function should be able to cope with this problem. One
possible choice for the error funtion, that works well in practice, is the sum
of the distances to the nearest image contour over all the predicted extremal
contours points. Thus, the error function writes:

E(Y,X (Φ)) =
N∑

i=1

D2(Y,xi(Φ)), (11)

where N is the number of predicted extremal contour points and D is a scalar
function that returns the minimum distance to an observed contour in Y, eval-
uated at image location x.

The distance from a predicted extremal-contour point to the nearest image-
contour point can be computed as a chamfer distance performed after edge de-
tection. But in general one can only observe the silhouette of the actor, obtained
through background subtraction, and the edges of a small number of body parts
within that silhouette (figure 4). The distance we use in practice is the sum
of the minimum distances to both the silhouette and the edges observed by all
cameras. In the remainder of this section, we explain the advantages of using
this particular combination of silhouettes and edges.

For clarity of the presentation, we consider the case of a single body part
and we analyse the error function along an image row. Fig.3-(b) is a plot of
the error function when only the silhouette is used. The chamfer distance is
zero everywhere within the silhouette. Hence, the error function has a large and
flat minimum – or infinitely many local minima – thus ill-suited for numerical
optimization. Fig. 3-(c) is a plot of the error function when only the edges are
considered. As it can be noticed, the error function is flat near the edges and



Fig. 3. (a) Observed edges (left) and silhouette (right). (b) Chamfer distance on the
silhouette. (c) Chamfer distance on the edges. (d) Sum of both distances. The graphs
illustrate the distance (blue or thin curve) and the error (red or bold curve) along a
row (white lines).

the error function is also ill-suited. Eventually, Fig. 3-(d) is a plot of the error
function when using the sum of the two previously proposed distances. The error
function is never constant and there exists only one local minimum, where the
model contour coincides exactly with the observed contour.

Thus, the simulteneous use of the chamfer distances of both the edges and
the silhouette avoids such local minima. As explained above, minimizing the
silhouette distance pushes model contours inside the image silhouettes while
minimizing the edge distance attracts the model contours to high image gradients
within that silhouette, without explicitly representing the contour orientations.

Now that we have chosen the error function to be minimized, we can track
our model by iteratively minimizing the error in all views, using a non-linear
least-squares optimization technique such as Levenberg-Marquardt. Using the
results from section 2 together with a bilinear interpolation of the chamfer dis-
tance images, we compute the Jacobian analytically, which results in an efficient
implementation, as described in the next section.

4 Experimental results and discussion

We performed experiments with realistic and complex human motions using a
setup composed of 6 cameras that operate at 30 frames/second. The cameras are
both finely synchronized (within 10−6s) and operate at the same shutter speed
(10−3s.) thus allowing us to cope with fast motions. The 3-D human model is



Fig. 4. From left to right: A raw image, the silhouette, the edges inside the silhouette,
and the chamfer-distance image associated with the silhouette.

Fig. 5. A set of six calibrated cameras provides six image sequences whose frames are
synchronized.

composed of 18 body parts with a total of 40 degrees of freedom1. We validated
our tracker using realistic data sets consisting of movements performed by pro-
fessionals (Fig. 1 and 6). Silhouettes and edges were extracted using standard
techniques (statistical background subtraction and edge detection). In the first
sequence (Figure 1) we tracked the motion over 700 frames, starting from a ref-
erence pose. In the second sequence (Figure 6), we tracked a very fast motion
over 100 frames. In both cases, the optimization always converged in less than
5 iterations per frame. The RMS error on both sequences is close to one pixel.
Given the roughness of the parameters modelling the person’s features (length
of arms, feet, thighs, etc.), this error is quite satisfactory and could probably be
improved further with better estimates of the anthropometric dimensions of the
human model.

We evaluated the importance of the sliding motion term in the minimization
process since it was asserted to be negligible in [14]. With both synthetic and
real data, we found that we could ignore the correction terms and still obtain
the same results, at the expense of doubling the number of iterations, on an
average. This gives experimental evidence that the correction introduced by the
sliding motion of the contour generators may be important, if not critical, for
real-time/best-effort implementations.

1 2 degrees of freedom for the head, 3 for the torso, 3 for the abdomen, 6 for the two
clavicles, 6 for the two shoulders, 4 for the two elbows, 6 for the hips, and 4 at the
knees, keeping the feet and the hands rigidly attached to the ankles and forearms.



Fig. 6. Tracking a ”taekwondo” sequence. From top to bottom: Extremal contours
predicted from the previously estimated pose; Silhouettes extracted with a background
subtraction algorithm; Edges inside the silhouettes, and the estimated pose of the
articulated model.

With our current algorithms we did not restrict the joint angles to bio-
mechanically feasible limits. As a result, most of our tracker failures occurred
because of incorrect assignments during matching, which resulted in collisions
between body parts. We believe we can solve this problem by implementing col-
lision detection and collision prevention more carefully. Another important issue
that should be addressed in future work, is the automatic calibration of the
parameters of our human-body model. Obtaining optimal values for all the con-
stant geometric and kinematic parameters in the anthropomorphic model will
be important for evaluating and improving further the quality, robustness, and
precision of our tracker.

5 Summary and Conclusion

We described a method for using image silhouettes and edges from several
cameres in order to estimate the articulated motion of a person. Our approach
works well with relatively difficult motions, using non-textured clothes with shad-
ows and folds. We presented a derivation of the image Jacobian for that case, and



demonstrated experimentally that the resulting tracker converges in fewer (typ-
ically less than five) iterations per frame, compared to the classical rigid-motion
approximation.

Future work will be devoted to extend the method to other body part shapes
such as the head, hands and feet, to combine information form the contours
with point features and textures, when they are available, to fit the constant
geometric and kinematic parameters of our models automatically, and to feed
the results into a Kalman or particle-filter representation of human dynamics.
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