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Abstract—This paper concerns the incorporation of geometric information in camera calibration and 3D modeling. Using geometric

constraints enables more stable results and allows us to perform tasks with fewer images. Our approach is motivated and developed

within a framework of semi-automatic 3D modeling, where the user defines geometric primitives and constraints between them. It is

based on the observation that constraints, such as coplanarity, parallelism, or orthogonality, are often embedded intuitively in

parallelepipeds. Moreover, parallelepipeds are easy to delineate by a user and are well adapted to model the main structure of, e.g.,

architectural scenes. In this paper, first a duality that exists between the shape parameters of a parallelepiped and the intrinsic

parameters of a camera is described. Then, a factorization-based algorithm exploiting this relation is developed. Using images of

parallelepipeds, it allows us to simultaneously calibrate cameras, recover shapes of parallelepipeds, and estimate the relative pose of

all entities. Besides geometric constraints expressed via parallelepipeds, our approach simultaneously takes into account the usual

self-calibration constraints on cameras. The proposed algorithm is completed by a study of the singular cases of the calibration

method. A complete method for the reconstruction of scene primitives that are not modeled by parallelepipeds is also briefly described.

The proposed methods are validated by various experiments with real and simulated data, for single-view as well as multiview cases.

Index Terms—3D modeling, calibration, geometric constraints.

�

1 INTRODUCTION

EFFICIENT 3D modeling from images is one of the most
challenging issues in computer vision. The tremendous

research effort made to develop feasible methods has
proven that recovering 3D structures from 2D images is a
difficult and often underconstrained problem. Several
reasons account for that, including the fundamental fact
that, without any prior information on cameras or on the
scene to recover, a Euclidean reconstruction is not possible
at all [1]. This is why knowledge of the acquisition process
or of the scene is required. A number of approaches have
been proposed to exploit prior information, both on camera
and scene parameters. Such prior information not only
solves the projective ambiguity in the reconstruction but
also usually stabilizes the sensitive reconstruction process.
Furthermore, it often leads to simple and direct solutions
for the estimation of both camera and scene parameters,
which may eventually be adjusted nonlinearly for higher
accuracy. The method proposed in this paper is based on
the observation that constraints such as coplanarity,
parallelism, or orthogonality are often embedded intuitively
in parallelepipeds. Moreover, parallelepipeds are easy to
delineate by a user and are well adapted to model the main
structure of, e.g., architectural scenes. Using parallelepipeds
to constrain the calibration and reconstruction process
enables modeling from small sets of images, in particular
from single images, thus making possible reconstructions

from images not originally taken for that purpose, such as
archival images or images from the Internet.

An exhaustive review of the literature on using prior
information for self-calibration and Euclidean reconstruc-
tion is beyond the scope of this paper. We will concentrate
on works which have somehow inspired the method we
propose, especially direct approaches giving a good first
estimate of camera and scene parameters. There is a large
variety of information which can be incorporated into a
3D modeling process. This can be simple knowledge of
camera intrinsic parameters or pose (stationarity, pure
translation, etc.) or of global 3D scene structure (calibration
patterns); it can also be information on scene elements such
as points, lines, and planes, as well as on high-level
primitives like cubes, prisms, cylinders, etc. Nonetheless,
whatever the information is, it can be used at any stage of
the 3D modeling process, including the initial calibration,
pose estimation, model reconstruction, or an additional
nonlinear adjustment of the initial estimate at each step.

Approaches based on calibration patterns. Classical
calibration approaches are based on known positions of
points in 3D space or known calibration patterns [2].
Unfortunately, such information relies on specific acquisi-
tion systems and is thus seldom available in general
situations. The use of prior knowledge on some intrinsic
parameters, i.e., self-calibration, offers the opportunity to
build more flexible systems.

Self-calibration. In standard self-calibration algorithms
[3], [4], [5], [6], 3D reconstruction is done in three steps,
recovering, in order, the projective, affine, and Euclidean
strata, the projective-affine step being considered as themost
nonlinear and, thus, the most difficult step. One of the main
problems is critical motion sequences, for which self-
calibration does not have a unique solution [7]. This problem
has beendealtwith by restraining the cameramotions [8], [9],
[10] or by incorporating prior knowledge on the camera [11]
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or on the scene. But, to get stable results for self-calibration, a
large number of images is usually necessary.

Structure and motion. The basic constraint is that back-
projection lines (planes) associated with corresponding
image points (lines) intersect in a single space point (line).
This observation allowsus to formulate thematching tensors,
which compactly describe two, three, and four view
geometry. When more views are accessible, it is necessary
to combine results computed from small subsets of images,
which decreases the accuracy of results. An overview of
tensor-based structure&motionmethods canbe found in [12].

Another category of approaches allows the simultaneous
recovery of cameras and 3D models via the factorization of
a measurement matrix of image points [13], [14], lines [15],
[16], or similar methods using planes in the scene [17], [18].
Factorization methods suffer from missing data, i.e., when a
primitive is not seen in all images, although some ways of
dealing with this problem have been proposed [13], [16].
Using only the above backprojection constraints, it is only
possible to recover the scene up to a projective or affine
transformation.

Incorporating Euclidean scene constraints. A large
variety of geometric constraints can disambiguate the
projective reconstruction to a Euclidean one and allow us
to decrease the number of images required to obtain a
satisfying reconstruction. Many of them can be easily
incorporated into a self-calibration framework. A common
constraint is given by vanishing points of mutually
orthogonal directions, as defined by known cubical struc-
tures [19], [20], [21] or by dominating scene directions [22].
Also, knowing the Euclidean structure of scene planes is
useful in this context, through rectified planes [23], maps
[24], or known plane-to-image homographies [25], [26]. It is
also possible to use multiple images of unknown planes, but
more images in general position are needed here [27], [28].

When cameras are calibrated, it is relatively easy to
reconstruct a 3D structure. However, and as mentioned
previously, using geometric constraints may dramatically
improve the reconstruction quality, especially when a single
or only a few images are considered [29]. Even simple
constraints can be very efficient, e.g., in [30], [31], vanishing
lines of planes and coplanarity constraints are used for
single image reconstruction. However, in general, dealing
with different types of scene objects and constraints is a
complicated problem. Some authors prefer to model the
scene by simple primitives like points, lines, and planes and
constraints between them, such as incidence, parallelism,
orthogonality, etc. Some direct approaches using the bi-
linear character of many useful constraints were proposed
in [32], [33], [34]. The results can be improved using
nonlinear methods applying penalty terms corresponding
to the constraints [35], constrained optimization techniques
[36], [37], [38], or a minimal scene parameterization [39],
[40]. Yet a different approach consists of high-level scene
descriptions using complex primitives like cubes, prisms,
cylinders, etc. [41], [42]. Recently, some effort has been
devoted to the automatic detection of such primitives [43].
All these methods ensure, by the strong inherent geometric
constraints, that the final models are visually correct.

