
Focal length calibration from two views:
method and analysis of singular cases

P. Sturma, Z.L. Chengb,*,1, P.C.Y. Chenc,*, A.N. Poob
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Abstract

We consider the problem of estimating the focal length of a camera from two views while
the focal length is not varied during the motion of the camera. An approach based on Kru-
ppa�s equations is proposed. Specifically, we derive two linear and one quadratic equations
to solve the problem. Although the three equations are interdependent in general, each one
may be singular for different configurations. We study in detail the generic singularities of
the problem and the actual singularities of the individual calibration equations. Results of
our experiments using synthetic and real data underline the effect that singular configurations
may have on self-calibration. However, these results are stable once the singularities are
avoided.
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1. Introduction

Camera self-calibration has been studied for various scenarios. In the original sce-
nario [3], the case of a camera with constant but completely unknown intrinsic
parameters is considered. Since then, this has been extended to cases where all but
one of the intrinsic parameters may be varying [16,12]. Reports on recent advances
and general overviews of the topic can be found in [11,4].
In parallel to the proposition of new algorithms, research has been conducted on

‘‘critical motions,’’ where camera configurations or trajectories will render self-cali-
bration impossible in theory and unstable in practice, see e.g. [1,13,14,18,19,21,23].
In this paper, we consider what may be the simplest self-calibration scenario:

two views of an unknown static scene are taken by a camera with constant param-
eters, with the assumption that all intrinsic parameters except the focal length are
known. Although very simple, we believe that this is a very useful scenario in prac-
tice. It has been shown that it is even possible to calibrate a varying focal length
from two views [6]. Simple algorithms for this purpose were proposed in
[1,2,15,16]. One of the drawbacks of this scenario is that the problem is unsolvable
whenever the optical axes of the two views are coplanar [14,15,21], which is always
approximately the case for stereo systems. Other less likely critical configurations
are also described in [14,15,21].
In this paper, we show that the assumption of a constant focal length reduces the

number of critical configurations. The generic critical configurations (which we will
also refer to as singularities or degeneracies) of the problem are given: the problem is
unsolvable whenever the optical axes of the two views are parallel or if they intersect
at a finite point equidistant from both optical centers.
We show that two linear and one quadratic equations can be derived from the sin-

gular value decomposition (SVD) of the fundamental matrix. All critical configura-
tions for the individual equations are then revealed in detail. Especially, it is shown
that the quadratic equation degenerates only in the generic cases, or in some cases
when the focal length is equal to ±1, whereas the linear equations� critical configu-
rations are the same as for the above problem of estimating a varying focal length.
We believe that such a study of critical configurations is important, since it indi-

cates which configurations to avoid in general, and explains why certain algorithms
may still fail (see e.g., a study on Kruppa equations [19]).
The performance of the calibration equations is evaluated using synthetic and real

data. In both cases, we are interested in investigating the camera setups close to crit-
ical configurations. As for the real images, we show that, when the critical configu-
rations are avoided, the results are of acceptable accuracy and stability.
This paper is an extended version of [20], and contains more experimental results

and a more in-depth theoretical study.
Organization. The problem is formulated in Section 2 and the calibration equa-

tions are derived in Section 3. Generic and equation-specific singularities are summa-
rized in Sections 4 and 5. Experimental results are provided in Section 6 and the
paper is concluded in Section 7. The appendices contain all proofs for the equa-
tion-specific singularities, organized in several sections in a logical sequence.
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Notations. In this paper, matrices are represented in sans serif font (e.g., K), vec-
tors in bold face (e.g., q), and scalars in italics. Coefficients of a matrix U (respec-
tively, a vector v) are denoted by Uij (respectively, vi). Equality of matrices or
vectors, up to scale, is denoted by �. For any vector v, [v]· represents the skew-sym-
metric matrix associated with the cross product, i.e., v · w = [v]·w. Transposition of
a vector v is denoted as vT, and the inverse of the transpose of a matrix A as A�T. In
complex equations, we often use the shorthand notations ca = cosa, sa = sina, and
ta = tana.

2. Problem formulation

Throughoutthispaper,weuseperspectiveprojectionasthecameramodel,withthefol-
lowing intrinsic parameters: the focal length f, the aspect ratio s, and the principal point
(u0,v0).A3DpointQ is projected toan imagepointqvia

q � PQ � KRðI� tÞQ;

where the rotation matrix R and the vector t represent the camera�s orientation and
position, respectively. The calibration matrix K is defined as

K ¼
sf 0 u0
0 f v0
0 0 1

0
B@

1
CA:

In the following, assume that two images of a static scene are available and that a
projective reconstruction is possible or, equivalently, that the fundamental matrix
can be computed. Without loss of generality, assume that the first camera is located
at the origin and that its rotation matrix is the identity matrix. With R and t being the
extrinsic and K0 the intrinsic parameters of the second camera, the fundamental ma-
trix of two images is given by [11]

F � K0�TR½t�	K
�1:

We assume that the aspect ratio and the principal point are known for both images
and that their focal lengths are identical. We can thus move from a completely
uncalibrated space to a ‘‘semi-calibrated’’ one, by computing an intermediate be-
tween the fundamental matrix and the essential matrix (R[t]· in the above
equation)

G �
s0 0 0

0 1 0

u00 v00 1

0
B@

1
CAF

s 0 u0
0 1 v0
0 0 1

0
B@

1
CA �

1 0 0

0 1 0

0 0 f

0
B@

1
CAR½t�	

1 0 0

0 1 0

0 0 f

0
B@

1
CA: ð1Þ

We call G the semi-calibrated fundamental matrix.
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3. Calibration equations

Let the singular value decomposition [5] of G be given by

G ¼ URVT;

with R = diag (a,b, 0) being the diagonal matrix of singular values (a,b > 0) and U
and V orthogonal matrices. We denote by ui and vj the ith and jth column of U
and V, respectively. Note that the second epipole e0 of G is its left null space, i.e.,
e0 � u3. It can be shown [9,23] that Kruppa�s equations can be reinterpreted by the
following relationship in terms of fundamental matrix and the epipole:

G

f 2 0 0

0 f 2 0

0 0 1

0
B@

1
CAGT � ½e0�	

f 2 0 0

0 f 2 0

0 0 1

0
B@

1
CA½e0�	:

In terms of the SVD of G, this can be written as

URVT
f 2 0 0

0 f 2 0

0 0 1

0
B@

1
CAVRUT � ½u3�	

f 2 0 0

0 f 2 0

0 0 1

0
B@

1
CA½u3�	:

Multiplying the equation by UT from the left and U from the right gives, due to the
orthogonality of U

RVT
f 2 0 0

0 f 2 0

0 0 1

0
B@

1
CAVR �

uT1

uT2

uT3

0
B@

1
CA½u3�	

f 2 0 0

0 f 2 0

0 0 1

0
B@

1
CA½u3�	 u1 u2 u3ð Þ

�
uT2

�uT1

0T

0
B@

1
CA f 2 0 0

0 f 2 0

0 0 1

0
B@

1
CA u2 �u1 0ð Þ:

The last row and the last column of this matrix equation are zero vectors, so we con-
centrate on the upper left 2 · 2 part of the equation

avT1
bvT2

� � f 2 0 0

0 f 2 0

0 0 1

0
B@

1
CA av1 bv2ð Þ �

uT2

�uT1

� � f 2 0 0

0 f 2 0

0 0 1

0
B@

1
CA u2 �u1ð Þ:

Making use of the fact that the vectors v1, etc., have unit norm, we can further sim-
plify the above equation to obtain

a2ðf 2 þ V 231ð1� f 2ÞÞ abV 31V 32ð1� f 2Þ
abV 31V 32ð1� f 2Þ b2ðf 2 þ V 232ð1� f 2ÞÞ

 !

� f 2 þ U 2
32ð1� f 2Þ �U 31U 32ð1� f 2Þ

�U 31U 32ð1� f 2Þ f 2 þ U 2
31ð1� f 2Þ

 !
:
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The equality (up to scale) of these two symmetric matrices gives rise to three individ-
ual quadratic equations in f 2 (by forming the cross-product of the vectors containing
the three different coefficients of each matrix). Two of these have the trivial solution2

f 2 = 1. Factoring this out, we thus obtain two linear equations and a quadratic one:

f 2 aU 31U 32ð1� V 231Þ þ bV 31V 32ð1� U 2
32Þ

� �
þ U 32V 31 aU 31V 31 þ bU 32V 32ð Þ ¼ 0;

ð2Þ

f 2 aV 31V 32ð1� U 2
31Þ þ bU 31U 32ð1� V 232Þ

� �
þ U 31V 32 aU 31V 31 þ bU 32V 32ð Þ ¼ 0;

ð3Þ

f 4 a2ð1� U 2
31Þð1� V 231Þ � b2ð1� U 2

32Þð1� V 232Þ
� �
þ f 2 a2ðU 2

31 þ V 231 � 2U 2
31V

2
31Þ � b2ðU 2

32 þ V 232 � 2U 2
32V

2
32Þ

� �
þ a2U 2

31V
2
31 � b2U 2

32V
2
32

� �
¼ 0: ð4Þ

These are our self-calibration equations. They are of course algebraically dependent,
but we will see in the following sections that they may be singular in different
conditions.

