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Abstract. This paper addresses the problem of camera calibration using object
silhouettes in image sequences. It is known that silhouettes encode information on
camera parameters by the fact that their associated viewing cones should present
a common intersection in space. In this paper, we investigate how to evaluate cali-
bration parameters given a set of silhouettes, and how to optimize such parameters
with silhouette cues only. The objective is to provide on-line tools for silhouette
based modeling applications in multiple camera environments. Our contributions
with respect to existing works in this field is first to establish the exact constraint
that camera parameters should satisfy with respect to silhouettes, and second to
derive from this constraint new practical criteria to evaluate and to optimize cam-
era parameters. Results on both synthetic and real data illustrate the interest of
the proposed framework.

1 Introduction

Camera calibration is a necessary preliminary step for most computer vision applica-
tions involving geometric measures. This includes 3D modeling, localization and navi-
gation, am-ong other applications. Traditional solutions in computer vision are based on
particular features that are extracted and matched, or identified, in images. This article
studies solutions based on silhouettes which do not require any particular patterns nor
matching or identification procedures. They represent therefore a convenient solution
to evaluate and improve on-line a camera calibration, without the help of any specific
patterns. The practical interest arises more specifically in multiple camera environments
which are becoming common due, in part, to recent evolutions of camera acquisition
materials. These environments require flexible solutions to estimate, and to frequently
update, camera parameters, especially because often calibrations do not remain valid
over time.

In a seminal work on motion from silhouettes, Rieger [1] used fixed points on sil-
houette boundaries to estimate the axis of rotation from 2 orthographic images. These
fixed points correspond to epipolar tangencies, where epipolar planes are tangent to the
observed objects’ surface. Later on, these points were identified as frontier points in [2]
since they go across the frontier of the visible region on a surface when the viewpoint is
continuously changing. In the associated work, the constraint they give on camera mo-
tion was used to optimize essential matrices. In [3], this constraint was established as
an extension of the traditional epipolar constraint, and thus was called the generalized
epipolar constraint. Frontier points give constraints on camera motions, however they
must first be localized on silhouette boundaries. This operation appears to be difficult:
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in [4] inflexions of the silhouette boundary are used to detect frontier points from which
motion is derived, in [5] infinite 4D spaces are explored using random samples and in
[6] contour signatures are used to find potential frontier points. All these approaches
require frontier points to be identified on the silhouette contours prior to camera pa-
rameter estimation. However such frontier points can not be localized exactly without
knowing epipoles. As a consequence, only approximated solutions are usually obtained
by discrete sampling over a space of potential locations for frontier points or epipoles.
We take a different strategy and bypass the frontier point localization by considering the
problem globally over sets of silhouettes. The interest is to transform a computationally
expensive discrete search into an exact, and much faster, optimization over a continuous
space.

It is worth to mention also a particular class of shape-from-silhouette applications
which use turntables and a single camera to compute 3D models. Such model acqui-
sition systems have received noticeable attention from the vision community [7, 8, 9].
They are geometrically equivalent to a camera rotating in a plane around the scene. The
specific constraints which result from this situation can be used to estimate all motion
parameters. However, the associated solutions do not extend to general camera config-
urations as assumed in this paper.

Our approach is based first on the study of the constraint that both silhouettes and
camera parameters must satisfy. We then derive two criteria: a quantitative smooth cri-
terion in the form of a distance, and a qualitative discrete criterion, both being defined
at any point inside a silhouette. This provides practical tools to qualitatively evaluate
calibrations, and to quantitatively optimize their parameters. It appears to be particu-
larly useful in multiple camera environments where calibrations often change, and for
which fast on-line solutions are required.

This paper is organized as follows. Section 2 recalls background material. Section 3
precises constraints and respective properties of silhouettes, viewing cones and frontier
points. Section 4 introduces the distance between viewing cones that is used as a geo-
metric criterion. Section 5 introduces the qualitative criterion. Section 6 shows results
on various data before concluding in section 7.

2 Definitions

Silhouette: Suppose that a scene, containing an arbitrary number objects, is observed
by a set of pinhole cameras. Suppose also that projections of objects in the images are
segmented and identified as foreground. O denotes then the set of observed objects and
IO the corresponding binary foreground-background images. The foreground region
of an image i consists of the union of objects’ projections in that image and, hence, may
be composed of several unconnected components with non-zero genus. Each connected
component is called a silhouette and their union in image i is denoted Si.