Theproposed approach. In this paper,we address the first
part of the 3D modeling process—intrinsic and extrinsic
calibration (pose/motion estimation). In particular, we study
the use of a specific calibration primitive: the parallelepipeds.

Parallelepipeds are frequently present in man-made envir-
onments and they naturally encode the scene’s affine
structure. Any information about their Euclidean structure
(angles or ratios of edge lengths), possibly combined with
information about camera parameters, may allow us to
recover the entire scene’s Euclidean structure.Wepropose an
elegant formalism to incorporate such information, in which
camera parameters are dual to parallelepiped parameters,
i.e., any knowledge about one entity provides constraints on
the parameters of the others. Hence, the image of a known
parallelepiped defines the camera parameters and, recipro-
cally, a calibrated image of a parallelepiped defines its
Euclidean shape (up to size). In this paper, we synthesize
previousworkonparallelepipeds [44], [45] andproposemore
elegant and efficient approaches.

Camera and parallelepiped parameters are recovered in
two steps. First, a factorization-based approach is used to
compute their intrinsic andorientation (rotation) parameters.
The usual problems of factorization methods—missing data
and unknown scale factors—are dealt with rather easily.
Then, position and size parameters are recovered simulta-
neously using linear least squares. The use of well-con-
strained calibration primitives allows us to obtain good
calibration results even from as little as one image. However,
depending on the available constraints, singularities might
occur. These are described in a detailed catalogue.

Our calibration approach is conceptually close to self-
calibration, especially to methods that upgrade an affine
structure to Euclidean [5], [6] or methods considering
special camera motions [8], [9], [10]. The way Euclidean
information on a parallelepiped is used is also similar to
vanishing point-based methods [19], [20], [21], [22]. Some
properties of our algorithm are also common with plane-
based approaches [25], [26], [27], [28], [17], [18]. While more
flexible than standard calibration techniques, plane-based
approaches still require either Euclidean information or, for
self-calibration, many images in general position [27], or at
least one plane visible in all images [17]. In this sense, our
approach is a generalization of plane-based methods with
Euclidean information to three-dimensional parallelepipe-
dic patterns. Finally, our approach can be compared to
methods using complex primitives for scene representation.
However, unlike most such methods, we use the paralle-
lepiped parameters directly to solve the calibration pro-
blem, without requiring nonlinear optimization.

While the main contributions of the paper concern the
estimation of camera and parallelepiped parameters, we
show that the proposed method can be easily combined
with an approach for enhancing reconstructions with
primitives other than parallelepipeds [34]. The complete
system allows for both calibration and 3D model acquisition
from a small number of images with a reasonable amount of
user interaction.

The paper is organized as follows: Section 2 gives
definitions and some background. Section 3 introduces the
concept of camera-parallelepiped duality. Calibration using
parallelepipeds and a study on the singular configurations
are described in Sections 4 and 5. Sections 6 and 7 describe
our approaches for pose estimation and 3D reconstruction.
Experimental results are presented in Section 8.
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2 PRELIMINARIES

2.1 Camera Parameterization

We represent cameras using the pinhole model. The
projection from a 3D point P to a 2D image point p is
expressed by: p � MP, where M is a 3� 4 matrix, which
can be decomposed as:

M ¼ K R tð Þ:

The 3� 4 matrix ðR t Þ encapsulates the camera’s pose in
the world coordinate system or its extrinsic parameters: The
rotation matrix R represents its orientation and the vector
�R>t its position. The 3� 3 calibration matrix K or,
equivalently, ! � K�>K�1 represents the camera’s intrinsic
parameters:

K ¼
�u s u0
0 �v v0
0 0 1

0
@

1
A

! � K�>K�1 �
1 0 �u0

0 �2 ��2v0
�u0 ��2v0 �2�2

v þ u2
0 þ �2v20

0
@

1
A; ð1Þ

where �u and �v stand for the focal length, expressed in
horizontal and vertical pixel dimensions, s is a skew
parameter considered as equal to zero in the following,
ðu0; v0Þ are the pixel coordinates of the principal point, and
� ¼ �u

�v
is the camera’s aspect ratio. ! represents the IAC

(image of the absolute conic) and is commonly used to
express constraints on the intrinsic parameters. In the
following, the term camera axes will be used for the axes
of the camera coordinate system, i.e., the coordinate system
attached to the camera’s optical center, two of them being
parallel to pixel edges and the third one being orthogonal to
the image plane (the optical axis).

2.2 Parallelepiped Parameterization

A parallelepiped is defined by 12 parameters: six extrinsic
parameters describing its orientation and position and six
intrinsic parameters describing its Euclidean shape: three
dimension parameters (edge lengths l1; l2, and l3) and three
angles between edges ð�12; �23; �13Þ. These intrinsic para-
meters are illustrated in Fig. 1. The parallelepiped may be
represented compactly by a 4� 4 matrix N:

N ¼ S v
0> 1

� � l1 l2c12 l3c13 0
0 l2s12 l3

c23�c13c12
s12

0

0 0 l3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
12
�c2

13
s2
12
�ðc23�c13c12Þ2

s2
12

r
0

0 0 0 1

0
BBBB@

1
CCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
~LL

;

where S is a rotation matrix and v a vector, representing the
parallelepiped’s pose (extrinsic parameters). The 4� 4

matrix ~LL represents the parallelepiped’s shape (intrinsic
parameters) with: cij ¼ cos �ij, sij ¼ sin �ij, �ij 2 �0 �½, li > 0.

Thematrix ~LL represents the affine transformation between
a canonic cube and a parallelepiped with the given shape.
Concretely, a vertex ð�1;�1;�1; 1Þ> of the canonic cube is
mapped, by ~LL, to a vertex of our parallelepiped’s intrinsic

shape. Then, the pose part of N maps the vertices into the

world coordinate system.
Other parameterizations for ~LL may be chosen, but the

above one is attractive due to its upper triangular form. This

underlines the fact that ~LL plays the same role for the

parallelepiped as the calibration matrix K for a camera.
Analogous to a camera’s IAC ! is thematrix �, defined by:

� � L>L �
l21 l1l2 cos �12 l1l3 cos �13

l1l2 cos �12 l22 l2l3 cos �23
l1l3 cos �13 l2l3 cos �23 l23

0
@

1
A; ð2Þ

where L is the upper left 3� 3 matrix of ~LL.
Hence, there is a symmetry between the intrinsic

parameters of cameras and parallelepipeds ((1) and (2)).

The only difference is that, in some cases, the size of a

parallelepiped matters, as will be explained in the follow-

ing. As for cameras, the fact that K33 ¼ 1 allows us to fix the

scale factor in the relation ! � K�>K�1 and, thus, to extract

K uniquely from the IAC !, e.g., using Cholesky decom-

position. As for parallelepipeds, however, we have no such

constraint on its “calibration matrix” L, so the relation � �
L>L gives us a parallelepiped’s Euclidean shape, but not its

(absolute) size. This does not matter in general since we are

usually only interested in reconstructing a scene up to some

scale. However, when reconstructing several parallelepi-

peds, one needs to recover at least their relative sizes.
There are many possibilities to define the size of a

parallelepiped. We choose the following definition, moti-

vated by the equations underlying our calibration and

reconstruction algorithms below: The size of a parallele-

piped is defined as s ¼ ðdet LÞ1=3. This definition is actually

directly linked to the parallelepiped’s volume: s3 ¼ det L ¼
Vol=8 (the factor 8 arises since our canonic cube has an edge

length of 2).