3.1. Calibration algorithm

A simple calibration algorithm can be formulated as follows:

(1) Estimate the fundamental matrix between the two views (algorithms with good
performance are given in [22]).

(2) ‘‘Undo’’ the known intrinsic parameters, as shown in Eq. (1).
(3) Compute the SVD of G and extract the coefficients U31, U32, V31, and V32, as well
as the non-zero singular values a and b.

(4) Construct and solve any of the Eqs. (2)–(4). In practice, we only solve the qua-
dratic equation. The spurious solution can either be ruled out using the linear
equations, or usually by simply taking the solution closest to a reasonable guess
(in simulations, the spurious solution was always observed to be far off the true
one).

(5) Optionally, the result can be improved by bundle adjustment, after having esti-
mated the relative pose of the cameras.

3.2. On standardization

It is often advisable to work in ‘‘standardized’’ image coordinates [8], which is
usually achieved by translating and scaling image coordinates appropriately. The
transformation applied in step (2) of the above algorithm, mainly amounts to such

2 The case where the true squared focal length equals 1, is discussed in Appendix D; this might occur if
working in standardized coordinates.
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a translation, and one might also apply an additional scaling. Usually, the range of
feasible focal lengths is well known, and one might apply a scaling with the inverse of
a feasible focal length value f0 (standardization based on image point coordinates as
in [8] amounts usually to such a scaling). The semi-calibrated fundamental matrix
would be transformed according to

f0 0 0

0 f0 0

0 0 1

0
B@

1
CAG

f0 0 0

0 f0 0

0 0 1

0
B@

1
CA: ð5Þ

The rest of the algorithm will be the same, except that the estimated focal length, has
to be multiplied by f0 at the end.
In Section 5 and in the appendix, we show that if f0 happens to be equal

to the true focal length, then the calibration equations may become degener-
ate. Thus, with f0 close to the true focal length, one may expect an instable
focal length estimation. In Section 6.1.4, this is shown to occur in some sit-
uations. On the other hand, when applying no such scaling, instabilities were
observed in other situations. A rule of thumb that we apply in practice is
thus to apply a scaling by a value f0 significantly larger than the maximum
expected focal length. This (admittedly ad hoc) procedure gave always good
performance.

4. Generic singularities

Before discussing singularities associated with the above calibration equations, we
describe the generic singularities of the underlying problem, i.e., those that cannot be
overcome by any algorithm. They can be obtained rather directly by specializing the
results obtained for varying focal lengths [14,15,17,21].
The only critical configurations for the (self-) calibration of a constant focal

length from two views are:

� the optical axes are parallel to each other, or
� the optical axes intersect at a finite point and the optical centers are equidis-
tant from this point. We refer to this configuration as the equidistance config-
uration. We may consider that it subsumes the case of parallel optical axes:
although the optical axes intersect at a point at infinity, we may consider that
the intersection point is equidistant from the optical centers (at infinite
distance).

In both these cases, there is an infinite number of solutions for f 2.
Kahl and Triggs [13] have derived critical configurations. However, their re-

sults are not as clearly stated as above, and seem slightly incomplete. For exam-
ple, their ‘‘turntable’’ rotation about the intersection point of the optical axes
cannot produce all possible cyclotorsions of the two cameras, i.e., rotations about
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their optical axes (which do not affect the self-calibration problem discussed in
this paper).
Coplanarity of the optical axes is a necessary condition for a singular configura-

tion with equal focal lengths, whereas it is already sufficient if two different focal
lengths have to be estimated [14,15,17,21]. We will see in the following section that
the quadratic Eq. (4) is nearly only degenerate in the generic singular cases (with the
exception of f = ±1). On the other hand, the linear equations are degenerate when
the two optical axes are coplanar, and in a particular case of little practical
importance.
The stability of calibration in near-degenerate situations should be better for the

equal focal length case.

5. Singularities of the calibration equations

It is useful to examine the singularities of the above calibration equations. Here
we will determine under what conditions the individual equations become singular.
This will allow us to see if they suffer from non-generic singularities and possibly to
determine which equation to use under what condition, or to determine a single
equation that should always be used.
The equations are said to be singular if they lead to invalid solutions. Such solu-

tions may arise when there is an infinite number of choices for the coefficients of
the equations� unknowns, or when the coefficients are equal to zero. If the SVD of
G is unique (up to sign or swapping the columns of U and V and corresponding
singular values), the forms of (4), (2), and (3) are unique. Otherwise, there may
be invalid solutions. In the absence of noise, the true squared focal length is nec-
essarily a solution of the equations. For the quadratic equation, there is in general
a second, spurious solution. In most cases, this is a negative value and can thus be
discarded (since we are looking for the squared focal length). In some cases, how-
ever, the equations may have an infinite number of solutions: for certain singular
relative camera poses, all coefficients of our polynomial equations vanish, implying
an infinite number of solutions for f. In the following, all singular relative camera
poses are summarized. Proofs for the following statements are given in the
appendices.
All three equations vanish of course in the generic singular conditions given in

Section 4, i.e., their coefficients all become zero here. For the quadratic equation,
there are, in general, no further singularities (unlike the general Kruppa equations
that are subject to non-generic singularities). The only exception occurs when the
true focal length equals ±1, which means that the semi-calibrated fundamental ma-
trix is a fully calibrated fundamental matrix, i.e., an essential matrix. This can hap-
pen if the fundamental matrix is expressed in perfectly standardized coordinates,
meaning that the coordinate scaling recommended in [8] happens to be done by
the inverse of the focal length. The essential matrix has two equal non-zero singular
values, which means that its SVD is not unique: there is a one-degree-of-freedom
family of possible SVDs. It is shown in Appendix D.2 that, depending on which
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of the ambiguous SVDs one happens to compute in practice,3 the quadratic equa-
tion�s coefficients may vanish, even for a camera configuration that is generically
non-singular. We show in Appendix D.2 that only a finite number, among the infi-
nite number of possible SVDs, cause such a singularity. It is thus unlikely to encoun-
ter exactly such a case. However, when working in standardized coordinates (or,
when scaling with approximately the true inverse focal length), one may get close en-
ough, in which case noise in the data may create instabilities. This effect is studied
using simulations, cf. Section 6.1.4, and conclusions are stated above in Section 3.2.
For the linear equations, there is degeneracy in two cases. The first case is when

the optical axes are coplanar. The other case is best explained as follows. The family
of epipolar planes consists of the pencil of planes that contain the cameras� baseline,
i.e., the line joining the two optical centers. We define a principal epipolar plane asso-
ciated with a camera as the epipolar plane that contains its optical axis, cf. the left
part of Fig. 1. This is uniquely defined unless the optical axis coincides with the base-
line, in which case, at least one camera looks straight at the other one. The non-ge-
neric singularities of the two linear calibration equations can be described, using the
principal epipolar planes of the two cameras, in the following scenarios:

� Neither of the two principal epipolar planes is uniquely defined. This means that
the two optical axes are identical, which implies of course that they are parallel
(and coplanar). This is a generic singular case, and naturally all three equations
become degenerate.

� One of the principal epipolar planes is not uniquely defined. This is a special case
of coplanar optical axes. The linear equations degenerate, whereas the quadratic
one does not in general.

Fig. 1. Example of a singular case for the linear equations when the optical axes are not coplanar. (Left)
The notion of principal epipolar plane is illustrated (plane spanned by the optical centers and one optical
axis). (Right) If the optical axis of the second camera lies anywhere in the plane P, which is orthogonal to
the first camera�s principal epipolar plane, then the linear equations become degenerate. In that case the
two principal epipolar planes are orthogonal to one another (unless the optical axis points towards the first
camera�s optical center, in which case the principal epipolar plane of the second camera is not defined).

3 This depends on the implementation used for SVD computation and the outcome is possibly non-
deterministic.
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� The principal epipolar planes are identical. This means that the optical axes are
coplanar. The linear equations degenerate. The quadratic equation degenerates
only if, in addition, the equidistance configuration is present. Otherwise, its spu-
rious solution is always zero (cf. Section E.3), i.e., the true solution can be
obtained without ambiguity.

� The principal epipolar planes are orthogonal to each other. In this case, the linear
equations degenerate. The quadratic equation does not degenerate, and its spurious
solution is always negative or zero (cf. Section F.2), i.e., the true solution can be
obtained without ambiguity. This situation is illustrated in the right part of Fig. 1.

Summary. The quadratic equation is degenerate practically only in generic singu-
lar configurations. In addition, whenever the linear equations degenerate in generic
non-singular configurations, the quadratic one gives a unique admissible solution for
the squared focal length.
It is interesting to note that the non-generic singularities for the linear equations

(coplanar optical axes and orthogonal principal epipolar planes) correspond to gen-
eric singular camera configurations for the case of different focal lengths
[14,15,17,21].

6. Experimental results

We conducted various experiments with our algorithm, to evaluate its perfor-
mance with respect to several factors. Specifically, we studied its behavior in the
proximity of singular configurations. This was done systematically using both simu-
lated data and real data to give some intuition on how much effort has to be spent in
avoiding singularities in practice. We also evaluated the performance with respect to
the level of noise in the data and with respect to errors in the assumption of the loca-
tion of the principal point. Experiments with real images were carried out for images
of a calibration grid and also for images of a few generic scenes.