Viewing Cone: Consider the set of viewing rays associated with image points belong-
ing to a single silhouette in Si. The closure of this set defines a generalized cone in
space, called viewing cone. The viewing cone’s delimiting surface is tangent to the
surface of the corresponding foreground object. In the same way that Si is possibly
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Fig. 1. A visual hull and 2 of its viewing cones

composed of unconnected components, the viewing cones of image i are possibly sev-
eral distinct cones, one associated with each silhouette in Si. Their union is denoted Ci.
Note that individual objects are not distinguished here.

Visual Hull: The visual hull [10] is formally defined as the maximum surface consistent
with all silhouettes in all images. Intuitively, it is the intersection of the viewing cones of
all images (see figure 1). In practice, silhouettes are delimited by 2D polygonal curves,
thus viewing cones are polyhedral cones and since a finite set of images are considered,
visual hulls are polyhedrons. Assume that all objects are seen from all image viewpoints
then:

VH(IO) =
⋂

i∈IO

Ci, (1)

is the visual hull associated with the set IOof foreground images and their viewing
cones Ci∈IO . If all objects O do not project onto all images, then the reasoning that fol-
lows still applies to subset of objects and subsets of cameras which satisfy the common
visibility constraint.

3 Geometric Consistency Constraint

In this section, the exact and optimal geometric consistency which applies with silhou-
ettes is first established and its equivalence with more practical constraints is discussed.

3.1 Visual Hull Constraint

Calibration constraints are usually derived from geometric constraints reflecting geo-
metric coherence. For instance, different image projections of the same feature should
give rise to the same spatial location with true camera parameters. In the case of silhou-
ettes, and under the assumption that no other image primitives are available, the only
geometric coherence that applies comes from the fact that all viewing cones should
correspond to the same objects with true camera parameters. Thus:

O ⊂ VH(IO),

and consequently by projecting in any image i:

Si ⊂ Pi(VH(IO)), ∀i ∈ IO,
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where Pi() is the oriented projection1 in image i. Thus, viewing cones should all inter-
sect, and viewing rays belonging to viewing cones should all contribute to this intersec-
tion. The above expression is equivalent to:

⋃

i∈IO

[Si − Pi(VH(IO))] = ∅, (2)

which says that the visual hull projection onto any image i should entirely cover the
corresponding silhouette Si in that image. This is the constraint that viewing cones
should satisfy with true camera parameters. It encodes all the geometric consistency
constraints that apply with silhouettes and, as such, is optimal. However this expression
in its current form does not yield a practical cost function for camera parameters since
all configurations leading to an empty visual hull are equally considered, thus mak-
ing convergence over cost functions very uncertain in many situations. To overcome
this difficulty, viewing cones can be considered pairwise as explained in the following
section.

3.2 Pairwise Cone Tangency

We can easily derive from the general expression (2) the pairwise tangency constraint.
Substituting the visual hull definition (1) in (2):

(2) ⇔
⋃

i∈IO

[Si − Pi(
⋂

j∈IO

Cj)] = ∅.

Since projection is a linear operation preserving incidence relations:

(2) ⇒
⋃

i∈IO

[Si −
⋂

j∈IO

Pi(Cj)] = ∅.

Note that, in the above expression, the exact equivalence with (2) is lost since projecting
viewing cone individually introduces depth ambiguities and, hence, does not ensure a
common intersection of all cones as in (2). By distributive laws:

(2) ⇒
⋃

(i,j)∈IO×IO

[Si − Pi(Cj)] = ∅. (3)

Expression (3) states that all viewing cones of a single scene should be pairwise
tangent. By pairwise tangent, it is meant that all viewing rays from one cone intersect the
other cone, and reciprocally. This can be seen as the extension of the epipolar constraint
to silhouettes (see figure 2). Note that this constraint is always satisfied by concentric
viewing cones, for which no frontier points exist. Note also that if (3) and (2) are not
strictly equivalent, they are equivalent in most general situations.

1 i.e. a projection such that there is a one-to-one mapping between rays from the projection
center and image points.
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Fig. 2. Pairwise tangency constraint: silhouette Si is a subset of the viewing cone projection
Pi(Cj) in image i

3.3 Connection with Frontier Points

A number of approaches consider frontier points and the constraints they yield on cam-
era configurations. Frontier points are particular points which are both on the objects’
surface and the visual hull, which project onto silhouettes in 2 or more images, and
where the epipolar plane is tangent to the surface (see figure 1). They satisfy therefore
what is called the generalized epipolar constraint [3]. They allow hereby projective re-
construction when localized in images [5, 6]. The connection between the generalized
epipolar constraint and the pairwise tangency constraint (3) is that the latter implies the
former at particular frontier points. Intuitively, if two viewing cones are tangent then
the generalized epipolar constraint is satisfied at extremal frontier points where viewing
lines graze both viewing cones.