3 PROJECTIONS OF PARALLELEPIPEDS

3.1 One Parallelepiped in a Single View

In this section, we introduce the concept of duality between

the intrinsic parameters of cameras and parallelepipeds.

Consider the projection of a parallelepiped’s vertices into a

camera. LetCi; i2½1::8� be the homogeneous coordinates of the

canonic cube’s vertices. Using results from Section 2.2, the

projection of the corresponding vertex in the image is:
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Fig. 1. Parameterization of a parallelepiped: 2li are the edge lengths, �ij

are the angles between nonparallel edges.



pi � MPi ¼ K R tð Þ S v
0> 1

� �
~LL|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

~XX

Ci: ð3Þ

The matrix ~XXwill be called the canonic projection matrix. It
represents a perspective projection that maps the vertices of
the canonic cube onto the image points of the parallelepi-
ped’s vertices. This is illustrated in Fig. 2. Given image
points for at least six vertices,1 the canonic projection matrix
can be computed [2], even without prior knowledge on
intrinisic or extrinisic parameters. Our calibration and pose
algorithms are based on the link between the canonic
projection matrix ~XX (which we suppose given from now on)
and the camera’s and parallelepiped’s intrinsic and ex-
trinsic parameters.

Let us consider this in more detail. First, we may identify
the relative pose between camera and parallelepiped in (3),
represented by the following 3� 4 matrix:

R tð Þ S v
0> 1

� �
¼ RS Rvþ tð Þ:

Second, let us consider the leading 3� 3 submatrix X of
the canonic projection matrix ~XX, which is given by:
X � K RSð ÞL.

Due to the orthogonality of the rotation matrices R and S,
it is simple to derive the following relation between the
camera’s IAC ! and the corresponding entity � of the
parallelepiped:

X>!X � �: ð4Þ

This equation establishes an interesting duality between
the intrinsic parameters of a camera and those of a
parallelepiped. It shows (unsurprisingly) that knowing the
parallelepiped’s shape � allows us to calibrate the camera.
Conversely, knowing the camera’s intrinsic parameters
allows us to compute the parallelepiped’s Euclidean shape,
also from a single image. Moreover, even partial informa-
tion about one set of intrinsic parameters allows us to form
equations on the other set [44].

In the next sections, we generalize the use of this duality
for calibration and pose estimation to the case of multiple
parallelepipeds seen in multiple cameras and to the use of
partial knowledge about the camera’s or parallelepiped’s
intrinsic parameters. Before doing so, let us describe a few

interesting links between our and other (self-) calibration
scenarios.

Classical self-calibration usually proceeds in two main
steps: First, aprojective reconstructionof the scene is obtained
from image correspondences. Then, this is upgraded to a
Euclidean reconstruction using the available prior knowl-
edge on intrinsic parameters. Sometimes, an intermediate
upgrade to an affine reconstruction is performed.

In our scenario, we have a 3D reconstruction of the scene
already from a single rather than multiple images, which is,
furthermore, of affine rather than projective nature:We know
that the observed parallelepiped’s shape is that of a cube, up
to some affine transformation. Analogously, our canonic
projection matrix is equal to the true one up to an affine
transformation. Hence, self-calibration in our scenario does
not need to recover the plane at infinity, which is known to be
the hardest part of self-calibration. Indeed, our calibration
method is somewhat similar to the affine-to-Euclidean
upgrade of stratified self-calibration approaches, e.g., [5], [6].

Similarities also exist with (self-) calibration approaches
based on special camera motions: Calibrating a rotating
camera [8], [9] is more or less equivalent to self-
calibrating a camera in general motion once the affine
structure is known. Other approaches recover the affine
structure by first performing pure translations and then
general motions [10], [46].

Our approach is similar to all these. In the following
sections, we show how it allows us to efficiently combine
the usual self-calibration constraints with constraints on
scene structure. This enables us to perform calibration (and
3D reconstruction) from very few images; one image may
actually be sufficient.

3.2 n Parallelepipeds in m Views

Let us now consider the general case where n parallelepi-
peds are seen by m cameras. Let ~XXik be the canonic
projection matrix associated with the projection of the
kth parallelepiped in the ith camera and �ik a scale factor
such that (3) can be written as a component-wise equality:

�ik
~XXik ¼ Ki Ri tið Þ Sk vk

0> 1

� �
~LLk: ð5Þ

We may gather these equations for all m cameras and n
parallelepipeds into the following single matrix equation:

�11
~XX11 � � � �1n

~XX1n

..

. . .
. ..

.

�m1
~XXm1 � � � �mn

~XXmn

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
X3m�4n

¼

K1 R1 t1ð Þ
..
.

Km Rm tmð Þ

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
M3m�4

S1 v1

0> 1

� �
~LL1 � � �

Sn vn

0> 1

� �
~LLn

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

S4�4n

:

ð6Þ

This equation naturally leads to the idea of a factoriza-
tion-based calibration algorithm, which will be developed
in Section 4. It is based on the following observation: The
matrix X contains all information that can be recovered
from the parallelepipeds’ image points alone (below, we
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1. In theory, five image points and one image direction are sufficient to
determine the 11 parameters of a projection matrix. Additional points make
the computation more stable.

Fig. 2. The projection of the canonic parallelepiped (cube) into the

image. Matrices K, L correspond to intrinsic parameters of camera and

parallelepiped and ðR; tÞ, ðS;vÞ correspond to extrinsic parameters of

camera and parallelepiped, respectively.



discuss the issue of computing the scale factors �ik). In
analogy with [13], we call it the measurement matrix. Since
the measurement matrix is the product of a “motion matrix”
M of four columns, with a “shape matrix” S of four rows,
its rank can be four at most (in the absence of noise).

We might aim at extracting intrinsic and extrinsic
parameters directly from a rank-4-factorization of X . One
step of factorization-based methods for structure and
motion recovery is to disambiguate the factorization’s
result: In general, for a rank-r-factorization, motion and
shape are recovered up to a transformation represented by
an r� r matrix (here, this would be a 3D projective
transformation). The ambiguity can be reduced using, e.g.,
constraints on intrinsic camera parameters (see more details
in Section 4). In our case, we observe that the 4� 4
subblocks of the shape matrix S are affine transformations.
We would have to include this constraint into the
disambiguation, but, nevertheless, the result would not, in
general, exactly satisfy the affine form of these subblocks.
We thus cut the problem into two steps, which allows us to
easily guarantee that the subblocks of the shape matrix will
be affine transformations. In the first step (Section 4), we
consider a “reduced measurement matrix” consisting of the
leading 3� 3 submatrices of the ~XXik. We extract intrinsic and
orientation parameters of our cameras and parallelepipeds
based on a rank-3-factorization and a disambiguation stage
using calibration and scene constraints. In the second step
(Section 6), we then estimate the position of cameras and
parallelepipeds, as well as the parallelepipeds’ size.