6.1. Simulated data

We conducted simulated experiments to assess the sensitivity of the calibration
equations in close-to-singular situations. Fig. 2 shows the simulated scenarios. The
starting position of the cameras is depicted on the left. It is the typical stereo situa-
tion, with symmetric vergence angles a. This situation is singular: the optical axes are
coplanar and the optical centers are equidistant from the intersection point of the
optical axes.
In the first scenario, the second camera rotates away from the plane spanned by

the initial position of the optical axes, by an angle between 0� and 5� (‘‘elevation an-
gle’’). In Fig. 2, this rotation would be towards the reader.
In the second scenario (shown on the right of Fig. 2), the second camera moves

along its optical axis. The optical axes stay coplanar, but the distances of the optical
centers to the intersection point of the optical axes are no longer equal. Hence, the
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scenario is not singular any more (generically, and for the quadratic equation), be-
sides for the case of a zero vergence angle (parallel optical axes). The baseline of
the system is b = 1000 U, and the displacement of the second camera is by
d = �250,�200, . . . , 250 U.
For both scenarios, experiments are done with different vergence angles, with a

between 0� (parallel optical axes in the initial position) and 30�. Three dimensional
scene points are created randomly as follows: their coordinates are drawn from a
uniform distribution inside a rectangular volume in front of the cameras, whose
depth is 10 times the baseline. Only points inside the field of view of both cameras
are used. Cameras are simulated with a focal length of 1000 pixels and a field of view
of 28.7�, corresponding to images of size 512 · 512. By default, 100 points are used in
each experiment, unless otherwise stated. The 3D points are projected to the images,
and centered Gaussian noise (with a standard deviation between 0 and 1 pixels), is
added to the image point coordinates. These image points are the input to the
algorithm.
The following figures show mainly results for the quadratic equation. Results for

the linear equations are not shown here, however, they are discussed in the text. Dis-
played are the median values of the relative errors on the focal length (ratio of the
difference between true and estimated focal length, and the true focal length); each
data point in the graphs is the result of 1000 random experiments. In all simulated
experiments, the 8-point method of [8] is used to compute the fundamental matrix,
i.e., no non-linear optimization was done.

6.1.1. First scenario: off-plane rotation
Fig. 3 shows results for this scenario. The upper left part is relative to a zero ver-

gence angle (i.e., with an elevation angle of 0�, the optical axes are parallel and the con-
figuration is singular), and the upper right part is relative to a vergence angle of 5�. For
zero vergence, it can be seen that even for a 3� rotation off the base plane, the errors are
below 10% for realistic noise levels. Slight vergence of the cameras significantly im-
proves the results (compare the upper right with the upper left part of Fig. 3).

Fig. 2. Simulation scenarios. Shown are the optical centers and optical axes. (Left) Initial camera pose; b is
the distance between the optical centers and a the vergence angle of the optical axes. (Right) Second
simulation scenario; the second camera is moved along its optical axis by the distance d.
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In the lower part of Fig. 3, the elevation angle is kept fixed to 2�, to illustrate the
influence of the vergence angle a. It is intuitive that with a vergence angle of 0�, the
configuration is ‘‘closer’’ to the degenerate situation of parallel optical axes, thus
the focal length estimation less stable, compared to larger vergence angles. This is
reflected in the graph: the error in the estimated focal length decreases with increas-
ing vergence angle, although above 25� vergence, there is no further significant
improvement.
It is worthy to note that the linear equations gave nearly identical results to the

quadratic one in this scenario. Since two linear equations are available, the average
of their results is taken as estimated focal length, unless one of the two gave a neg-
ative solution for f 2, in which case only the solution of the other equation was used
of course.

6.1.2. Second scenario: displacement of the second camera
Fig. 4 shows results for the second scenario. The upper part of the figure shows

the influence of the vergence angle for a fixed, relatively small displacement (5% of
the baseline) of the second camera. For a vergence angle of 0�, the optical axes

Fig. 3. First scenario. (Top) Results are shown for different elevation angles (one curve per elevation
angle, from 0� to 5�, cf. the graphs� legends). The curves for 0� elevation are outside the graphs (this
situation is singular, and the results reflect this). (Upper left) Vergence fixed to 0�. (Upper right) Vergence
fixed to 5�. (Bottom) Elevation angle fixed to 2�, results shown for different vergence angles (one curve per
vergence angle, 0�, 5�, . . . , 30�, cf. legend).
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are parallel and the situation remains singular for any displacement, which is re-
flected by the fact that the corresponding curve is outside the graph. The figure
shows that close to 0� vergence, the results are heavily affected by the near-singular-
ity and noise, but they stabilize with increasing vergence angle. This is shown by the
error on the focal length, which decreases significantly with increasing vergence angle
(upper left part of Fig. 4), as well as by the decreasing failure rate (upper right). Fail-
ure was declared whenever the quadratic equation did not admit a positive solution.
The lower part of Fig. 4 shows the results with respect to varying displacement,

for a fixed vergence angle of 10�. The curve for zero displacement is outside the
graph (this corresponds to the singular equidistance configuration). With increasing
displacement, the performance increases as expected, both in terms of relative error
on the estimated focal length and failure rate. The graphs for displacements towards
the scene (negative d) are not plotted in the lower left part of Fig. 4, for the sake of
clarity; note that the graph for a value of �d is very similar to that for d.
As for the linear equations, this scenario is singular (coplanar optical axes). This is

reflected by experimental results (not shown here), where relative errors are some-
times above 100%, and nearly always above 70% (besides a high failure rate).

Fig. 4. Second scenario. (Top) Fixed displacement d = �50. (Upper left) Relative errors on estimated
focal length for different vergence angles. (Upper right) Failure rates (see text) for a noise level of 0.6 pixels
and different vergence angles. (Bottom) Fixed vergence angle of 10�. (Lower left) Relative errors on
estimated focal length for different displacements (for d = 0, 50, . . . , 250 U, cf. graph�s legend). (Lower
right) Failure rates for a noise level of 1 pixel.
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6.1.3. Influence of the number of point correspondences

In Fig. 5, we show results on the influence of the number of point correspondences
used for computing the fundamental matrix. As expected, performance increases
with the number of points, with an asymptotic behavior.

6.1.4. Influence of standardization

As discussed in Sections 3.2 and 5, the use of standardized coordinates (in our
case, a scaling) has to be considered more closely. Here, we show results obtained
with different scalings. The x-axis of the graphs in Figs. 6 and 7 shows the inverse
scale factor applied to the fundamental matrix according to Eq. (5) (remember that
the true focal length is 1000). The graphs show the percentage of random experi-
ments where the focal length was estimated (positive solution for f 2) and was within
10% of the ground truth value. Results are shown for both, quadratic and linear
equations.
Fig. 6 shows results for the first scenario. All graphs show a clear ‘‘performance

hole’’ when scaling is done with a factor close to the actual inverse focal length. With
decreasing elevation angle (bottom to top) and increasing noise (left to right), the
instability caused by scaling with the inverse focal length, gets combined with
the increasing instability due to getting closer to the singular equidistance case. In
the least favorable case (upper right), the success rate drops to an average of around
30%. Overall, the linear equations are much more sensitive to the scale factor, com-
pared to the quadratic equation, which has close to 100% success in the favorable
case on the lower left, even when scaling is done with approximately the true inverse
focal length.
Fig. 7 shows results for the second scenario. The linear equation is degenerate

here, and the results are always bad, as stated in Section 6.1.2. As for the quadratic
equation, the same performance hole as above around the true focal length can be
observed. Interestingly, performance also drops significantly for scale factors below
50 (extreme left side of the graphs); the only explanation we can think of is that in
this special case, round-off error becomes too large.

Fig. 5. (Left) First scenario (cf. Section 6.1.1), vergence fixed to 0�, noise level of 1 pixel, results for
different elevation angles. (Right) Second scenario (cf. Section 6.1.2), displacement of �50, noise level of 1
pixel, results for different vergence angles.
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Based on these observations, we decided to scale by a factor much lower than the
inverse of the maximum expected focal length, as stated already in Section 3.2. In all
other simulated experiments, a scale factor of 1/5000 was thus used, which always
gave good results.

6.2. Real images of a calibration grid

Using real images of a calibration grid, we attempted to evaluate the algorithm�s
performance with respect to proximity to singular configurations and its sensitivity
to the assumption of the principal point�s position.

6.2.1. Experimental setup

It is relatively easy to avoid singular configurations in practice. Especially, one
should avoid the case of coplanar optical axes. There are multiple ways to achieve
this goal. One approach is as follows. Before taking the second image, point the cam-
era to the same point in the scene as in the first image (this is simple to do with a
viewfinder). Then, tilt the camera slightly upwards or downwards, and take the sec-
ond image. Determining by how much one should tilt the camera is one of the goals
of this experiment.
We took a total of 10 images of a calibration grid with a handheld camera. Fig. 8

shows some sample images. They were taken from 10 different positions, covering a

Fig. 6. First scenario, with vergence fixed to 30�. (Top) Elevation angle fixed to 1�. (Bottom) Elevation
angle fixed to 5�. (Left column) Noise level of 0.4 pixels. (Right column) Noise level of 1 pixel.
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roughly circular path around the grid (i.e., most pairs of views are close to the sin-
gular equidistance configuration, cf. Section 4). From each position, we applied a
small tilt angle and then took one image as described above. Thus, among the 45
possible image pairs, some have approximately coplanar optical axes while some
do not.
For this experiment and the ones in the next section, we used a Sony DSC-P31

digital camera with 5 mm focal length and chose a moderate image resolution of
640 · 480.
The camera was calibrated, including radial lens distortion, using all 10 images of

the grid, by a photogrammetric calibration algorithm. The resulting focal length of

Fig. 7. Second scenario, with vergence fixed to 30�. (Top) Displacement of �50. (Bottom) Displacement of
�100. (Left) Noise level of 0.4 pixels. (Right) Noise level of 1 pixel.