4 Quantitative Criterion

The pairwise tangency is a condition that viewing cones must satisfy to ensure that the
same objects are inside all cones. In this section, we introduce a distance function that
evaluates this condition.

4.1 Distances Between a Viewing Ray and a Viewing Cone

The distance function between a ray and a cone that we seek should preferably respect
several conditions:

1. It should be expressed in a fixed metric with respect to the data, thus in the images
since a 3D metric will change with camera parameters.

2. It should be a monotonic function of the respective locations of ray and cone.
3. It should be zero if the ray intersect the viewing cone. This intersection, while

apparently easy to verify in the images, requires some care when epipolar geometry
is used. Figure 3 depicts for instance a few situations where the epipolar line of a
ray intersects the silhouette, though the ray does not intersect the viewing cone.
These situations occur because no distinction is made between front and back of
rays.

4. It should be finite in general so that situations in figure 3 can be differentiated.
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Fig. 4. The spherical image model: viewing rays project onto epipolars arcs on the sphere

In light of this, a fairly simple but efficient approach is to consider a spherical image
model instead of a planar model (see figure 4), associated to an angular metric. The
distance from a ray to a viewing cone is then the shortest path on the sphere from the
viewing cone to the ray projection. This projection forms an epipolar circle-arc on the
sphere delimited by the epipole and the intersection of the ray direction with the sphere.
The ray projection is then always the shortest arc between these 2 points, which can
coincide if the ray goes trough the viewing cone apex. Two different situations occur
depending on the respective positions of the ray epipolar plane and the viewing cone:

1. The plane intersects the viewing cone apex only, as in figure 4. The point on the
circle containing the epipolar arc and closest to the viewing cone must be deter-
mined. If such point is on the epipolar arc then the distance we seek is its distance
to the viewing cone. Otherwise, it is the minimum of the distances between the arc
boundary points and the viewing cone.

2. The plane goes through the viewing cone. The distance is zero in the case where
the ray intersects the viewing cone section in the epipolar plane, and the shortest
distance between the epipolar arc boundary points and the viewing cone section in
the other case. This distance is easily computed using angles in the epipolar plane.

4.2 Distance Between 2 Viewing Cones

A distance function between a ray and a viewing cone has been defined in the previous
section, this section discusses how to integrate it over a cone. The distance between
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Fig. 5. The distance between 2 viewing cones as a function of: (green) one focal length which
varies in the range [f −0.4f, f +0.4f ], with f the true value; (blue) one translation parameter to
which is added from −0.4 to 0.4 of the camera-scene distance; (red) one Euler orientation angle
which varies in the range [α − 0.4π, α +0.4π] with α the true value. The filled points denote the
limit distances on curves above which the 2 cones do not intersect at all.

2 viewing cones is then simply defined by a double integration over the 2 concerned
cones.

Recall that silhouettes and viewing cones are discrete in practice and thus defined by
sets of contour points in the images and boundary rays in space. The simplest solution
consists then in summing individual distances over boundary rays. Assume that rk

i is
the kth ray on the boundary of viewing cone Ci, and d(rk

i , Cj) = dk
ij is the distance

between rk
i and Cj as defined in the previous section. Then the distance Dij between Ci

and Cj is:

Dij =
∑

k

dk
ij +

∑

l

dl
ji = dij + dji. (4)

Remark that Dij = Dji but dij �= dji. The above expression is easy to compute
once the distance function is established. It can be applied to all boundary viewing rays,
however mainly rays on the convex hulls of silhouettes are concerned by the pairwise
tangency constraint, we thus consider only them to improve computational efficiency.
Figure 5 illustrates the distance Dij between 2 viewing cones of a synthetic body model
as a function of various parameters of one cone’s camera. This graph demonstrates the
smooth behavior of the distance around the true parameter values, even when the cones
do not intersect at all.

5 Silhouette Calibration Ratio

Following the quantitative criterion, we introduce a simple qualitative criterion which
evaluates how silhouettes contribute to the visual hull for a given calibration.