Just as a sidenote, we observe that, for two views i and j

and a parallelepiped k, the infinite homography between
the two views is given by the product XikX

�1
jk .

4 ESTIMATING INTRINSIC AND ORIENTATION

PARAMETERS BY FACTORIZATION

In this section, we concentrate on the computation of the
cameras’ and parallelepipeds’ intrinsic parameters and
orientation (rotation), based on (6) and the observations
concerning it, cf. the previous section. As mentioned, we
first restrict our attention to the leading 3� 3 submatrices of
the ~XXik, as in Section 3.1 for the establishment of the duality
between intrinsic parameters of cameras and parallelepi-
peds. We thus deal with the following subpart of (6):

�11X11 � � � �1nX1n

..

. . .
. ..

.

�m1Xm1 � � � �mnXmn

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
X0

3m�3n

¼
K1R1

..

.

KmRm

2
64

3
75

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
M0

3m�3

S1L1 � � � SnLn½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
S0
3�3n

:

ð7Þ

In the following, we describe the different steps of our
factorization-based method. We first deal with the problem
of missing data. Then, we describe how to compute the
scale factors �ik, needed to construct the measurement
matrix X0. The factorization itself is described in Section 4.3,
followed by the most important aspect: how to disambig-
uate the factorization’s result in order to extract intrinsic
and orientation parameters. A summary of these steps and
a discussion of minimal cases and singularities is provided
at the end of this section and in Section 5. The subsequent

computation of position parameters and parallelepiped size
is dealt with in Section 6.

4.1 Missing Data

As is usual with factorization approaches, our methodmight
suffer from the problem of missing data, i.e., missing Xik.
Indeed, in practice, the condition that all parallelepipeds are
seen in all views is usually not satisfied. However, each
missingmatrixXik can be deduced from others if there is one
camera j and one parallelepiped l such that Xjl, Xjk, and Xil

are known. The missing matrix can be computed using:

Xik � Xil ðXjlÞ�1 Xjk: ð8Þ

Several equations of this type can be used simultaneously to
increase the accuracy. Care has to be taken since (8) is
defined up to scale only. This problem can be circumvented
very simply though by normalizing all Xik to unit
determinant.

These observations motivate a simple recursive method2

to compute missing matrices Xik: At each iteration, we
compute the one for which most equations of type (8) are
available. Previously computed matrices Xik can be in-
volved at every successive iteration of this procedure.

4.2 Recovery of Scale Factors

The reducedmeasurementmatrixX0 in (7) is, in the absenceof
noise, of rank3, being theproduct of amatrix of three columns
and a matrix of three rows. This, however, only holds if a
correct set of scale factors �ik is used. For other problems,
these are often nontrivial to compute, see, e.g., [28], [14]. In
our case, however, this turns out to be rather simple.

Let us first write Ai ¼ KiRi and Bk ¼ SkLk. What we
know is that (in the absence of noise) there exist matrices
Ai; i ¼ 1::m and Bk; k ¼ 1::n such that: 8i; k : Xik � AiBk.
Since this equation is valid up to scale only, we also have:
8i; k : Xik � aiAið Þ bkBkð Þ for any nonzero scale factors ai; i ¼
1::m and bk; k ¼ 1::n. Consequently, this is also true for the
scale factors ai and bk that satisfy:

det ðaiAiÞ ¼ det ðbkBkÞ ¼ 1:

Note that we do not need to know these scale factors; it is
sufficient to know they exist!

Hence, there exist scale factors ai and bk with:

8i; k : Xik � aibkAiBk; ð9Þ

8i; k : det ðaibkAiBkÞ ¼ det ðaiAiÞ det ðbkBkÞ ¼ 1: ð10Þ

As for the sought for scale factors �ik, we use those that
give det ð�ikXikÞ ¼ 1. They are computed as:

�ik ¼ ðdetXikÞ�1=3:

Due to (9), we have �ikXik � aibkAiBk and, since the
determinants of both sides of this equation are equal (they
are both equal to 1, cf. the definition of �ik and (10)), the
equation not only holds up to scale, but component-wise:3

8i; k : �ikXik ¼ ðaiAiÞðbkBkÞ:
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This means that the measurement matrix in (7), with the

scale factors�ik as describedhere, is of rank 3: It is the product

of onematrix of three columns (the aiAi stackedon topof each

other) and one of three rows (the bkBk side-by-side).
In the following, we assume that the Xik are already

scaled to unit determinant, i.e., that �ik ¼ 1. Equation (7)

becomes:

X11 � � � X1n

..

. . .
. ..

.

Xm1 � � � Xmn

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
X0

3m�3n

¼
a1K1R1

..

.

amKmRm

2
64

3
75

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
M0

3m�3

b1S1L1 � � � bnSnLn½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
S0
3�3n

:

ð11Þ

The scale factors ai and bk do not matter for now; all that

counts is that they exist and that the measurement matrix X0

containing the normalized Xik is of rank 3 at most and can

thus be factorized as shown below.

4.3 Factorization

As usual, we use the SVD (Singular Value Decomposition)

to obtain the low-rank factorization of the measurement

matrix. Let the SVD of X0 be given as:

X0
3m�3n ¼ U3m�3n�3n�3nV

>
3n�3n:

The diagonal matrix � contains the singular values of X0:

�1 � �2 � � � � � �3n. In the absence of noise, X0 is of rank 3 at

most and �4 ¼ � � � ¼ �3n ¼ 0. If noise is present, X0 is of full

rank in general. Setting all singular values to zero, besides

the three largest ones, leads to the best rank-3 approxima-

tion of X0 (in the sense of the Frobenius norm).
In the following, we consider the rank-3 approximation

of X0 (for ease of notation, we denote this also as X0):

X0 ¼ U3m�3n diagð�1; �2; �3; 0; . . . ; 0Þ V>
3n�3n:

In the matrix product on the right, only columns of U and

rows of V> corresponding to nonzero �j contribute. Hence:

X0 ¼ U0
3m�3 diagð�1; �2; �3Þ V0>

� �
3�3n

;

where U0 (resp. V0) consists of the first three columns of U

(resp. V). Let us define U00 ¼ U0 diagð ffiffiffiffiffi
�1

p
;

ffiffiffiffiffi
�2

p
;

ffiffiffiffiffi
�3

p Þ and

V00 ¼ V0 diagð ffiffiffiffiffi
�1

p
;

ffiffiffiffiffi
�2

p
;

ffiffiffiffiffi
�3

p Þ. Thus, we have: X0 ¼ U00V00>.