Fig. 8. Some images of the calibration grid.
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625 pixels is used as ‘‘ground truth’’ in the following experiments. The images were
corrected for distortion before applying our algorithm. The extracted image posi-
tions of the grid�s targets were used by our algorithm to compute the fundamental
matrix.

6.2.2. Effect of principal point estimation on focal length calibration

As described above, our focal length calibration algorithm is based on the
assumption that we know the other intrinsic parameters. Here, we show that an error
on the assumed location of the principal point has little effect on the computed focal
length. For one pair of images, we estimated the focal length repeatedly, changing (in
steps of 5 pixels) the assumed coordinates of the principal point by up to ± 25 pixels
from the image center in both directions.
Among the 121 different computed focal lengths, the maximum relative error with

respect to the true focal length was 4.16%. The mean relative error was 0.2%. The
standard deviation of the computed focal lengths was 11.7 pixels, i.e., only about
1.8% of the focal length. We conclude that realistic errors in the assumption of
the principal point�s position have little effect on our algorithm, at least concerning
the range of accuracy that one can expect in our minimal scenario. Hence it is usually
safe to assume that the principal point is at the image center when we use this algo-
rithm for focal length calibration.

6.2.3. Stability of the algorithm

Here, we evaluate the algorithm�s performance, with respect to how close the
optical axes are to being coplanar. The calibration of our images, using a photo-
grammetric approach that makes use of the known geometry of the calibration
grid, tells us the position of the optical centers and the optical axes for our 10
images. To measure how close the optical axes associated with two images are to
being coplanar, we proceed as illustrated in the left part of Fig. 9: we compute
the two principal epipolar planes p1 and p2 (cf. Section 5). The ‘‘middle plane’’
is the plane that ‘‘bisects’’ p1 and p2. The angle c between the middle plane and
p1 (or, equivalently, p2) is our measure for the deviation from the case of coplanar
optical axes. In addition, we also considered a measure for how close the two opti-
cal axes are from being parallel, but which was found to be less significant for the
following evaluation.
We applied our algorithm to all 45 possible image pairs formed by our 10 input

images. The estimated values of the focal length are plotted in the right part of Fig. 9,
over the value of the angle c for the corresponding image pair.
We observe three groups of results:

� For c > 1.5�, the calibrated focal lengths are quite precise and accurate. Their
average is 627.6, which is nearly identical to the ground truth. Their standard
deviation is about 6.5 pixels, i.e., about 1.1% of the focal length.

� For c < 1�, the results are not at all stable. Errors range from 25 to 280 pixels.
� For 1� < c < 1.5�, the results are not very precise but become reasonably
accurate.
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We conclude that for the type of images tested, it is safe to run our algorithm
whenever the angle c exceeds 1.5�. This corresponds to tilting the camera between
two image acquisitions by about 10% of its opening angle, which seems to be reason-
ably achievable in practice. However, with a lower accuracy in image point extrac-
tion, this value will increase. In Section 6.3, we thus test our algorithm with real
images of generic scenes.

6.2.4. 3D reconstruction results using the calibrated focal length

Having calibrated the focal length, we can estimate the relative position of the two
considered images [11] and carry out a 3D reconstruction of the matched image
points [10]. We did this for several image pairs. To evaluate the quality of the 3D
reconstruction, we compare it to the known geometry of the calibration grid. We
take two steps to achieve this objective. First, we fit planes to the three subsets of
coplanar points (cf. Fig. 8). Here, we design a relative distance to evaluate the
coplanarity of points. Specifically, we first measure the distances of points to the fit-
ted plane. Next, we compute the largest distance between pairs of the considered
points. The distances of the points to the plane are then normalized by this largest
distance. The obtained distances (in percent) are the so-called relative distances. Sec-
ond, we measure the angles between each pair of planes and compare it to the
‘‘ground truth’’: one of the grid�s planes forms 90� angles with the two others, which
themselves form a 120� angle.
The results of our evaluation are displayed in Table 1. They are shown for five

pairs, which share one common image. Note that from left to right, the baseline
(the distance between optical centers) decreases. Row f contains the calibrated focal
lengths. The rows Aij (with i, j 2 [1,2,3]) show the angles between pairs of planes. The
rows Stdi (with i 2 [1,2,3]) show, for the 3 planes, the standard deviation of the

Fig. 9. (Left) The angle c used for measuring by how much an image pair deviates from having coplanar
optical axes. (Right) Sensitivity of focal length with respect to the angle c.
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relative distances as described above, which is useful to evaluate the coplanarity of
points.
We observe that for the two image pairs with the largest baselines, the angles are

all within 0.3� from their true values. With decreasing baseline, the errors generally
increase, both for the angles and the coplanarity measure, although they still stay rel-
atively small.

6.3. Real images of generic scenes

For the images of the calibration grid, image point matching was provided due to
the easy identification of the targets. Here, we consider images of two generic scenes.
Interest point extraction and matching is done automatically using the available soft-
ware4 (see also [22]). The same camera zoom setting as in Section 6.2 was used, which
provides the ‘‘ground truth’’ value for the focal length in Tables 2 and 3.

6.3.1. An outdoor scene
We took five images of a building of the National University of Singapore (see

Fig. 10, for examples). The distance between the camera and the building is about
25 m. The results for several image pairs are presented in Table 2 (camera configu-
rations close to the coplanar case give poor results which are not shown here). After
calibration, we also reconstructed the building. We chose the median of the seven
calibrated results as shown in Table 2, and used the result to reconstruct the build-
ing�s two faces with the right angle. We found that the reconstructed results (about
85�) are roughly close to the ground truth (the relative error is about 5%).
When analyzing the results of Table 2, we need to consider the following issue.

Although the same zoom setting was used as for the images of the calibration grid,
the camera focused on a scene at a different distance. Hence, comparatively large rel-
ative errors of several percent may be expected. Here, the maximum relative error is
about 10%, which seems reasonable for this experiment.

4 http://www-sop.inria.fr/robotvis/personnel/~zzhang/softwares.html.

Table 1
Reconstruction results using calibrated focal length

Ground truth Pair 1 Pair 2 Pair 3 Pair 4 Pair 5

f 625.0 622.3 633.0 632.0 628.4 623.6
A12 90.0 90.17 89.75 91.12 90.49 89.89
A13 90.0 89.65 89.34 92.18 91.36 88.87
A23 120.0 119.79 119.88 120.32 120.57 118.56
Std1 0.0 1.3e�4 1.7e�4 2.4e�4 3.1e�4 3.2e�4
Std2 0.0 3.4e�4 3.5e�4 2.6e�4 3.8e�4 2.8e�4
Std3 0.0 2.8e�4 3.1e�4 4.9e�4 5.3e�4 3.8e�4
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6.3.2. An indoor scene

We took four images of a simple indoor scene as Fig. 11 shows. Interest points
were mainly extracted on the three cups and just a few on the plug in the back-
ground, i.e., the scene is relatively ‘‘flat.’’
The estimated focal lengths, for all 6 possible image pairs, are shown in Table 3.

Again, the same camera setting as in Section 6.2 was used. The maximum relative
error is about 6.5%, and the average relative error is less than 5%.

Fig. 10. Some images of the building.

Table 2
Results for image pairs of the building, cf. Fig. 10

Image pair Ground truth 12 14 15 23 25 34 35

f 625.0 643.2 654.3 604.7 688.6 689.8 592.4 657.7

The label ‘‘12’’ in the first row stands for the pair of images 1 and 2, and analogously for the other labels.

Table 3
Results for image pairs of the 3 cups, cf. Fig. 11

Image pair Ground truth 12 13 14 23 24 34

f 625.0 602.4 604.8 596.9 621.3 612.7 623.7

The label ‘‘12’’ in the first row stands for the pair of images 1 and 2, and analogously for the other labels.

Fig. 11. Images of 3 cups.
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As we did for the images of the calibration grid, we performed a 3D reconstruc-
tion of the scene using the calibration result. A triangular mesh is semi-automatically
adjusted to the reconstructed 3D points, and used to create textured VRML models.
A few renderings of one of the models are shown in Fig. 12. Due to the sparseness of
the extracted interest points, the reconstruction of the scene is not complete. How-
ever, Fig. 12 shows that it is qualitatively correct, as explained in the caption of
the figure.