Recall that any viewing ray, from any viewing cone, should be intersected by all
other image viewing cones, along an interval common to all cones. Let ωr be an interval
along ray r intersected by viewing cones, and let us call N (ωr) the number of image
contributing (image for which a viewing cone intersects ωr) inside that interval. Then
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the sum over the rays r:
∑

r maxωr (N (ωr)), should theoretically be equal to m(n−1)
if m rays and n images are considered. Now this criterion can be refined by considering
each image contribution individually along a viewing ray. Let ωi

r be an interval, along
ray r, where image i contributes. Then the silhouette calibration ration Cr defined as:

Cr =
1

m(n − 1)2
∑

r

∑

i

max
ωi

r

(N (ωi)), (5)

should theoretically be equal to 1 since each image should have at least one contribution
interval with (n − 1) image contributions. This qualitative criterion is very useful in
practice because it reflects the combined quality of a set of silhouettes and of a set of
camera parameters. Notice however that it can hardly be used for optimizations because
of its discrete, and thus non-smooth, nature.

6 Experimental Results

The pairwise tangency presented in the previous section constraint camera parameters
when a set of static silhouettes IO is known. For calibration, different sets IO should
be considered. They can easily be obtained, from moving objects for instance, as in [5].
The distances between viewing cones are then minimized over the camera parameter
space through a least square approach:

θ̂IO = min
θ

∑

(i,j) ∈ IO×IO

D2
ij , (6)

where θ is the set of camera parameters to be optimized. θ̂IO is equivalent to a maximum
likelihood estimate of the camera parameters under the assumption that viewing rays
are statistically independent. The above quantitative sum can be minimized by standard
non-linear methods such as Levenberg-Marquardt.

6.1 Synthetic Data

Synthetic sequences, composed of images with dimensions 300×300, were used to test
the approach robustness. 7 cameras, with standard focal lengths, are viewing a running
human body. All camera extrinsic parameters and one focal length per camera, assum-
ing known or unit aspect ratios, are optimized. Different initial solutions are tested by
adding various percentages of uniform noise to the exact camera parameters. For the
focal lengths and the translation parameters, the noise amplitudes vary from 0% up to
40% of the exact parameter value; for the pose angle parameters, the noise amplitudes
vary from 0% up to 40% of 2π. Figure 6 shows, on the left, the silhouette calibration
ratios after optimization; and on the right, relative errors in the estimated camera pa-
rameters after optimization using 5 frames per cameras. These results first validate the
silhouette calibration ratio as a global estimator for the quality of any calibration with
respect to silhouette data. Second, they show that using only one frame per camera is
intractable in most situations. However, they prove also that using several frames, cali-
bration can be recovered with a good precision even far from the exact solution. Other
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Fig. 6. Robustness to the initial calibration: right, the silhouette calibration ratio; left, the relative
errors in the estimated camera parameters for the 5 frame case: errors relative to the true value
for the focal length, errors relative to the distance camera-scene for the translation parameter and
errors relative to π for the angle parameter

experiments, not presented due to lack of space, show that adding a reasonable amount
of noise to silhouette vertices, typically a 1 pixel Gaussian Noise, only slightly changes
these results.

6.2 Real Data

Our approach was also tested in a real environment with 6 firewire cameras viewing a
moving person. A calibration obtained by optimizing an initial solution using known
points is available and will be considered as the ground truth. In the following experi-

Fig. 7. Top, one of the original image, the corresponding silhouette and the visual hull model ob-
tained with ground truth calibration. Bottom, 3 models which correspond to calibrations obtained
with our method and using respectively 1, 3 and 5 frames per camera.
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ments, we use the same initial solution for the calibration with viewing cones. As for
the synthetic case, all camera extrinsic parameters and one focal length per camera are
optimized. Figure 7 shows, on top, the input images and a visual hull model obtained
using ground truth values for calibration. In the bottom, models obtained from the same
silhouettes, but using our approach with respectively 1, 3 and 5 frames per camera.
Apart from a scale difference, not shown and due to the fact that fixed dimensions were
imposed for the ground truth solution, the 2 most-right models are very close to the
ground truth one.

7 Conclusion

We have studied the problem of estimating camera parameters using silhouettes. It has
been shown that, under little assumptions, all geometric constraints given by silhouettes
are ensured by the pairwise tangency constraint. A second contribution of this paper is
to provide a practical criterion based on the distance between 2 viewing cones. This
criterion appears to be efficient in practice since it can handle a large variety of camera
configurations, in particular when viewing cones are distant. It allows therefore multi-
camera environments to be easily calibrated when an initial solution exists. The criterion
can also be minimized using efficient and fast non-linear approach. The approach is
therefore also aimed at real time estimation of camera motions with moving objects.
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