This represents a decomposition of the measurement matrix

X0 into a product of a matrix of three columns (U00) with a

matrix of three rows (V00>). Note, however, that this

decomposition is not unique. For any nonsingular 3� 3

matrix T, the following is also a valid decomposition:

X0 ¼ U00T�1
	 


TV00>
� �

:

Making the link with (11), we obtain:

a1K1R1

..

.

amKmRm

2
64

3
75 b1S1L1 � � � bnSnLn½ � ¼ U00T�1

	 

TV00>

� �
:

ð12Þ

Let us decompose matrices U00 and V00 in 3� 3 subma-
trices: U00> ¼ ½U>

1 � � �U>
m� and V00> ¼ ½V>

1 � � �V>
n �. Equation

(12) thus becomes:

a1K1R1

..

.

amKmRm

2
664

3
775 b1S1L1 � � � bnSnLn½ � ¼

U1T
�1

..

.

UmT
�1

2
664

3
775 TV>

1 � � � TV>
n

� �
:

ð13Þ

How to estimate T is explained in Section 4.4. Once a
correct estimate is given, we can directly extract the matrices
Ai ¼ aiKiRi and Bk ¼ bkSkLk from which, in turn, the
individual rotation and calibrationmatrices can be recovered
by Cholesky or QR-decompositions. The Cholesky decom-
position of AiA

>
i , e.g., results in an upper triangular matrix

Mi ¼ aiKi. Based on the requirement Ki;33 ¼ 1, we can
compute the unknown scale factor ai as ai ¼ Mi;33. The
calibration matrix is finally obtained as4 Ki ¼ 1

ai
Mi.

As for the parallelepipeds, there is no constraint similar
to Ki;33 ¼ 1 on the entries of their calibration matrices Lk.
Hence, we can compute them only up to the unknown scale
factors bk. This means that we can compute the shape of each
parallelepiped, but not (yet) their size (or volume). In
Section 6, we explain how to compute their (relative) size.

We now briefly discuss the structure and geometric
signification of matrix T. Note that T actually represents the
nontranslational part of a 3D affine transformation (its
upper left 3� 3 submatrix). This is just another expression
of the previously mentioned fact that, due to the observa-
tion of parallelepipeds, we directly have an affine recon-
struction (of scene and cameras).

The matrix T can only be computed up to an arbitrary
rotation and scale: For any rotation matrix R and scale
factor s, T0 ¼ sRT cannot be distinguished from T in the
factorization since T0�1

T0 � T�1T. This ambiguity is natural
and expresses the fact that the global Euclidean reference
frame for the reconstruction of parallelepipeds and cameras
can be chosen arbitrarily. Without loss of generality, we
may thus assume that T is upper triangular. This highlights
the fact that our estimation problem has only five degrees of
freedom (six parameters for an upper triangular 3� 3
matrix minus one for the free scale), which can also be
explained in more geometric terms: As explained pre-
viously, our problem is somewhat equivalent to self-
calibration with known affine structure. The five degrees
of the problem can thus be interpreted as the coefficients of
the absolute conic on the plane at infinity.

4.4 Disambiguating the Factorization

We now deal with the estimation of the unknown
transformation T appearing in (13). As will be seen below
and as is often the case in self-calibration problems, it is
simpler to not directly estimate T, but the symmetric and
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4. In overconstrained situations, the computed calibration matrices will
not, in general, exactly satisfy the constraints used for their computation.
The best way of dealing with this would be a constrained nonlinear
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positive definite 3� 3 matrix Z defined as: Z ¼ T> T. (We
may observe that Z represents the absolute conic on the
plane at infinity.) Once Z is estimated, T may be extracted
from it using Cholesky decomposition. As described above,
T is defined up to a rotation and scale, so the upper
triangular Cholesky factor of Z can directly be used as the
estimate for T.

The matrix Z (and, thus, T) can be estimated in various
ways, using any information about the cameras or the
parallelepipeds, e.g., prior knowledge of the relative
positioning of some entities. Here, we concentrate on
exploiting prior information of the intrinsic parameters of
cameras and parallelepipeds. In the following, we consider
two types of information, first for cameras and then for
parallelepipeds:

. knowledge of the actual value of some intrinsic
parameter for some camera or parallelepiped,

. knowledge that two or more cameras (or parallele-
pipeds) have the same value for some intrinsic
parameter. We also sometimes speak of “constant”
intrinsic parameters.

4.4.1 Using Information on Camera Intrinsics

From (13), we have: aiKiRi ¼ UiT
�1. Due to the orthogon-

ality of Ri, we get:

a2i KiK
>
i|fflffl{zfflffl}

!�1
i

¼ Ui T
�1T�>|fflfflfflfflffl{zfflfflfflfflffl}
Z�1

U>
i :

Neglecting the unknown scale factor ai and taking the
inverse of both sides of the equation, we obtain (note that
the Ui are not orthogonal in general):

!i � U�>
i ZU�1

i : ð14Þ

We are now ready to formulate constraints on Z based on
information on the cameras’ intrinsics.

Known Values of Camera Intrinsics. Knowing the
aspect ratio and principal point coordinates of a camera i
and substituting !i according to (14) and (1), the following
linear constraints on Z can be written:

�2i U�>
i ZU�1

i

	 

11
� U�>

i ZU�1
i

	 

22

¼ 0

ui;0 U�>
i ZU�1

i

	 

11
þ U�>

i ZU�1
i

	 

13

¼ 0

vi;0 U�>
i ZU�1

i

	 

22
þ U�>

i ZU�1
i

	 

23

¼ 0:

A known value of the focal length �v can only be used to
formulate linear equations if all the other intrinsics are also
known. In such a fully calibrated case, other algorithms [25]
might be better suited, so we neglect that case in the
following.

Constant Camera Intrinsics. In the case when two
cameras i and j are known to have the same, yet unknown
value for one intrinsic parameter, we in general obtain
quadratic equations on Z. For example, the assumption of
equal aspect ratios leads to the quadratic equation:

U�>
i ZU�1

i

	 

11

U�>
j ZU�1

j

� �
22
¼ U�>

j ZU�1
j

� �
11

U�>
i ZU�1

i

	 

22
:

The situation is different if all intrinsic parameters of two
(ormore) views are known to be identical. In that case,we can
obtain linear equations instead of quadratic ones, as shown in

[8]: The matrices Ui are first scaled such as to have unit

determinant. Then, we can write the following component-

wise matrix equality between any pair ði; jÞ of views:

U�>
i ZU�1

i �U�>
j ZU�1

j ¼ 03�3:

This represents six linear equations on Z for each pair of

views, among which four are independent.