7. Conclusions

We have analyzed the problem of focal length calibration from two views of
an unknown scene, given their epipolar geometry and the assumption that the
views have identical focal length. Closed form solutions have been derived, which

Fig. 12. Rendering of the reconstructed cup scene. (First row) General appearance of the scene, once with
overlaid triangular mesh. (Second row) Rough top view of cups and two close-ups of the plug in the
background (rightmost image shows the near coplanarity of the reconstruction). (Third row) Top views of
two of the cups, showing that their cylindrical shape has been recovered.
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consist of one quadratic and two linear equations (which are algebraically inter-
dependent). We have studied critical camera configurations in detail. Our exper-
imental results suggest that in practice such configurations are relatively easy to
avoid. Acceptably accurate results can be obtained when these singular configura-
tions are avoided.
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Appendix A. Background

We describe a few known results about matrix decompositions that will be used in
the following sections. Let the SVD of a 3 · 3 matrix M of rank 2 be given as

M ¼SVDURVT ¼ u1 u2 u3ð Þ
r1 0 0

0 r2 0

0 0 0

0
B@

1
CA vT1

vT2

vT3

0
B@

1
CA:

The right null-vectors of M are equal (up to scale) to the third column v3 of V.
As for the left null-vectors of M, they are equal (up to scale) to the third column
u3 of U.
In the following, we suppose that r1 „ r2. Consider the symmetric matrix M

TM. It
has 0, r21, and r22 as eigenvalues. The eigenvectors of MTM to the eigenvalue
r2i ði ¼ 1; 2Þ are equal (up to scale) to the ith column vi of V.
Similarly, the eigenvectors of MMT to the eigenvalue r2i ði ¼ 1; 2Þ are equal (up to

scale) to the ith column ui of U.

Appendix B. Parameterization of relative pose

In the following sections, we derive singular camera configurations. A geometric
description is most useful. (Non-) Singularity only depends on the relative pose of
the two views (and, in some very special cases, on the actual value of the focal
length). Since only relative pose matters, we assume, without loss of generality, that
the optical center of the first camera is the origin. Furthermore, we assume that its
optical axis coincides with the Z-axis. Hence, the rotational part of its pose consists
of a rotation RZ, 1 about the Z-axis (cyclotorsion). This may, again without loss of
generality, be chosen such that the optical center of the second camera lies in the
plane X = 0, i.e., its coordinates are (0,Y,Z). Without loss of generality, we may fur-

78 P. Sturm et al. / Computer Vision and Image Understanding 99 (2005) 58–95



thermore impose that the distance between the two cameras is equal to 1. Hence, the
second camera�s position may be parameterized by an angle c

0

cos c

sin c

1

0
BBB@

1
CCCA:

Let the second camera�s orientation be given by three elementary rotation matrices:
R2 = RZ, 2RYRX. The semi-calibrated fundamental matrix for this parameterization is
then given by

G �
1 0 0

0 1 0

0 0 f

0
B@

1
CARZ;2RYRX

0

cos c

sin c

0
B@

1
CA

2
64

3
75

	

RZ;1

1 0 0

0 1 0

0 0 f

0
B@

1
CA: ðB:1Þ

Note that the rotations RZ, 1 and RZ, 2 have the following special form:

RZ;i ¼

 
 0


 
 0

0 0 1

0
B@

1
CA

Hence, Eq. (B.1) can be rewritten as

G � RZ;2

1 0 0

0 1 0

0 0 f

0
B@

1
CARYRX

0

cos c

sin c

0
B@

1
CA

2
64

3
75

	

1 0 0

0 1 0

0 0 f

0
B@

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
H

RZ;1: ðB:2Þ

Due to the special form of RZ, 1 and RZ, 2 and the orthogonality of the left and right
singular matrices of an SVD, G and H have the same singular values and the third
rows of their respective matrices U and V are equal to one another (up to sign at
least). Specifically, this means that the SVDs of G and H lead to the same calibration
equations.5

Hence, we may analyze the singularities of the calibration equations by studying
the SVD of H, which allows us to express algebraic singularity conditions relatively
easily in geometric terms, i.e., in terms of relative pose.
The matrix H, defined in (B.2) is given explicitly as

H �
ðsin c sin a � cos c cos aÞ sin b � sin c cos b f cos c cos b

sin c cos a þ cos c sin a 0 0

f ðsin c sin a � cos c cos aÞ cos b f sin c sin b �f 2 cos c sin b

0
B@

1
CA: ðB:3Þ

Here, a and b are the angles of RX and RY, respectively.

5 In fact, this illustrates that cyclotorsion (rotation about the optical axis) does not influence focal
length calibration.
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In the following, we express conditions for coplanar or parallel optical axes, etc.,
in terms of the relative pose parameters a, b, and c.
The optical axis of the second camera has the direction

D �

� sin b

sin a cos b

cos a cos b

0

0
BBB@

1
CCCA: ðB:4Þ

Since the direction of the first optical axis is given by (0,0,1,0)T, the optical axes are
parallel exactly if

sin a ¼ sin b ¼ 0: ðB:5Þ

The two optical axes are coplanar exactly if H33 = 0, hence if cosc = 0 or sinb = 0
(cf. Eq. (B.3)). The case cos c = 0 means that the second camera�s optical center lies
on the first camera�s optical axis.
Let us express these conditions in terms of the principal epipolar planes, defined in

section 5. The two principal epipolar planes are computed as

P1 �

cos c

0

0

0

0
BBB@

1
CCCA P2 �

cos bðcos a cos c � sin a sin cÞ
� sin b sin c

sin b cos c

0

0
BBB@

1
CCCA:

The optical axes are coplanar if one or both principal epipolar planes are not de-
fined (algebraically, if all their coefficients are zero) or if they are identical. Natu-
rally, we find the same conditions as above: when cosc = 0, P1 is not defined (the
second camera�s optical center lies on the first optical axis). A necessary condition
for P2 not being defined is sinb = 0. In that case, we observe that P1 and P2 are
identical (their coordinate vectors are equal up to scale), thus the optical axes are
coplanar.
Besides the different conditions for coplanar optical axes, another configuration is

relevant: mutually orthogonal principal epipolar planes (cf. Section 5). This means that
the scalar product of their normals (the upper 3-subvectors of P1 and P2) vanishes,
which happens exactly if P2, 1 = 0 (we exclude cosc = 0 since P1 is assumed to be
defined):

cos bðcos a cos c � sin a sin cÞ ¼ 0:
Let us now consider the equidistance configuration: the optical axes are coplanar (but
not parallel) and the optical centers are at the same distance from the intersection
point of the optical axes. Let us develop this case for the two conditions of coplanar
optical axes:

� cosc = 0. In that case, the second optical center is the intersection point of the two
optical axes, hence equidistance is excluded.
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� sinb = 0. We exclude parallel optical axes, hence: sina „ 0. The intersection point
of the optical axes is

0

0

sin c � cos c cos a
sin a

1

0
BBB@

1
CCCA:

The squared distances to the optical centers are thus equal if

ðsin c sin a � cos c cos aÞ2

sin2a
¼ cos

2c

sin2a

which (since sina „ 0) is equivalent to (after some trigonometric manipulations)

sin aðcos2c � sin2cÞ þ 2 cos a cos c sin c ¼ 0: ðB:6Þ
The last case of interest is that of the angles between optical axes and baseline (line

joining the optical centers) being equal. Note that this subsumes the equidistance
configuration, but is more general. The condition for this case is given in the last
row of the table.
All special cases of relative pose that are relevant in the following sections, are

summarized in the table below.

Summary of relevant special cases for relative camera pose

Coplanar optical axes cosc = 0 or sinb = 0
2nd optical center on 1st optical axis cosc = 0
1st optical center on 2nd optical axis sinb = cosacosc � sina sinc = 0
Parallel optical axes sina = sinb = 0
Orthogonal principal epipolar planes cosb (cosacosc � sina sinc) = 0
Equidistance sinb = sina (cos2c � sin2c)

+ 2 cosacosc sinc = 0
Equal angles between optical axes
and baseline

sin2c = cos2b (sinacosc + cosa sinc)2

Appendix C. Proofs for singularities of the calibration equations

Let us first define the meaning of singularity of the equations, based on observa-
tions made in Section 5: they are singular if all their coefficients vanish. In the follow-
ing, we first derive conditions for singularity in terms of the elements of the SVD of
G, respectively, H, concretely, in terms of the singular values a and b and the
coefficients U31, U32, V31, and V32 that show up in Eqs. (2)–(4). We then establish
the corresponding geometrical configurations based on the proposed parameteriza-
tion of relative pose.
The analysis of singularities is tricky due to the possibility that the SVD of the

(semi-calibrated) fundamental matrix may not be unique. Note that the SVD is never
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unique for any matrix: e.g., simultaneously scaling corresponding columns of U and
V by �1 gives another valid SVD. Such manipulations lead to the same calibration
equations, as may be verified by checking Eqs. (2)–(4). Thus, in the following, we
speak of ambiguous SVD if there are infinitely many possible SVDs for a matrix.
In our case, this is exactly the case if H has two equal non-zero singular values
a = b: if

H ¼ U

a 0 0

0 a 0

0 0 0

0
B@

1
CAVT

is an SVD of H, then also

H ¼ U

cos q sin q 0

� sin q cos q 0

0 0 1

0
B@

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
U0

a 0 0

0 a 0

0 0 0

0
B@

1
CA cos q � sin q 0

sin q cos q 0

0 0 1

0
B@

1
CAVT

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
V0T

for any angle q.
In the following two sections, we first analyze the case of ambiguous SVDs, fol-

lowed by that of a unique one.

Appendix D. Singularities in the case of ambiguous SVDs

D.1. Cases of ambiguous SVDs

In the following, we derive all cases in which the singular values of H are
equal. The singular values of H are the square roots of the eigenvalues of
HTH

HTH �
1 0 0

0 1 0

0 0 f

0
B@

1
CA 0

cos c

sin c

0
B@

1
CA

2
64

3
75

	

RTXR
T
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1 0 0

0 1 0

0 0 f 2

0
B@

1
CARYRX

0

cos c

sin c

0
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1
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2
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1 0 0

0 1 0

0 0 f

0
B@

1
CA:

We want to find the conditions for which HTH has two equal non-zero eigenvalues
(and one that is zero). In that case, its characteristic polynomial must be of the
form

kðk � aÞ2 ¼ k3 � 2ak2 þ a2k:

Hence, if we denote by xi the coefficient of ki, we must have

4x1 � x22 ¼ 0: ðD:1Þ
Let us formulate this condition for the characteristic polynomial of HTH. In the fol-
lowing, we at times use the following compact notation: ca = cosa and sa = sina, and
analogously for other angles.
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The expression in (D.1) can be factorized in three factors:

�ðf 2 � 1Þ2; ðD:2Þ

ðf 2 � 1Þs2bc2c þ c2c þ s2b þ c2bðcacc � sascÞ2 þ 2cbccðcacc � sascÞ; ðD:3Þ

ðf 2 � 1Þs2bc2c þ c2c þ s2b þ c2bðcacc � sascÞ2 � 2cbccðcacc � sascÞ: ðD:4Þ

If any one of the expressions (D.2)–(D.4) is equal to zero, then HTH has two
equal non-zero eigenvalues, and the SVD of H is not unique. The trivial case
is obviously f 2 = 1 (from Eq. (D.2)). This will be dealt with in detail in Section
D.2.
As for f 2 „ 1, we will show in the following that expressions (D.3) or (D.4) are

equal to zero exactly in generic singular configurations. We consider three cases:
cc = 0, sb = 0, and cc, sb „ 0.

� cc = 0. The expressions in (D.3) and (D.4) are identical in this case: s2b þ c2bs
2
a. This

is zero exactly if sa = sb = 0. This means exactly, cf. the table in Appendix B, that
the second camera lies on the optical axis of the first one (cosc = 0) and that their
optical axes are identical (since they are parallel, due to sa = sb = 0). Hence, we
are in a special case of parallel optical axes, which is of course a generic degenerate
situation.

� sb = 0. The expressions in (D.3) and (D.4) become (‘‘+’’ for (D.3) and ‘‘�’’ for
(D.4))

c2c þ ðcacc � sascÞ2 � 2ccðcacc � sascÞ ¼ ðcc � ðcacc � sascÞÞ2:

This is zero (for either ‘‘+’’ or ‘‘�’’) exactly if

c2c ¼ cacc � sasc
� �2

:

Using trigonometric manipulations, this can be transformed into:

s2a sa c2c � s2c
� �

þ 2caccsc
� �2

¼ 0:

This holds if sa = 0 or saðc2c � s2cÞ þ 2caccsc ¼ 0. The first condition corresponds to
parallel optical axes and the second one to the equidistance configuration, cf. the
table in Appendix B. Hence, as above, the expressions (D.3) and (D.4) can only be
zero (for f 2 „ 1) in generic degenerate situations.

� cc,sb „ 0. We show in the following that under these assumptions, the expressions
(D.3) and (D.4) cannot be zero for positive values of f 2. Expressions (D.3) or
(D.4) being zero leads to (division by s2bc

2
c is allowed since this is assumed to be

non-zero here)

f 2 ¼
�s2bs

2
c � c2c � c2bðcacc � sascÞ2 � 2cbccðcacc � sascÞ

s2bc2c
:

Here, ‘‘+’’ corresponds to (D.3) and ‘‘�’’ to (D.4). We develop this equation:
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f 2 ¼
�s2bs

2
c � cc � cbðcacc � sascÞ

� �2
s2bc2c

:

The right-hand side of this equation can obviously never be positive. Hence, the
equation can never be true for real values of f, meaning that expressions (D.3)
and (D.4) can not be zero (for f 2 „ 1 and under the assumption cc, sb „ 0).

Summary. The semi-calibrated fundamental matrix has equal non-zero singular
values exactly in the case f = ±1 (expression (D.2)) or if the cameras are in equidis-
tance configuration (includes the case of parallel optical axes). In the first case, the
fundamental matrix is actually the essential matrix of the camera pair. In practice,
f = ±1 can happen if one works in standardized image coordinates [8] (which often
comes down to scaling the images by approximately the inverse focal length), which
is usually recommended for numerical reasons. As for the second case, equidistance,
this represents a generic singularity, hence the calibration equations become singular
anyway. In the following section, we thus only analyze the case f = ±1.

D.2. The case f = ±1

In the following, we only consider the case f = +1; as for f = �1, the equations are
analogous, with only sign changes in appropriate places. The matrixH is now given by

H � RYRX

0

cos c

sin c

0
B@

1
CA

2
64

3
75

	

:

As proven above, H has two equal singular values, i.e. its SVD is not unique. In prac-
tice, the SVD one obtains depends on the actual numerical implementation used to
compute it. We want to investigate if our calibration equations may be singular for
some SVDs and non-singular for others, or if they are (non-) singular irrespective of
the actual SVD.
We write H in detail

H �
cos b 0 sin b

0 1 0

� sin b 0 cos b

0
B@

1
CA 1 0 0

0 cos a � sin a

0 sin a cos a

0
B@

1
CA 0 � sin c cos c

sin c 0 0

� cos c 0 0

0
B@

1
CA

¼
sin bðsin a sin c � cos a cos cÞ � cos b sin c cos b cos c

cos a sin c þ sin a cos c 0 0

cos bðsin a sin c � cos a cos cÞ sin b sin c � sin b cos c

0
B@

1
CA:

We now establish the possible SVDs of H. Since H is the product of two orthonor-
mal matrices and another one, we can derive its SVDs from those of that other
matrix. This is a skew-symmetric matrix, and all its SVDs can be shown to be
of the following form, for some value of q (and up to changing signs for entire
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columns or rows of the orthogonal matrices involved; this does not matter for our
analysis):

0 �sc cc

sc 0 0

�cc 0 0

0
B@

1
CA ¼SVD

0 1 0

�sc 0 cc

cc 0 sc

0
B@

1
CA cq sq 0

�sq cq 0

0 0 1

0
B@

1
CA 1 0 0

0 1 0

0 0 0

0
B@

1
CA

	
cq �sq 0

sq cq 0

0 0 1

0
B@

1
CA �1 0 0

0 �sc cc

0 cc sc

0
B@

1
CA

¼
�sq cq 0

�cqsc �sqsc cc

cqcc sqcc sc

0
B@

1
CA 1 0 0

0 1 0

0 0 0

0
B@

1
CA �cq sqsc �sqcc

�sq �cqsc cqcc

0 cc sc

0
B@

1
CA;

where we use, as above, the shorthand notation ca = cos a and sa = sina, and analo-
gously for other angles.
Hence, the SVDs of H are parameterized by the same angle q, and are of the fol-

lowing form:

RYRX

�sq cq 0

�cqsc �sqsc cc

cqcc sqcc sc

0
B@

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
U

1 0 0

0 1 0

0 0 0

0
B@

1
CA �cq sqsc �sqcc

�sq �cqsc cqcc

0 cc sc

0
B@

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
V
T

with U explicitly of the form:

U ¼
cb 0 sb
0 1 0

�sb 0 cb

0
B@

1
CA 1 0 0

0 ca �sa
0 sa ca

0
B@

1
CA �sq cq 0

�cqsc �sqsc cc

cqcc sqcc sc

0
B@

1
CA:

Let us call X = cb (cacc � sasc). From the above SVD, we identify the values used in
the calibration equations:

a ¼ b;

U 31 ¼ sbsq þ cqX ;

U 32 ¼ �sbcq þ sqX ;

V 31 ¼ �sqcc;

V 32 ¼ cqcc:

Note that X = 0 is the condition for orthogonal principal epipolar planes (cf. the ta-
ble in Appendix B). Let us further define:
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Y ¼ U 2
31V

2
31 � U 2

32V
2
32;

Z ¼ U 2
32 � U 2

31 þ V 232 � V 231:

The quadratic equation can now be written as (we factor out a = b):

f 4ðY þ ZÞ � f 2ð2Y þ ZÞ þ Y ¼ 0:
Its coefficients vanish all exactly if Y = Z = 0. Let us go into details (we use the rela-
tionship s4q � c4q ¼ s2q � c2q):

Y ¼ U 2
31V

2
31 � U 2

32V
2
32 ¼ sbc2cð2cqsqX þ sbðs2q � c2qÞÞ ¼ 0; ðD:5Þ

Z ¼ U 2
32 � U 2

31 þ V 232 � V 231 ¼ �4cqsqsbX þ ðs2b þ c2c � X 2Þðc2q � s2qÞ ¼ 0: ðD:6Þ

In the following, we consider two questions:

� for which relative camera poses do (D.5) and (D.6) hold whatever value q has?
� do values for q exist for any relative camera pose, such that (D.5) and (D.6) hold?