4.4.2 Information on Parallelepipeds

From (13), we have: bkSkLk ¼ TV>
k . Due to the orthogonality

of Sk, we get:

b2k L
>
k Lk|fflffl{zfflffl}
�k

¼ Vk T
>T|ffl{zffl}
Z

V>
k :

Neglecting the unknown factor bk:

�k � VkZV
>
k :

Knowledge of parallelepiped intrinsics can be used in

analogous ways as for camera parameters. For example,

suppose we know the length ratio of two parallelepiped

edges ruv ¼ lu
lv
. Referring to (2), we get the following linear

equation on Z:

r2k;uv�k;vv � �k;uu ¼ r2k;uv VkZV
>
k

	 

vv
� VkZV

>
k

	 

uu
¼ 0:

Similarly, the assumption that �uv is a right angle, i.e.,

cos �uv ¼ 0, also gives a linear equation:

�k;uv ¼ VkZV
>
k

	 

uv
¼ 0:

A known angle �uv that is not a right angle does not lead to a

linear, but a bilinear equation [44].
Like for cameras, quadratic equations may be derived

from assumptions about two or more parallelepipeds

having the same, yet unknown value for some intrinsic

parameter. Also, two parallelepipeds having the same

shape give a set of linear equations on Z, even if the

parallelepipeds are of different size. Equal size of paralle-

lepipeds gives an additional linear equation, but which

constrains relative pose rather than intrinsic parameters.
Currently, we only exploit constraints on individual

parallelepipeds (right angles and length ratios) since they

are easier to provide for the user.

4.5 Complete Algorithm

1. Estimate the canonical projection matrices ~XXik.
2. Compute missing Xik.
3. Normalize the Xik to unit determinant.
4. Construct the measurement matrix and compute

its SVD.
5. From the SVD, extract the matrices Ui and Vk.
6. Establish a linear equation system on Z based on

prior knowledge of intrinsic parameters of cameras
and parallelepipeds and solve it to least squares.

7. If Z is positive, definite extract T from Z using
Cholesky decomposition.

8. Extract the Ki;Ri;Lk; Sk from the UiT
�1 and the

TV>
k using, e.g., QR-decomposition. Note that, at

this stage, the Lk can only be recovered up to
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scale, i.e., the parallelepipeds’ (relative) sizes
remain undetermined.

This algorithm allows us to calibrate a set of cameras
using very little prior knowledge. Indeed, as mentioned in
this section, all constraints provided by knowledge of
cameras and parallelepipeds can be expressed in terms of
the five independent parameters of the matrix Z. Thus, to
calibrate the whole system, it is in general sufficient to
know values of a total of only five intrinsic parameters of
cameras or parallelepipeds. That is why, in practice, we
only use the associated linear equations. In most cases, they
are sufficient to find a unique solution. In some minimal
cases, when the available linear constraints are insufficient,
quadratic equations might be used to find a unique solution
or a finite set of solutions.

5 SINGULARITIES

Many calibration or self-calibration algorithms are subject
to more or less severe singularities, i.e., there exist situations
where the algorithm is bound to fail. Furthermore, even in
situations that are not exactly singular, but close to a
singularity, the results usually become very unstable. In this
section, we examine the singularities for the linear calibra-
tion algorithm described in Section 4.5. We separately study
the singularities for a parallelepiped being seen by one and
multiple cameras.

5.1 One Parallelepiped in a Single View

We have studied all possible combinations of a priori
knowledge, on both camera and parallelepiped intrinsic
parameters leading to linear equations (see Sections 4.1.1
and 4.4.2). We first formulate the meaning of a singularity
in terms of the ingredients of the calibration algorithm. The
existence of a singularity in our case means that (4) has
more than one solution for ! and � conforming to all
available a priori information, i.e., that there is at least one
solution different from the true one. It is easy to show that
the existence of a singularity does not depend on the
relative position of the camera and the parallelepiped, only
on the relative orientation and the a priori knowledge on
camera and parallelepiped intrinsic parameters. Proofs for
the following results are given in [47].

Table 1 explains the four considered cases of different
prior knowledge on camera intrinsics. Table 2 shows all
singularities for nearly all combinations of known camera
and parallelepiped parameters. Singularities are explained
in geometric terms by describing the relative orientation of
the parallelepiped with respect to the camera. In the
following paragraphs, we give a few comments on different
cases of prior knowledge on the parallelepiped. Several
singular situations that might occur in practice are illu-
strated in Fig. 3.

1. Three right angles, two length ratios (cases *-3-2 in
Table 2). In this case, the Euclidean structure of the
parallelepiped is completely given (up to scale) and
it can be used as a classical calibration object. There
are singularities proper to the use of a parallele-
piped, but, of course, the generic singularities
described in [48] apply here, too.

2. Three right angles, one length ratio (cases *-3-1). In
Table 2, u represents the direction of the parallele-
piped’s edge which is not “involved” in the known
length ratio.

3. Two right angles (cases *-2-*). Here, the parallelepiped
can be visualized as built around two rectangles
sharing an edge u. In Table 2, w is one of the edges
not parallel to u.

5.2 One Parallelepiped in Multiple Views

Two observations are useful to characterize the singularities

in the case when one parallelepiped is seen in multiple

images:
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TABLE 1
Structures of ! Depending on Prior Knowledge

TABLE 2
Singular Relative Orientation (One Parallelepided in One View)

for Various Combinations of Prior Knowledge

Cases are denoted X-Y-Z, where X 2 fA;B;C;Dg refers to Table 1 and
YðZÞ is the number of known right angles (length ratios). � means the
image plane.

Fig. 3. Examples of singular and nonsingular configurations for
calibration based on a parallelepiped with three right angles (the
house’s main body). Left: The parallelepiped’s vertical edge is parallel to
the camera’s y-axis; this configuration is singular if the camera aspect
ratio and principal point are not given (cf. cases B-3-0 and C-3-0 in
Table 2. Middle: The parallelepiped’s vertical edge is parallel to the
image plane; this configuration is singular if the camera’s principal point
is not given (case B-3-0 in Table 2). Right: A rotation of the camera as
shown here removes these singularities.



. The way the canonic parallelepiped projection

matrix ~XX is computed implies that there is only an

affine ambiguity in the calibration process. Thus, the

singularities of calibration of images viewing one

parallelepiped are equivalent to singularities of

generic self-calibration when the plane at infinity is

known.
. It is natural to suppose that the prior knowledge of

the intrinsic parameters is the same for all cameras
used, thus all matrices !i are assumed here to belong
to the same among the groups defined in Table 1.

These observations make it possible to adapt the studies on

critical motions for self-calibration. In particular, we use the

results presented in [49] for scenarios with a known plane at

infinity. Depending on the type of knowledge about the

camera (cf. Table 1), the following rotations are singular for

calibration:

A. Always critical with fewer than five cameras. Critical
motions for five or more cameras are hard to
describe.

B. Critical if the cameras’ optical axes point in at most
two different directions.

C. Critical if one axis of each camera is pointing in some
common direction.

D. Critical if the optical axes of all cameras point in the
same direction.

Results for the cases A, B, D were given in [49] and the

proof of case C is given in [47].