D.2.1. Relative camera poses for which (D.5) and (D.6) hold for every q
Let us consider any value of q different from 0. Dividing (D.5) and (D.6)by c2q gives:

t2qðs2bc2cÞ þ 2tqðsbc2cX Þ � s2bc
2
c ¼ 0;

t2qðX 2 � s2b � c2cÞ � 4tqðsbX Þ þ ðs2b þ c2c � X 2Þ ¼ 0;

where tq = tanq. The equations hold for every value of q exactly if the coefficients of
powers of tq all vanish, hence if all the following equations hold (we leave out the
ones occurring twice):

s2bc
2
c ¼ 0;

sbc2cX ¼ 0;

X 2 � s2b � c2c ¼ 0;

sbX ¼ 0:
If sb = 0, then the third equation holds if X

2 � c2c ¼ 0 (we will examine this case just
below). If sb „ 0, then the first and fourth equation imply that cc = X = 0. In that
case, however, the third equation would not be satisfied. Hence, the only possible
case is sb ¼ X 2 � c2c ¼ 0. Let us examine it in detail.
The term X 2 � c2c can be expanded as follows:

�c2c þ ðcacc � sascÞ2 ¼ c2cðc2a � 1Þ þ s2cs
2
a � 2casaccsc

¼ ðs2c � c2cÞs2a � 2casaccsc

¼ sa ðs2c � c2cÞsa � 2caccsc
� �

:
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It is equal to zero if sa = 0 or if ðs2c � c2cÞsa � 2caccsc ¼ 0. The first case, together with
the assumption sb = 0, corresponds to the case of parallel optical axes (cf. the table in
Appendix B). The second case, corresponds to the equidistance condition. Hence,
both cases correspond to generic singular configurations.
We conclude that for f = ±1, the quadratic calibration vanishes whichever SVD

one happens to compute (whatever value q has) only in the generic singular
configurations.

D.2.2. For which relative camera poses can (D.5) and (D.6) hold?

Note that in the following, only generic non-singular configurations are of inter-
est. Let us now consider the question for different cases:

� sinb = 0. Eq. (D.5) holds and (D.6) becomes

ðc2c � X 2Þðc2q � s2qÞ ¼ 0:

As shown in Section D.2.1, the first possibility, c2c � X 2 ¼ 0, corresponds to gen-
eric singular configurations, hence is not of interest here. As for the second pos-
sibility, c2q � s2q ¼ 0, it tells us that for all relative camera poses with sinb = 0,
there exist four different values for q (separated by 90�), for which the quadratic
calibration equation vanishes.

� sinb „ 0, cosc = 0, sin2b � cos2b sin2a = 0. Eq. (D.5) holds and (D.6) becomes
cqsqcbsbsa ¼ 0:

Hence, for all relative camera poses corresponding to the assumptions made here,
there again exist four different values for q (separated by 90�), for which the qua-
dratic calibration equation vanishes.

� sinb „ 0, cosc = 0, sin2b � cos2b sin2a „ 0. Eq. (D.5) holds and (D.6) becomes
(the ± corresponds to sinc = ±1)

�4cqsqcbsbsa þ ðs2b � c2bs
2
aÞðc2q � s2qÞ ¼ 0:

Let us first note that for cq = 0, this equation cannot hold, due to the assumption
that s2b � c2bs

2
a 6¼ 0. We may thus divide the equation by c2q. After some modifica-

tions, this leads to:

t2qðc2bs2a � s2bÞ � 4tqcbsbsa � ðc2bs2a � s2bÞ ¼ 0:

It is easy to verify that, whatever values a and b have (if compatible with the
assumptions made here), there exist exactly two solutions for tq = tanq. Hence,
for all relative camera poses corresponding to the assumptions made here, there
again exist four different values for q (separated by 90�), for which the quadratic
calibration equation vanishes.
Hence, for all relative camera poses corresponding to the assumptions made here,
there again exist four different values for q, for which the quadratic calibration
equation vanishes.

� sinb „ 0, cosc „ 0. For (D.5) to hold, we must have
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2cqsqX þ sbðs2q � c2qÞ ¼ 0:

Multiplying this equation with 2sb and adding this to (D.6) gives a necessary con-
dition for the vanishing of the quadratic calibration equation

ð�s2b þ c2c � X 2Þðc2q � s2qÞ ¼ 0:

It is easy to verify that ð�s2b þ c2c � X 2Þ ¼ 0 is equivalent to the condition of equal
angles between optical axes and baseline (cf. the table in Appendix B) and that
under the assumption sinb „ 0, cosc „ 0, there exist four different values for q
for which (D.5) and (D.6) hold.
As for ð�s2b þ c2c � X 2Þ 6¼ 0, the necessary condition is c2q � s2q ¼ 0. Substituting
this into (D.5) and (D.6), leads to the condition sbc2cX ¼ 0. Since here we assume
that sinb „ 0 and cosc „ 0, we thus conclude that for X = 0 (orthogonal principal
epipolar planes, see above), four different values for q exist (due to c2q � s2q ¼ 0),
for which the quadratic calibration equation vanishes.

D.2.3. Summary

The quadratic equation vanishes of course in generic degenerate conditions.
The only other case where it may vanish is when f = ±1. This may happen
because the SVD of the fundamental matrix is ambiguous. For f = ±1, the
coefficients of the quadratic equation may all be zero, depending on which
SVD one happens to compute in practice (which angle q). This can happen
in exactly the following non-generic singular configurations: (i) the optical axes
are coplanar, (ii) the principal epipolar planes are mutually orthogonal, or (iii)
the angles between the optical axes and the baseline, are equal. In each of these
cases, only four different values of q (four among the infinitely many ambiguous
SVDs) exist for which the quadratic calibration equation vanishes. Hence, the
chances for the quadratic equation to vanish in generical non-singular configu-
rations, are small. Nevertheless, instabilities may indeed occur in cases close
to f = ±1, i.e., when working in nearly perfectly standardized coordinates, as
illustrated in Section 6.1.4.

Appendix E. Singularities in the case of a unique SVD

We now consider the cases where the semi-calibrated fundamental matrix has a
unique SVD (up to switching entire columns or rows or changing signs for entire col-
umns or rows), i.e., different non-zero singular values a and b.

E.1. Quadratic equation

Zeroing the three coefficients of Eq. (4) leads to the following equations:

a2ð1� U 2
31 � V 231 þ U 2

31V
2
31Þ ¼ b2ð1� U 2

32 � V 232 þ U 2
32V

2
32Þ; ðE:1Þ
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a2ðU 2
31 þ V 231 � 2U 2

31V
2
31Þ ¼ b2ðU 2

32 þ V 232 � 2U 2
32V

2
32Þ; ðE:2Þ

a2U 2
31V

2
31 ¼ b2U 2

32V
2
32: ðE:3Þ

Substituting (E.3) into (E.1) and (E.2), we get:

a2ð1� U 2
31 � V 231Þ ¼ b2ð1� U 2

32 � V 232Þ; ðE:4Þ

a2ðU 2
31 þ V 231Þ ¼ b2ðU 2

32 þ V 232Þ: ðE:5Þ
Adding these two equations together, leads to a2 = b2. This is in contradiction with
our assumptions (unique SVD). We conclude that the quadratic equation is never
degenerate when the SVD is unique, i.e., when the cameras are not in an equidistance
configuration (including parallel optical axes) and if f „ ±1.
Further below, we examine special cases where one of its coefficients vanishes, and

especially a case where the quadratic equation becomes linear.

E.2. Linear equations

It is easy to show that both linear equations degenerate if any one of the following
conditions holds:

U 32 ¼ V 31 ¼ 0; ðE:6Þ

U 32 ¼ V 32 ¼ 0; ðE:7Þ

U 31 ¼ V 31 ¼ 0; ðE:8Þ

U 31 ¼ V 32 ¼ 0: ðE:9Þ
The only other singularities occur, for Eq. (2), if

V 31 ¼ �U 32 and aU 31 ¼ �bV 32 ðE:10Þ
and, for Eq. (3), if

V 32 ¼ �U 31 and aV 31 ¼ �bU 32: ðE:11Þ
Any one of the conditions (E.6), (E.9), (E.10), and (E.11) implies that the opti-
cal axes are coplanar (they imply that H33 = 0, cf. Appendix B). Only the con-
ditions (E.7) and (E.8) may correspond to non-coplanar optical axes. In the
following section, we consider the case of coplanar optical axes, and show that
this always implies the degeneracy of the linear equations. We then consider the
case of non-coplanar axes and examine cases where the linear equations
degenerate.

E.3. Coplanar optical axes

As shown in Appendix B, the optical axes are coplanar if cosc = 0 or sinb = 0.
We examine the two cases in the following.
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E.3.1. cosc = 0
This means that the optical center of the second camera is the point (0,0, sinc, 1),

i.e., it lies on the optical axis of the first camera (the Z-axis). In this case, the first
epipole has coordinates (0,0,1)T. Since the first epipole is the null-vector of the fun-
damental matrix H, it is equal (up to sign) to the third column v3 of the matrix V in its
SVD. Due to the orthogonality of V, this implies that its third row is also given as
(0,0,±1), hence we have: V31 = V32 = 0. Hence, the quadratic equation (4) becomes

f 2 f 2 a2ð1� U 2
31Þ � b2ð1� U 2

32Þ
� �

þ a2U 2
31 � b2U 2

32

� �� �
¼ 0:

The spurious solution of that equation is f = 0, and can thus be always rejected,
meaning the quadratic equation gives a unique admissible solution.
Consider now the symmetric matrix HHT = Udiag (a2,b2,0)UT. The columns of U

are the eigenvectors of HHT. It can be shown that

sin a

cos a sin b

0

0
B@

1
CA

is an eigenvector of HHT to a non-zero eigenvalue (thus, a2 or b2). Hence, this vector
must be equal (up to scale) to one of the first two columns of U, which means that
U31 = 0 or U32 = 0. Together with the condition V31 = V32 = 0 shown above, this
implies that at least one of (E.6)–(E.9) is true, hence both linear equations, (2) and
(3), are degenerate.

E.3.2. sinb = 0
In this case, both HTH and HHT have (1,0,0)T as an eigenvector with non-zero

eigenvalue. Hence, one of the first two columns of U and one of first two columns
of V have this form. It can be shown that if the first column of U has that form, then
the second column of V is of the same form, and vice versa. This means that either
U31 = V32 = 0 or U32 = V31 = 0, which implies that both linear equations vanish and
that the quadratic one becomes

f 2 f 2 a2ð1� U 2
31Þ � b2ð1� V 232Þ

� �
þ a2U 2

31 � b2V 232
� �� �

¼ 0 ðE:12Þ

if U32 = V31 = 0 or

f 2 f 2 a2ð1� V 231Þ � b2ð1� U 2
32Þ

� �
þ a2V 231 � b2U 2

32

� �� �
¼ 0 ðE:13Þ

if U31 = V32 = 0. Hence, as in Section E.3.1, the quadratic equation gives a single
admissible solution.

E.3.3. Summary

Whenever the optical axes are coplanar, the two linear equations (2) and (3)
vanish and the quadratic equation (4) gives in general a single admissible solution.
The latter one vanishes completely exactly in the equidistance configuration
(including parallel optical axes). Hence all singular cases of the quadratic equation
in the coplanar case are generic singular cases, with the exception of the special
cases for f = ±1.
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Appendix F. Non-coplanar optical axes

F.1. Linear equations

As Section E.2 shows, the singular cases for non-coplanar optical axes are, for the
linear equations, given by Eqs. (E.7) and (E.8):

U 32 ¼ V 32 ¼ 0;

U 31 ¼ V 31 ¼ 0:

F.1.1. First case: U32 = V32 = 0

In the following, the SVD of H is considered. The right null-vector (first epi-
pole) of H is easily seen to be (0, fcosc, sinc)T (cf. Eq. (B.3)). As described in
Appendix A, this vector is equal, up to scale, to the third column v3 of V. Hence
we have6:

H �
ðsin c sin a � cos c cos aÞ sin b � sin c cos b f cos c cos b

sin c cos a þ cos c sin a 0 0

f ðsin c sin a � cos c cos aÞ cos b f sin c sin b �f 2 cos c sin b

0
B@

1
CA

�
U 11 U 12 U 13

U 21 U 22 U 23

U 31 0 U 33

0
B@

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
U

a 0 0

0 b 0

0 0 0

0
B@

1
CA V 11 V 21 V 31

V 12 V 22 0

0 f cos c sin c

0
B@

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
VT

:

ðF:1Þ

From the orthogonality of rows 2 and 3 of VT, it follows that V22 = 0 and from this,
that V11 = 0. FromH22 = H23 = 0, it also follows that U21 = 0. Hence (F.1) is rewrit-
ten as

ðsin c sin a � cos c cos aÞ sin b � sin c cos b f cos c cos b

sin c cos a þ cos c sin a 0 0

f ðsin c sin a � cos c cos aÞ cos b f sin c sin b �f 2 cos c sin b

0
B@

1
CA

�
U 11 U 12 U 13

0 U 22 U 23

U 31 0 U 33

0
B@

1
CA a 0 0

0 b 0

0 0 0

0
B@

1
CA 0 V 21 V 31

V 12 0 0

0 f cos c sin c

0
B@

1
CA

¼
bU 12V 12 aU 11V 21 aU 11V 31
bU 22V 12 0 0

0 aU 31V 21 aU 31V 31

0
B@

1
CA:

From the coefficient (3,1) of that equation, we derive

6 Here unitary determinant of the orthogonal matrix V is not imposed.
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ðsin c sin a � cos c cos aÞ cos b ¼ 0
which is thus a necessary condition for non-coplanar singular cases for the linear
equations in the first case. Note that this condition is nothing else than that for
mutually orthogonal principal epipolar planes, cf. the table in Appendix B.
In the following it is shown that this condition is also a sufficient one. We do this

by giving analytical SVDs7 for H in the two cases cosb = 0 and sinc
sina � cosccosa = 0. Based on these SVDs, the coefficients of the linear calibration
Eqs. (2) and (3) can be computed and it will be seen that they all vanish.

� cosb = 0. This implies that sinb = ±1 and H becomes

H �
� sin c sin a � cos c cos a 0 0

sin c cos a þ cos c sin a 0 0

0 �f sin c �f 2 cos c

0
B@

1
CA: ðF:2Þ

Its SVD is given by (using the same shorthand notation as further above)

0 �sasc � cacc �casc � sacc

0 casc þ sacc cacc � sasc
1 0 0

0
B@

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
U

ft2 0 0

0 1 0

0 0 0

0
B@

1
CA 0 �sc �fcc

t2 0 0

0 fcc sc

0
B@

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
VT

; ðF:3Þ

where t2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2cos2c þ sin2c

q
. It is easy to verify that (F.3) indeed is an SVD of H:

the matrices U and V are orthonogonal and the product of the above expression
equals H, as given in (F.2).
We thus have U32 = V32 = 0, which was already shown in Section E.2 to be a suf-
ficient condition for degeneracy of the linear equations.

� sinc sina � cosccosa = 0. Note that in this case, we have cosc „ 0 and sina „ 0:
the condition cosc = 0 can be excluded since it would imply coplanar optical axes
(cf. Appendix B). Concerning sina „ 0: if sina = 0, then cosa = ±1 and sinc
sina � cosccosa =« cosc „ 0, which is contradictory to our assumption here.
We may thus put:

sin c ¼ cos a
sin a

cos c:

H becomes

H �
0 �sccb fcccb

scca þ ccsa 0 0

0 fscsb �f 2ccsb

0
B@

1
CA �

0 �cacb fsacb

1 0 0

0 fcasb �f 2sasb

0
B@

1
CA:

An SVD for H is given by:

7 The analytical SVDs in this section are given up to possible switching of columns of the involved
matrices and, for easier expressions, up to scale for the orthogonal matrices U and V.
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cos b 0 f sin b

0 t2 0

�f sin b 0 cos b

0
B@

1
CA t1t2 0 0

0 1 0

0 0 0

0
B@

1
CA 0 � cos a f sin a

t1 0 0

0 f sin a cos a

0
B@

1
CA ðF:4Þ

with t1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2sin2a þ cos2a

q
and t2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2sin2b þ cos2b

q
. Again, we have

U32 = V32 = 0, meaning that the linear calibration equations degenerate.

F.1.2. Second case: U31 = V31 = 0

The analysis can be done analogously as above, leading to the same conclu-
sions (the SVDs are the same, up to swapping of the singular values and corre-
sponding columns of U and V). Which one of the cases U32 = V32 = 0 or
U31 = V31 = 0 occurs in practice, depends on which one of the singular values
is larger.

F.2. Quadratic equation

If we exclude f = ±1, then non-coplanar optical axes imply that a „ b (follows
from Section D.1) and hence the quadratic equation is non-degenerate. We now con-
sider what happens in the cases where the linear equations degenerate: cosb = 0 or
sinc sina � cosccosa = 0, cf. Section F.1.1.

� cosb = 0. The SVD of H in this case is given in Eq. (F.3). We substitute its coef-
ficients in the quadratic equation, and get

�g4 þ g2f 2sin2c þ f 4cos2c ¼ 0;
where f is the true focal length and g the estimated one. Its two solutions are
g2 = f 2 and g2 = �f 2 cos2c. Being always negative (or zero), the second solution
can be ruled out, which means that the quadratic equation gives a unique feasible
solution here.

� sinc sina � cosccosa = 0. Substituting the coefficients of the SVD of H, given in
Eq. (F.4), in the quadratic equation, we get

g4ðcos2a cos2b � 1Þ þ g2f 2ðcos2a sin2b þ sin2a cos2bÞ þ f 4sin2a sin2b ¼ 0:
Besides f 2, g2 has the following solution:

� sin2a sin2b

sin2b þ sin2a cos2b
which is always non-positive.8 Hence, the quadratic equation has again a unique
admissible solution.

8 Note that the denominator is assured not to be zero, since we exclude sinb = 0 (we consider non-
coplanar optical axes) and sina = 0 (cf. Section F.1.1).
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F.3. Summary

If the optical axes are non-coplanar, then the quadratic equation is never degen-
erate (with the exception of the special case f = ±1 discussed in Section D.2). In addi-
tion, in all cases where the linear equations vanish, the spurious solution of the
quadratic equation can be ruled out due to being non-positive.
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