6 ESTIMATING POSITION AND SIZE

In this section, we propose an algorithm for the estimation

of the (relative) positions of the cameras and parallelepi-

peds, as well as the (relative) sizes of the parallelepipeds.

After Section 4, this concludes our complete method for

intrinsic and extrinsic calibration.
Consider (5):

�ik
~XXik ¼ Ki Ri tið Þ Sk vk

0> 1

� �
~LLk:

The leading 3� 3 subpart of the two sides of the equation

were used in Section 4 to compute the intrinsic camera

parameters Ki and the rotation matrices Ri and Sk. The

parallelepipeds’ intrinsic parameters Lk were computed up

to scale only, i.e., up to the “size” of the parallelepipeds.

Let us consider this in detail. In the following, we

suppose that the matrices ~XXik are already scaled such that

the submatrices Xik have unit determinant, as in Section 4,

i.e., �ik ¼ 1. Let �KKi and �LLk be the calibration matrices scaled

to unit determinant. We know all matrices in the following

equation: Xik ¼ �KKiRiSk�LLk.
What we don’t know is the size sk of the parallelepipeds.

Let us observe the following:

~LLk ¼ sk�LLk 0
0> 1

� �
�

�LLk 0
0> 1=sk

� �
:

We may now rewrite (5):

~XXik ¼ �KKi Ri tið Þ Sk vk

0> 1

� �
�LLk 0
0> 1=sk

� �
:

Let xik be the fourth column of ~XXik. We have the
following equation:

xik ¼ �KKi Ri tið Þ Sk vk

0> 1

� �
0

1=sk

� �
¼ 1

sk
�KKiðRivk þ tiÞ:

From this, we get an equation that is linear in all unknowns
(sk, ti, and vk):

skxik � �KKiRivk � �KKiti ¼ 0:

The unknowns can be computed using linear least
squares: minimizing the sum of the squared L2 norms of
the vectors on the left hand side of the above equation, over
all camera-parallelepiped pairs. The estimates for the sk, ti,
and vk are, of course, defined up to a single global scale.
Note that, at this stage, missing data are not an issue any
more, contrary to the computations in Section 4.

7 3D RECONSTRUCTION

The presented calibration approach is well adapted to
interactive 3D reconstruction from a few images. It has a
major advantage over other methods: simplicity. Indeed,
only a small amount of user interaction is needed for both
calibration and reconstruction: A few points must be picked
in the image to define the primitives’ image positions. It
thus seems to be an efficient and intuitive way to build
models from images of any type, in particular from images
taken from the Internet for which no information about the
camera is known. For the reconstruction of points not
belonging to the parallelepiped, we use an iterative
approach described in [34]. This approach is actually
independent from the calibration method, although it uses
the same input in the first step. It allows us to propagate the
information on points, lines, and planes defining the model.
All the accessible information is processed simultaneously.
Interestingly, it allows 3D models to be computed from
nonoverlapping photographs (see, e.g., Fig. 10).

The following section illustrates this approach with
results obtained by solving linear systems only. Note that,
in order to refine the results, nonlinear optimization, taking
into account prior information, might be applied.

8 EXPERIMENTAL RESULTS

8.1 Synthetic Data

The main goal of our experiments with synthetic data is to
study the performance of the calibration algorithm in the
proximity of singular configurations. In this paper, we only
report on experiments on the minimal case: One parallele-
piped seen in one camera. Additional experiments, evalu-
ating calibration results in the proximity of singular
positions with respect to different numbers of parallelepi-
peds, as well as different types of prior information, are
described in [47].

Tests were performed with synthetic 600� 400 images,
taken by a camera with the following intrinsic parameters:
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ð�u; �v; s; u0; v0Þ ¼ ð1; 000; 1; 000; 0; 300; 200Þ. Parallelepiped
parameters were varying over the different tests. The most
important parameter of the experiments is the relative
orientation parallelepiped-camera. For a given orientation,
six parallelepiped vertices were projected into the images
and random Gaussian noise was added to image points (for
the presented results, noise was of standard deviation
1 pixel). For a given setting (relative orientation, standard
deviation of noise, etc.), 100 such data sets were created
randomly and used as input for calibration. Calibration was
considered to have failed if any of the estimated matrices !
or �were not positive definite (in that case, K or L cannot be
retrieved). We give results by indicating the number of
failures, as well as median values for estimated parameters
(computed using valid calibration results only). Prior
information used was: The parallelepiped has only right
angles and known camera parameters were ðs; �Þ ¼ ð0; 1Þ
(i.e., case B-3-0 in Section 5). This is one of the minimal cases
for the calibration.

Tests were performed for different orientations of the
parallelepiped, as illustrated in Fig. 4. Orientation varies
continuously from that shown in Fig. 4a (x axes of
parallelepiped and camera are parallel) to that of Fig. 4c
(the y and z axes of the parallelepiped are parallel to the
image plane). The continuous rotation between the two
positions is parameterized by an angle ranging from 0�

(Fig. 4a) to 90� (Fig. 4c), see the horizontal axis of the graphs
in Fig. 5. According to Section 5, both extremal orientations
are singular. We also varied the size of the parallelepiped:
Maximal and minimal sizes are shown in Fig. 4a and Fig. 4d,
respectively.

The results of the calibration method described here are
compared to calibration based on vanishing points [19];
vanishing points were determined using the method [50]. In
the case tested here, both methods use the same constraints
(three right angles); the difference is that [19] uses
individually estimated vanishing points, whereas our
method, via the estimation of the canonical projection
matrix, accounts for the fact that the three vanishing points
of a parallelepiped are not fully independent.

Fig. 5 shows the number of successful calibrations, the
medianof estimatedvalues for�v, anderrorson theestimated
pose (medianof errors on the angleof the estimated rotational
part of pose). Results are shown with respect to the
orientation of the parallelepiped (horizontal axis of graphs,
see above) and its size (vertical axis, unit is coverage of image
by parallelepiped, from 5 percent to 50 percent).

Results are shown for both the parallelepiped-based
approach (first column) and the vanishing point approach

(second column). The effect of singular cases is clearly
visible in the upper two rows: Calibration often fails for
orientations within 10� of the singular ones. However, for
the intermediate range of orientations, the relative error of
calibration is smaller than 5 percent for both methods, when
the parallelepiped covers more than 20 percent of the
image. Results in case of successful calibration are slightly
better for the parallelepiped method.

8.2 Results on Real Scenes

We present 3D reconstruction results of our methods for
indoor and outdoor scenes. These examples correspond to
situations where automatic methods are bound to fail: Small
sets of images are used and occlusions are frequent. Each
reconstruction was performed in two steps: First, one or
more parallelepipeds were used to calibrate the intrinsic
and extrinsic camera parameters; second, scene points and
geometric constraints were used for the reconstruction (cf.
Section 7). Results from single as well as multiple images
are shown.

8.2.1 Kitchen Scene

Fig. 6a shows the original image used for the 3D reconstruc-
tion. The image was taken with a small focal length, leading,
therefore, to a slight optical distortion which was not
corrected here. Calibration was based on the cupboard in
the central part of the image.Note that the camerawas almost
frontoparallelwith respect to the cupboard and, thus, close to
a singular situation. Prior information used for calibration
was: right parallelepiped angles, zero camera skew, and
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Fig. 4. Parallelepiped orientations in the experiment. (a) Initial
orientation (x axes of parallelepiped and camera are parallel),
(b) intermediate orientation, (c) final orientation (the y and z axes of
the parallelepiped are parallel to the image plane), (d) minimal
parallelepiped size.

Fig. 5. Calibration results as a function of the size and relative camera-
parallelepiped rotation angle. The two columns correspond to paralle-
lepiped-based and vanishing point-based calibration, respectively. From
top to bottom, the graphs show: 1) the number of successful
calibrations, 2) median values of relative errors on the estimation of
�v, 3) median rotation errors.



principal point in the image center. The full model was
reconstructed using 29 points, constrained by two parallele-
pipeds (the cupboard and the wooden belt), three parallelo-
grams, andsixcollinearity andcoplanarity constraints. Fig. 6b
shows the reconstructedparallelepipedsaswell as thecamera
pose. Due to the fact that a single image was used, only the
shape of the parallelepipeds can be reconstructed at first, but
not their relative size. This was then done using additional
constraints such as coplanarity, which were also used to
reconstruct the positions of additional points. Fig. 6c shows
the complete texturedmodel rendered fromanewviewpoint.

8.2.2 Notre Dame Square Scene

In this section, we present reconstructions of the Notre

Dame Square in Grenoble. Here, radial image distortion

was corrected offline.
Reconstruction from one image. The image and the

calibration parallelepiped are shown in Fig. 7a. Prior
information used for calibration as: right parallelepiped
angles, zero camera skew, and principal point in the image
center. The final model is composed of 42 points, three
parallelepipeds, four parallelograms, and four lines and
planes. Rendered views of the model are shown in Fig. 7.

Reconstruction frommultiple images.The sequenceused
for the reconstruction is composed of 15 images whose sizes
vary from 768� 1; 024 to 960� 1; 280 pixels. Calibration was
based on three parallelepipeds (shown in Fig. 8a, Fig. 8b,
Fig. 8c, Fig. 8d). Prior information used was: right angles for
parallelepipeds 1 and 2, zero camera skew, unit aspect ratios

and centered principal points for all images. Parallelepiped 3
is relatively small in those imageswhere bothparallelepipeds
2 and 3 appear. Consequently, the estimation of its vertices is
unstable and, thus, information about its intrinsic parameters
was not used for calibration. Calibration was performed in
two steps. First, the proposed linear factorization approach
was applied. Second, the parameters of cameras and
parallelepipeds obtained from the previous step were
nonlinearly optimized by minimizing the reprojection error
of vertices in a bundle adjustment.

Then, scene elements were added and reconstructed so
that the final model is composed of 194 points, 19 planes,
and 25 lines. The mean reprojection error over all the model
points was about 8 pixels (only linear methods were used
for reconstruction). As expected, the largest errors occurred
in images calibrated using parallelepiped 3.

For comparison, an unconstrained bundle adjustment,
using the Levenberg-Marquardt optimization method, was
performed over all the model points and the camera focal
lengths. This reduced the reprojection error to 2 pixels. It
did not, however, reduce the small artifacts occurring in the
final model.

The calibration primitives and cameras reconstructed
using the factorization method, the parallelepiped-based
nonliner optimization, and the point-based nonlinear
optimization are shown, respectively, in Fig. 8e, Fig. 8f,
Fig. 8g. Rendered views of the model reconstructed using
the parallelepiped-based calibration are shown in Fig. 8h
and Fig. 8j.
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Fig. 6. Kitchen scene: (a) The original image, (b) the modeled parallelepipeds and camera pose, (c) textured model seen from a different viewpoint.

Fig. 7. Notre Dame square scene: (a) The original image, (b) and (c) screen-shots of the model obtained using the image on the left only.



8.2.3 Kio Towers

Reconstruction was based on three images and two
calibration primitives. One of the images used for the
reconstruction is shown in Fig. 9a. Information used for
calibration was: two right angles in each tower, zero camera
skew, unit aspect ratio, and centered principal point. The
reconstructed cameras and primitives are shown in Fig. 9.

8.2.4 Opposite Viewpoints Scene

Fig. 10 shows the reconstruction of a modern building from
two images taken from completely opposite viewpoints.
The parallelepiped used for calibration and the estimated
cameras’ positions are shown in the two original images
(Fig. 10a and Fig. 10b). In the first image, intersections of

lines were computed to obtain the six points required to
define a parallelepiped (see Fig. 10a). The parallelepiped
and the cameras reconstructed by the factorization algo-
rithm are shown in Fig. 10c. New viewpoints of the whole
model, composed of 32 points, 13 parallelograms, and six
planes, are shown in Fig. 10d, Fig. 10e, and Fig. 10f.

9 CONCLUSION

We have presented an approach for calibration, pose
estimation, and 3D model acquisition from several uncali-
brated images based on user-provided geometric con-
straints on the scene. Useful constraints, such as
parallelism, coplanarity, and right angles, can often be
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Fig. 8. Notre Dame Square scene: (a)-(d) Four images from the 15 used for the reconstruction. Parallelepipeds used for the reconstruction are

marked in white. (e) Cameras and parallelepipeds as estimated by the proposed linear factorization method. (f) Camera and parallelepiped

parameters after nonlinear optimization. (g) Cameras and 194 model points optimized by an unconstrained nonlinear method. (h)-(j) Synthetic

viewpoints of the textured model.

Fig. 9. Kio towers in Madrid: (a) The original image; (b) and (c) reconstructed model and camera poses.



nicely modeled via parallelepipeds. Especially, this allows

us to couple together constraints between several neighbor-

ing scene primitives (points, lines, planes), which poten-

tially brings about higher stability than only using

constraints between pairs of primitives. The projections of

parallelepipeds already encode the affine structure of the

scene. Metric information (length ratios and angles) is then

combined with prior information on camera parameters in a

self-calibration type approach, performing complete cali-

bration and pose estimation. This is formulated in a

factorization framework. The usual problems of missing

data and unknown scale factors are dealt with relatively

easily and a satisfying solution can already be obtained with

a small number of images and correspondences (starting

from four correspondences per image pair or six per image

and parallelepiped).
A detailed study on singular cases of this approach is

also presented: Singularities are derived theoretically and

the impact on the method’s performance due to the

proximity to singular configurations is shown by simulated

experiments. Experiments with real images show that our

calibration approach gives excellent initial results for

general 3D model reconstruction methods.
We believe that an approach such as the one presented

here is a useful tool for easily calibrating cameras using

images of unknown though constrained scenes. Also, it

allows us to efficiently obtain models of the global structure

of scenes (including camera pose), which are good starting
points for more automatic reconstruction methods.
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